Example project for the Line Follower robot.

Dependencies:   PM2_Libary Eigen

Revision:
45:5e1dd4117ed2
Parent:
44:340cdc4b6e47
Child:
46:fd580fa68618
--- a/main.cpp	Fri May 13 14:56:01 2022 +0200
+++ b/main.cpp	Fri May 13 16:01:02 2022 +0200
@@ -16,66 +16,63 @@
 void user_button_pressed_fcn();     // custom functions which gets executed when user button gets pressed and released, definition below
 void user_button_released_fcn();
 
-// while loop gets executed every main_task_period_ms milliseconds
-int main_task_period_ms = 10;   // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
-Timer main_task_timer;          // create Timer object which we use to run the main task every main task period time in ms
-
-// led on nucleo board
-DigitalOut user_led(LED1);      // create DigitalOut object to command user led
-
-// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
-float ir_distance_mV = 0.0f;    // define variable to store measurement
-AnalogIn ir_analog_in(PC_2);    // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
-
-// 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
-DigitalOut enable_motors(PB_15);    // create DigitalOut object to enable dc motors
-
-float   pwm_period_s = 0.00005f;    // define pwm period time in seconds and create FastPWM objects to command dc motors
-FastPWM pwm_M1(PB_13);              // motor M1 is closed-loop speed controlled (angle velocity)
-FastPWM pwm_M2(PA_9);               // motor M2 is closed-loop speed controlled (angle velocity)
-
-EncoderCounter  encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
-EncoderCounter  encoder_M2(PB_6, PB_7);
-
-// create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
-float max_voltage = 12.0f;                  // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
-float counts_per_turn = 20.0f * 78.125f;    // define counts per turn at gearbox end: counts/turn * gearratio
-float kn = 180.0f / 12.0f;                  // define motor constant in rpm per V
-float k_gear = 100.0f / 78.125f;            // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
-float kp = 0.1f;                            // define custom kp, this is the default speed controller gain for gear box 78.125:1
-
-
-//SpeedController speedController_M1(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1); // default 78.125:1 gear box  with default contoller parameters
-//SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box  with default contoller parameters
-//SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear
-
-
-
-// sparkfun line follower array
-I2C i2c(PB_9, PB_8); // I2C (PinName sda, PinName scl)
-SensorBar sensor_bar(i2c, 0.1175f);
-
-// transformations and stuff
-float r_wheel = 0.0358f / 2.0f;
-float L_wheel = 0.143f;
-Eigen::Matrix<float, 2, 2> Cwheel2robot; // transform wheel to robot
-Eigen::Matrix<float, 2, 2> Crobot2wheel; // transform robot to wheel
-Eigen::Matrix<float, 2, 1> robot_coord;  // contains v and w
-Eigen::Matrix<float, 2, 1> wheel_speed;  // w1 w2
-
-float fcn_ang_cntrl(const float& Kp, const float& Kp_nl, const float& angle);
-float fcn_vel_cntrl_v1(const float& vel_max, const float& vel_min, const float& ang_max, const float& angle);
-float fcn_vel_cntrl_v2(float wheel_speed_max, float b, float robot_omega);
+// controller functions
+float ang_cntrl_fcn(const float& Kp, const float& Kp_nl, const float& angle);
+float vel_cntrl_v1_fcn(const float& vel_max, const float& vel_min, const float& ang_max, const float& angle);
+float vel_cntrl_v2_fcn(const float& wheel_speed_max, const float& b, const float& robot_omega, const Eigen::Matrix2f& Cwheel2robot);
 
 int main()
 {   
-    //SpeedController* speedController_ptr[2];
-    //speedController_ptr[0] = new SpeedController(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1);
-    //speedController_ptr[1] = new SpeedController(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2);
-    std::vector<SpeedController*> speedController_ptr;
-    speedController_ptr.push_back( new SpeedController(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1) );
-    speedController_ptr.push_back( new SpeedController(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2) );
+    // while loop gets executed every main_task_period_ms milliseconds
+    const int main_task_period_ms = 10;   // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
+    Timer main_task_timer;          // create Timer object which we use to run the main task every main task period time in ms
+
+    // led on nucleo board
+    DigitalOut user_led(LED1);      // create DigitalOut object to command user led
+
+    // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
+    float ir_distance_mV = 0.0f;    // define variable to store measurement
+    AnalogIn ir_analog_in(PC_2);    // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
+
+    // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
+    DigitalOut enable_motors(PB_15);    // create DigitalOut object to enable dc motors
+
+    // create SpeedController objects, default parametrization is for 78.125:1 gear box
+    FastPWM pwm_M1(PB_13);  // motor M1 is closed-loop speed controlled (angle velocity)
+    FastPWM pwm_M2(PA_9);   // motor M2 is closed-loop speed controlled (angle velocity)
+    EncoderCounter  encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
+    EncoderCounter  encoder_M2(PB_6, PB_7);
+    const float max_voltage = 12.0f;                  // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
+    const float counts_per_turn = 20.0f * 78.125f;    // define counts per turn at gearbox end: counts/turn * gearratio
+    const float kn = 180.0f / 12.0f;                  // define motor constant in rpm per V
+    const float k_gear = 100.0f / 78.125f;            // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
+    const float kp = 0.1f;                            // define custom kp, this is the default speed controller gain for gear box 78.125:1
 
+    SpeedController* speedControllers[2];
+    speedControllers[0] = new SpeedController(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1);
+    speedControllers[1] = new SpeedController(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2);
+    //std::vector<SpeedController*> speedControllers;
+    //speedControllers.push_back( new SpeedController(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1) );
+    //speedControllers.push_back( new SpeedController(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2) );
+
+    // create SensorBar object for sparkfun line follower array
+    I2C i2c(PB_9, PB_8);
+    SensorBar sensor_bar(i2c, 0.1175f);
+
+    // robot kinematics
+    const float r_wheel = 0.0358f / 2.0f;
+    const float L_wheel = 0.143f;
+    Eigen::Matrix2f Cwheel2robot; // transform wheel to robot
+    Eigen::Matrix2f Crobot2wheel; // transform robot to wheel
+    Eigen::Vector2f robot_coord;  // contains v and w (robot translational and rotational velocities)
+    Eigen::Vector2f wheel_speed;  // w1 w2 (wheel speed)
+    Cwheel2robot << r_wheel / 2.0f   ,  r_wheel / 2.0f   ,
+                    r_wheel / L_wheel, -r_wheel / L_wheel;
+    Crobot2wheel << 1.0f / r_wheel,  L_wheel / (2.0f * r_wheel),
+                    1.0f / r_wheel, -L_wheel / (2.0f * r_wheel);
+    robot_coord.setZero();
+    wheel_speed.setZero();
+    
     // attach button fall and rise functions to user button object
     user_button.fall(&user_button_pressed_fcn);
     user_button.rise(&user_button_released_fcn);
@@ -86,14 +83,6 @@
     // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled
     enable_motors = 1;
 
-    // initialise matrizes and vectros
-    Cwheel2robot << r_wheel / 2.0f   ,  r_wheel / 2.0f   ,
-                    r_wheel / L_wheel, -r_wheel / L_wheel;
-    Crobot2wheel << 1.0f / r_wheel,  L_wheel / (2.0f * r_wheel),
-                    1.0f / r_wheel, -L_wheel / (2.0f * r_wheel);
-    robot_coord << 0.06f, 0.0f;
-    wheel_speed << 0.0f, 0.0f;
-
     while (true) { // this loop will run forever
 
         main_task_timer.reset();
@@ -106,23 +95,23 @@
                 sensor_bar_avgAngleRad = sensor_bar.getAvgAngleRad();
             }
 
-            const static float Kp = 2.0f; //2.0f;
-            const static float Kp_nl = 17.0f; //10.0f; //5.0f;
-            robot_coord(1) = fcn_ang_cntrl(Kp, Kp_nl, sensor_bar_avgAngleRad);
+            const static float Kp = 2.0f;
+            const static float Kp_nl = 17.0f;
+            robot_coord(1) = ang_cntrl_fcn(Kp, Kp_nl, sensor_bar_avgAngleRad);
 
             // nonlinear controllers version 1 (whatever came to my mind)
             /*
             const static float vel_max = 0.3374f; //0.10f;
             const static float vel_min = 0.00f; //0.02f;
             const static float ang_max = 27.0f * M_PI / 180.0f;
-            robot_coord(0) = fcn_vel_cntrl_v1(vel_max, vel_min, ang_max, sensor_bar_avgAngleRad);
+            robot_coord(0) = vel_cntrl_v1_fcn(vel_max, vel_min, ang_max, sensor_bar_avgAngleRad);
             */
 
             // nonlinear controllers version 2 (one wheel always at full speed controller)
             ///*
-            static float wheel_speed_max = max_voltage * kn / 60.0f * 2.0f * M_PI;
-            static float b = L_wheel / (2.0f * r_wheel);
-            robot_coord(0) = fcn_vel_cntrl_v2(wheel_speed_max, b, robot_coord(1));
+            const static float wheel_speed_max = max_voltage * kn / 60.0f * 2.0f * M_PI;
+            const static float b = L_wheel / (2.0f * r_wheel);
+            robot_coord(0) = vel_cntrl_v2_fcn(wheel_speed_max, b, robot_coord(1), Cwheel2robot);
             //*/
 
             // transform to robot coordinates
@@ -131,42 +120,15 @@
             // read analog input
             ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
 
-            speedController_ptr[0]->setDesiredSpeedRPS(wheel_speed(0) / (2.0f * M_PI)); // set a desired speed for speed controlled dc motors M1
-            speedController_ptr[1]->setDesiredSpeedRPS(wheel_speed(1) / (2.0f * M_PI)); // set a desired speed for speed controlled dc motors M2
-
-            /*
-            uint8_t sensor_bar_raw_value = sensor_bar.getRaw();
-            for( int i = 7; i >= 0; i-- ) {
-                printf("%d", (sensor_bar_raw_value >> i) & 0x01);
-            }
-            printf(", ");
-            */
-            
-            /*
-            int8_t sensor_bar_binaryPosition = sensor_bar.getBinaryPosition();       
-            printf("%d, ", sensor_bar_binaryPosition);
-
-            uint8_t sensor_bar_nrOfLedsActive = sensor_bar.getNrOfLedsActive();
-            printf("%d, ", sensor_bar_nrOfLedsActive);
-            
-            float sensor_bar_angleRad = 0.0f;
-            float sensor_bar_avgAngleRad = 0.0f;
-            if (sensor_bar.isAnyLedActive()) {
-                sensor_bar_angleRad = sensor_bar.getAngleRad();
-                sensor_bar_avgAngleRad = sensor_bar.getAvgAngleRad();
-            }
-            printf("%f, ", sensor_bar_angleRad * 180.0f / M_PI);
-            printf("%f, ", sensor_bar_avgAngleRad * 180.0f / M_PI);
-            */
-
-            printf("%f, %f\r\n", wheel_speed(0) / (2.0f * M_PI), wheel_speed(1) / (2.0f * M_PI));
+            speedControllers[0]->setDesiredSpeedRPS(wheel_speed(0) / (2.0f * M_PI)); // set a desired speed for speed controlled dc motors M1
+            speedControllers[1]->setDesiredSpeedRPS(wheel_speed(1) / (2.0f * M_PI)); // set a desired speed for speed controlled dc motors M2
 
         } else {
 
             ir_distance_mV = 0.0f;
 
-            speedController_ptr[0]->setDesiredSpeedRPS(0.0f);
-            speedController_ptr[1]->setDesiredSpeedRPS(0.0f);
+            speedControllers[0]->setDesiredSpeedRPS(0.0f);
+            speedControllers[1]->setDesiredSpeedRPS(0.0f);
         }
 
         user_led = !user_led;
@@ -196,25 +158,25 @@
     }
 }
 
-float fcn_ang_cntrl(const float& Kp, const float& Kp_nl, const float& angle)
+float ang_cntrl_fcn(const float& Kp, const float& Kp_nl, const float& angle)
 {
-    float retval = 0.0f;
+    static float retval = 0.0f;
     if (angle > 0) {
         retval = Kp * angle + Kp_nl * angle * angle;
-    } else if (angle < 0) {
+    } else if (angle <= 0) {
         retval = Kp * angle - Kp_nl * angle * angle;
     }
     return retval;
 }
 
-float fcn_vel_cntrl_v1(const float& vel_max, const float& vel_min, const float& ang_max, const float& angle)
+float vel_cntrl_v1_fcn(const float& vel_max, const float& vel_min, const float& ang_max, const float& angle)
 {
     const static float gain = (vel_min - vel_max) / ang_max;
     const static float offset = vel_max;
     return gain * fabs(angle) + offset;
 }
 
-float fcn_vel_cntrl_v2(float wheel_speed_max, float b, float robot_omega)
+float vel_cntrl_v2_fcn(const float& wheel_speed_max, const float& b, const float& robot_omega, const Eigen::Matrix2f& Cwheel2robot)
 {
     static Eigen::Matrix<float, 2, 2> _wheel_speed;
     static Eigen::Matrix<float, 2, 2> _robot_coord;