Revision:
0:13a5d365ba16
diff -r 000000000000 -r 13a5d365ba16 src/Core/SelfAdjointView.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Core/SelfAdjointView.h	Thu Oct 13 04:07:23 2016 +0000
@@ -0,0 +1,314 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SELFADJOINTMATRIX_H
+#define EIGEN_SELFADJOINTMATRIX_H
+
+namespace Eigen { 
+
+/** \class SelfAdjointView
+  * \ingroup Core_Module
+  *
+  *
+  * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
+  *
+  * \param MatrixType the type of the dense matrix storing the coefficients
+  * \param TriangularPart can be either \c #Lower or \c #Upper
+  *
+  * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
+  * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
+  * and most of the time this is the only way that it is used.
+  *
+  * \sa class TriangularBase, MatrixBase::selfadjointView()
+  */
+
+namespace internal {
+template<typename MatrixType, unsigned int UpLo>
+struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
+{
+  typedef typename nested<MatrixType>::type MatrixTypeNested;
+  typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
+  typedef MatrixType ExpressionType;
+  typedef typename MatrixType::PlainObject DenseMatrixType;
+  enum {
+    Mode = UpLo | SelfAdjoint,
+    Flags =  MatrixTypeNestedCleaned::Flags & (HereditaryBits)
+           & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved
+    CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
+  };
+};
+}
+
+template <typename Lhs, int LhsMode, bool LhsIsVector,
+          typename Rhs, int RhsMode, bool RhsIsVector>
+struct SelfadjointProductMatrix;
+
+// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
+template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
+  : public TriangularBase<SelfAdjointView<MatrixType, UpLo> >
+{
+  public:
+
+    typedef TriangularBase<SelfAdjointView> Base;
+    typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
+    typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
+
+    /** \brief The type of coefficients in this matrix */
+    typedef typename internal::traits<SelfAdjointView>::Scalar Scalar; 
+
+    typedef typename MatrixType::Index Index;
+
+    enum {
+      Mode = internal::traits<SelfAdjointView>::Mode
+    };
+    typedef typename MatrixType::PlainObject PlainObject;
+
+    inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
+    {}
+
+    inline Index rows() const { return m_matrix.rows(); }
+    inline Index cols() const { return m_matrix.cols(); }
+    inline Index outerStride() const { return m_matrix.outerStride(); }
+    inline Index innerStride() const { return m_matrix.innerStride(); }
+
+    /** \sa MatrixBase::coeff()
+      * \warning the coordinates must fit into the referenced triangular part
+      */
+    inline Scalar coeff(Index row, Index col) const
+    {
+      Base::check_coordinates_internal(row, col);
+      return m_matrix.coeff(row, col);
+    }
+
+    /** \sa MatrixBase::coeffRef()
+      * \warning the coordinates must fit into the referenced triangular part
+      */
+    inline Scalar& coeffRef(Index row, Index col)
+    {
+      Base::check_coordinates_internal(row, col);
+      return m_matrix.const_cast_derived().coeffRef(row, col);
+    }
+
+    /** \internal */
+    const MatrixTypeNestedCleaned& _expression() const { return m_matrix; }
+
+    const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
+    MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
+
+    /** Efficient self-adjoint matrix times vector/matrix product */
+    template<typename OtherDerived>
+    SelfadjointProductMatrix<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
+    operator*(const MatrixBase<OtherDerived>& rhs) const
+    {
+      return SelfadjointProductMatrix
+              <MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
+              (m_matrix, rhs.derived());
+    }
+
+    /** Efficient vector/matrix times self-adjoint matrix product */
+    template<typename OtherDerived> friend
+    SelfadjointProductMatrix<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
+    operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
+    {
+      return SelfadjointProductMatrix
+              <OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
+              (lhs.derived(),rhs.m_matrix);
+    }
+
+    /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
+      * \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$
+      * \returns a reference to \c *this
+      *
+      * The vectors \a u and \c v \b must be column vectors, however they can be
+      * a adjoint expression without any overhead. Only the meaningful triangular
+      * part of the matrix is updated, the rest is left unchanged.
+      *
+      * \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar)
+      */
+    template<typename DerivedU, typename DerivedV>
+    SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, const Scalar& alpha = Scalar(1));
+
+    /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
+      * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
+      *
+      * \returns a reference to \c *this
+      *
+      * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
+      * call this function with u.adjoint().
+      *
+      * \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar)
+      */
+    template<typename DerivedU>
+    SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
+
+/////////// Cholesky module ///////////
+
+    const LLT<PlainObject, UpLo> llt() const;
+    const LDLT<PlainObject, UpLo> ldlt() const;
+
+/////////// Eigenvalue module ///////////
+
+    /** Real part of #Scalar */
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    /** Return type of eigenvalues() */
+    typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType;
+
+    EigenvaluesReturnType eigenvalues() const;
+    RealScalar operatorNorm() const;
+    
+    #ifdef EIGEN2_SUPPORT
+    template<typename OtherDerived>
+    SelfAdjointView& operator=(const MatrixBase<OtherDerived>& other)
+    {
+      enum {
+        OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
+      };
+      m_matrix.const_cast_derived().template triangularView<UpLo>() = other;
+      m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.adjoint();
+      return *this;
+    }
+    template<typename OtherMatrixType, unsigned int OtherMode>
+    SelfAdjointView& operator=(const TriangularView<OtherMatrixType, OtherMode>& other)
+    {
+      enum {
+        OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
+      };
+      m_matrix.const_cast_derived().template triangularView<UpLo>() = other.toDenseMatrix();
+      m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.toDenseMatrix().adjoint();
+      return *this;
+    }
+    #endif
+
+  protected:
+    MatrixTypeNested m_matrix;
+};
+
+
+// template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
+// internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
+// operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
+// {
+//   return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
+// }
+
+// selfadjoint to dense matrix
+
+namespace internal {
+
+template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
+struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount, ClearOpposite>
+{
+  enum {
+    col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
+    row = (UnrollCount-1) % Derived1::RowsAtCompileTime
+  };
+
+  static inline void run(Derived1 &dst, const Derived2 &src)
+  {
+    triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount-1, ClearOpposite>::run(dst, src);
+
+    if(row == col)
+      dst.coeffRef(row, col) = numext::real(src.coeff(row, col));
+    else if(row < col)
+      dst.coeffRef(col, row) = numext::conj(dst.coeffRef(row, col) = src.coeff(row, col));
+  }
+};
+
+template<typename Derived1, typename Derived2, bool ClearOpposite>
+struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, 0, ClearOpposite>
+{
+  static inline void run(Derived1 &, const Derived2 &) {}
+};
+
+template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
+struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount, ClearOpposite>
+{
+  enum {
+    col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
+    row = (UnrollCount-1) % Derived1::RowsAtCompileTime
+  };
+
+  static inline void run(Derived1 &dst, const Derived2 &src)
+  {
+    triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount-1, ClearOpposite>::run(dst, src);
+
+    if(row == col)
+      dst.coeffRef(row, col) = numext::real(src.coeff(row, col));
+    else if(row > col)
+      dst.coeffRef(col, row) = numext::conj(dst.coeffRef(row, col) = src.coeff(row, col));
+  }
+};
+
+template<typename Derived1, typename Derived2, bool ClearOpposite>
+struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, 0, ClearOpposite>
+{
+  static inline void run(Derived1 &, const Derived2 &) {}
+};
+
+template<typename Derived1, typename Derived2, bool ClearOpposite>
+struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, Dynamic, ClearOpposite>
+{
+  typedef typename Derived1::Index Index;
+  static inline void run(Derived1 &dst, const Derived2 &src)
+  {
+    for(Index j = 0; j < dst.cols(); ++j)
+    {
+      for(Index i = 0; i < j; ++i)
+      {
+        dst.copyCoeff(i, j, src);
+        dst.coeffRef(j,i) = numext::conj(dst.coeff(i,j));
+      }
+      dst.copyCoeff(j, j, src);
+    }
+  }
+};
+
+template<typename Derived1, typename Derived2, bool ClearOpposite>
+struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, Dynamic, ClearOpposite>
+{
+  static inline void run(Derived1 &dst, const Derived2 &src)
+  {
+  typedef typename Derived1::Index Index;
+    for(Index i = 0; i < dst.rows(); ++i)
+    {
+      for(Index j = 0; j < i; ++j)
+      {
+        dst.copyCoeff(i, j, src);
+        dst.coeffRef(j,i) = numext::conj(dst.coeff(i,j));
+      }
+      dst.copyCoeff(i, i, src);
+    }
+  }
+};
+
+} // end namespace internal
+
+/***************************************************************************
+* Implementation of MatrixBase methods
+***************************************************************************/
+
+template<typename Derived>
+template<unsigned int UpLo>
+typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
+MatrixBase<Derived>::selfadjointView() const
+{
+  return derived();
+}
+
+template<typename Derived>
+template<unsigned int UpLo>
+typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
+MatrixBase<Derived>::selfadjointView()
+{
+  return derived();
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SELFADJOINTMATRIX_H
\ No newline at end of file