Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: PM2_Libary Eigen
main.cpp
- Committer:
- pmic
- Date:
- 2022-05-14
- Revision:
- 48:3ae406d7554a
- Parent:
- 47:5ce234723e3a
- Child:
- 50:fec2ffc2a443
File content as of revision 48:3ae406d7554a:
#include <mbed.h>
#include <math.h>
#include "PM2_Libary.h"
#include "Eigen/Dense.h"
# define M_PI 3.14159265358979323846 // number pi
// logical variable main task
bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
// user button on nucleo board
Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
void user_button_released_fcn();
// controller functions
float ang_cntrl_fcn(const float& Kp, const float& Kp_nl, const float& angle);
float vel_cntrl_v1_fcn(const float& vel_max, const float& vel_min, const float& ang_max, const float& angle);
float vel_cntrl_v2_fcn(const float& wheel_speed_max, const float& b, const float& robot_omega, const Eigen::Matrix2f& Cwheel2robot);
int main()
{
// while loop gets executed every main_task_period_ms milliseconds
const int main_task_period_ms = 10; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
// led on nucleo board
DigitalOut user_led(LED1); // create DigitalOut object to command user led
// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
float ir_distance_mV = 0.0f; // define variable to store measurement
AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
// 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
// create SpeedController objects, default parametrization is for 78.125:1 gear box
FastPWM pwm_M1(PB_13); // motor M1 is closed-loop speed controlled (angle velocity)
FastPWM pwm_M2(PA_9); // motor M2 is closed-loop speed controlled (angle velocity)
EncoderCounter encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
EncoderCounter encoder_M2(PB_6, PB_7);
const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
const float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio
const float kn = 180.0f / 12.0f; // define motor constant in rpm per V
//const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
//const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
SpeedController* speedControllers[2];
speedControllers[0] = new SpeedController(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1);
speedControllers[1] = new SpeedController(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2);
//speedControllers[0]->setMaxAccelerationRPS(0.36f * max_voltage * kn * 0.1f);
//speedControllers[1]->setMaxAccelerationRPS(0.36f * max_voltage * kn * 0.1f);
// create SensorBar object for sparkfun line follower array
I2C i2c(PB_9, PB_8);
SensorBar sensor_bar(i2c, 0.1175f); // second input argument is distance from bar to wheel axis
// robot kinematics
const float r_wheel = 0.0358f / 2.0f; // wheel radius
const float L_wheel = 0.143f; // distance from wheel to wheel
Eigen::Matrix2f Cwheel2robot; // transform wheel to robot
Cwheel2robot << r_wheel / 2.0f , r_wheel / 2.0f ,
r_wheel / L_wheel, -r_wheel / L_wheel;
Eigen::Matrix2f Crobot2wheel; // transform robot to wheel
Crobot2wheel << 1.0f / r_wheel, L_wheel / (2.0f * r_wheel),
1.0f / r_wheel, -L_wheel / (2.0f * r_wheel);
Eigen::Vector2f robot_coord; // contains v and w (robot translational and rotational velocities)
robot_coord.setZero();
Eigen::Vector2f wheel_speed; // w1 w2 (wheel speed)
wheel_speed.setZero();
// attach button fall and rise functions to user button object
user_button.fall(&user_button_pressed_fcn);
user_button.rise(&user_button_released_fcn);
// start timer
main_task_timer.start();
while (true) { // this loop will run forever
main_task_timer.reset();
if (do_execute_main_task) {
// enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled
enable_motors = 1;
// read SensorBar
static float sensor_bar_avgAngleRad = 0.0f; // by making this static it will not be overwritten (only fist time set to zero)
if (sensor_bar.isAnyLedActive()) {
sensor_bar_avgAngleRad = sensor_bar.getAvgAngleRad();
}
const static float Kp = 2.0f; // by making this const static it will not be overwritten and only initiliazed once
const static float Kp_nl = 17.0f;
robot_coord(1) = ang_cntrl_fcn(Kp, Kp_nl, sensor_bar_avgAngleRad);
// nonlinear controllers version 1 (whatever came to my mind)
/*
const static float vel_max = 0.3374f; //0.10f;
const static float vel_min = 0.00f; //0.02f;
const static float ang_max = 27.0f * M_PI / 180.0f;
robot_coord(0) = vel_cntrl_v1_fcn(vel_max, vel_min, ang_max, sensor_bar_avgAngleRad);
*/
// nonlinear controllers version 2 (one wheel always at full speed controller)
///*
const static float wheel_speed_max = max_voltage * kn / 60.0f * 2.0f * M_PI;
const static float b = L_wheel / (2.0f * r_wheel);
robot_coord(0) = vel_cntrl_v2_fcn(wheel_speed_max, b, robot_coord(1), Cwheel2robot);
//*/
// transform to robot coordinates
wheel_speed = Crobot2wheel * robot_coord;
// read analog input
ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
speedControllers[0]->setDesiredSpeedRPS(wheel_speed(0) / (2.0f * M_PI)); // set a desired speed for speed controlled dc motors M1
speedControllers[1]->setDesiredSpeedRPS(wheel_speed(1) / (2.0f * M_PI)); // set a desired speed for speed controlled dc motors M2
} else {
enable_motors = 0;
ir_distance_mV = 0.0f;
speedControllers[0]->setDesiredSpeedRPS(0.0f);
speedControllers[1]->setDesiredSpeedRPS(0.0f);
}
user_led = !user_led;
// do only output via serial what's really necessary (this makes your code slow)
//printf("%d, %d\r\n", sensor_bar_raw_value_time_ms, sensor_bar_position_time_ms);
//printf("%f, %f\r\n", speedControllers[0]->getSpeedRPS(), speedControllers[1]->getSpeedRPS());
// read timer and make the main thread sleep for the remaining time span (non blocking)
int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
}
}
void user_button_pressed_fcn()
{
user_button_timer.start();
user_button_timer.reset();
}
void user_button_released_fcn()
{
// read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
user_button_timer.stop();
if (user_button_elapsed_time_ms > 200) {
do_execute_main_task = !do_execute_main_task;
}
}
float ang_cntrl_fcn(const float& Kp, const float& Kp_nl, const float& angle)
{
static float retval = 0.0f;
if (angle > 0) {
retval = Kp * angle + Kp_nl * angle * angle;
} else if (angle <= 0) {
retval = Kp * angle - Kp_nl * angle * angle;
}
return retval;
}
float vel_cntrl_v1_fcn(const float& vel_max, const float& vel_min, const float& ang_max, const float& angle)
{
const static float gain = (vel_min - vel_max) / ang_max;
const static float offset = vel_max;
return gain * fabs(angle) + offset;
}
float vel_cntrl_v2_fcn(const float& wheel_speed_max, const float& b, const float& robot_omega, const Eigen::Matrix2f& Cwheel2robot)
{
static Eigen::Matrix<float, 2, 2> _wheel_speed;
static Eigen::Matrix<float, 2, 2> _robot_coord;
if (robot_omega > 0) {
_wheel_speed(0) = wheel_speed_max;
_wheel_speed(1) = wheel_speed_max - 2*b*robot_omega;
} else {
_wheel_speed(0) = wheel_speed_max + 2*b*robot_omega;
_wheel_speed(1) = wheel_speed_max;
}
_robot_coord = Cwheel2robot * _wheel_speed;
return _robot_coord(0);
}
