User | Revision | Line number | New contents of line |
ykuroda |
0:13a5d365ba16
|
1
|
// This file is part of Eigen, a lightweight C++ template library
|
ykuroda |
0:13a5d365ba16
|
2
|
// for linear algebra.
|
ykuroda |
0:13a5d365ba16
|
3
|
//
|
ykuroda |
0:13a5d365ba16
|
4
|
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
ykuroda |
0:13a5d365ba16
|
5
|
//
|
ykuroda |
0:13a5d365ba16
|
6
|
// This Source Code Form is subject to the terms of the Mozilla
|
ykuroda |
0:13a5d365ba16
|
7
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
ykuroda |
0:13a5d365ba16
|
8
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
ykuroda |
0:13a5d365ba16
|
9
|
|
ykuroda |
0:13a5d365ba16
|
10
|
#ifndef EIGEN_BIDIAGONALIZATION_H
|
ykuroda |
0:13a5d365ba16
|
11
|
#define EIGEN_BIDIAGONALIZATION_H
|
ykuroda |
0:13a5d365ba16
|
12
|
|
ykuroda |
0:13a5d365ba16
|
13
|
namespace Eigen {
|
ykuroda |
0:13a5d365ba16
|
14
|
|
ykuroda |
0:13a5d365ba16
|
15
|
namespace internal {
|
ykuroda |
0:13a5d365ba16
|
16
|
// UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
|
ykuroda |
0:13a5d365ba16
|
17
|
// At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
|
ykuroda |
0:13a5d365ba16
|
18
|
|
ykuroda |
0:13a5d365ba16
|
19
|
template<typename _MatrixType> class UpperBidiagonalization
|
ykuroda |
0:13a5d365ba16
|
20
|
{
|
ykuroda |
0:13a5d365ba16
|
21
|
public:
|
ykuroda |
0:13a5d365ba16
|
22
|
|
ykuroda |
0:13a5d365ba16
|
23
|
typedef _MatrixType MatrixType;
|
ykuroda |
0:13a5d365ba16
|
24
|
enum {
|
ykuroda |
0:13a5d365ba16
|
25
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
26
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
27
|
ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret
|
ykuroda |
0:13a5d365ba16
|
28
|
};
|
ykuroda |
0:13a5d365ba16
|
29
|
typedef typename MatrixType::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
30
|
typedef typename MatrixType::RealScalar RealScalar;
|
ykuroda |
0:13a5d365ba16
|
31
|
typedef typename MatrixType::Index Index;
|
ykuroda |
0:13a5d365ba16
|
32
|
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
ykuroda |
0:13a5d365ba16
|
33
|
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
ykuroda |
0:13a5d365ba16
|
34
|
typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0> BidiagonalType;
|
ykuroda |
0:13a5d365ba16
|
35
|
typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType;
|
ykuroda |
0:13a5d365ba16
|
36
|
typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
|
ykuroda |
0:13a5d365ba16
|
37
|
typedef HouseholderSequence<
|
ykuroda |
0:13a5d365ba16
|
38
|
const MatrixType,
|
ykuroda |
0:13a5d365ba16
|
39
|
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Diagonal<const MatrixType,0> >
|
ykuroda |
0:13a5d365ba16
|
40
|
> HouseholderUSequenceType;
|
ykuroda |
0:13a5d365ba16
|
41
|
typedef HouseholderSequence<
|
ykuroda |
0:13a5d365ba16
|
42
|
const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
|
ykuroda |
0:13a5d365ba16
|
43
|
Diagonal<const MatrixType,1>,
|
ykuroda |
0:13a5d365ba16
|
44
|
OnTheRight
|
ykuroda |
0:13a5d365ba16
|
45
|
> HouseholderVSequenceType;
|
ykuroda |
0:13a5d365ba16
|
46
|
|
ykuroda |
0:13a5d365ba16
|
47
|
/**
|
ykuroda |
0:13a5d365ba16
|
48
|
* \brief Default Constructor.
|
ykuroda |
0:13a5d365ba16
|
49
|
*
|
ykuroda |
0:13a5d365ba16
|
50
|
* The default constructor is useful in cases in which the user intends to
|
ykuroda |
0:13a5d365ba16
|
51
|
* perform decompositions via Bidiagonalization::compute(const MatrixType&).
|
ykuroda |
0:13a5d365ba16
|
52
|
*/
|
ykuroda |
0:13a5d365ba16
|
53
|
UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
|
ykuroda |
0:13a5d365ba16
|
54
|
|
ykuroda |
0:13a5d365ba16
|
55
|
UpperBidiagonalization(const MatrixType& matrix)
|
ykuroda |
0:13a5d365ba16
|
56
|
: m_householder(matrix.rows(), matrix.cols()),
|
ykuroda |
0:13a5d365ba16
|
57
|
m_bidiagonal(matrix.cols(), matrix.cols()),
|
ykuroda |
0:13a5d365ba16
|
58
|
m_isInitialized(false)
|
ykuroda |
0:13a5d365ba16
|
59
|
{
|
ykuroda |
0:13a5d365ba16
|
60
|
compute(matrix);
|
ykuroda |
0:13a5d365ba16
|
61
|
}
|
ykuroda |
0:13a5d365ba16
|
62
|
|
ykuroda |
0:13a5d365ba16
|
63
|
UpperBidiagonalization& compute(const MatrixType& matrix);
|
ykuroda |
0:13a5d365ba16
|
64
|
|
ykuroda |
0:13a5d365ba16
|
65
|
const MatrixType& householder() const { return m_householder; }
|
ykuroda |
0:13a5d365ba16
|
66
|
const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
|
ykuroda |
0:13a5d365ba16
|
67
|
|
ykuroda |
0:13a5d365ba16
|
68
|
const HouseholderUSequenceType householderU() const
|
ykuroda |
0:13a5d365ba16
|
69
|
{
|
ykuroda |
0:13a5d365ba16
|
70
|
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
71
|
return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
|
ykuroda |
0:13a5d365ba16
|
72
|
}
|
ykuroda |
0:13a5d365ba16
|
73
|
|
ykuroda |
0:13a5d365ba16
|
74
|
const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
|
ykuroda |
0:13a5d365ba16
|
75
|
{
|
ykuroda |
0:13a5d365ba16
|
76
|
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
77
|
return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
|
ykuroda |
0:13a5d365ba16
|
78
|
.setLength(m_householder.cols()-1)
|
ykuroda |
0:13a5d365ba16
|
79
|
.setShift(1);
|
ykuroda |
0:13a5d365ba16
|
80
|
}
|
ykuroda |
0:13a5d365ba16
|
81
|
|
ykuroda |
0:13a5d365ba16
|
82
|
protected:
|
ykuroda |
0:13a5d365ba16
|
83
|
MatrixType m_householder;
|
ykuroda |
0:13a5d365ba16
|
84
|
BidiagonalType m_bidiagonal;
|
ykuroda |
0:13a5d365ba16
|
85
|
bool m_isInitialized;
|
ykuroda |
0:13a5d365ba16
|
86
|
};
|
ykuroda |
0:13a5d365ba16
|
87
|
|
ykuroda |
0:13a5d365ba16
|
88
|
template<typename _MatrixType>
|
ykuroda |
0:13a5d365ba16
|
89
|
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
|
ykuroda |
0:13a5d365ba16
|
90
|
{
|
ykuroda |
0:13a5d365ba16
|
91
|
Index rows = matrix.rows();
|
ykuroda |
0:13a5d365ba16
|
92
|
Index cols = matrix.cols();
|
ykuroda |
0:13a5d365ba16
|
93
|
|
ykuroda |
0:13a5d365ba16
|
94
|
eigen_assert(rows >= cols && "UpperBidiagonalization is only for matrices satisfying rows>=cols.");
|
ykuroda |
0:13a5d365ba16
|
95
|
|
ykuroda |
0:13a5d365ba16
|
96
|
m_householder = matrix;
|
ykuroda |
0:13a5d365ba16
|
97
|
|
ykuroda |
0:13a5d365ba16
|
98
|
ColVectorType temp(rows);
|
ykuroda |
0:13a5d365ba16
|
99
|
|
ykuroda |
0:13a5d365ba16
|
100
|
for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
|
ykuroda |
0:13a5d365ba16
|
101
|
{
|
ykuroda |
0:13a5d365ba16
|
102
|
Index remainingRows = rows - k;
|
ykuroda |
0:13a5d365ba16
|
103
|
Index remainingCols = cols - k - 1;
|
ykuroda |
0:13a5d365ba16
|
104
|
|
ykuroda |
0:13a5d365ba16
|
105
|
// construct left householder transform in-place in m_householder
|
ykuroda |
0:13a5d365ba16
|
106
|
m_householder.col(k).tail(remainingRows)
|
ykuroda |
0:13a5d365ba16
|
107
|
.makeHouseholderInPlace(m_householder.coeffRef(k,k),
|
ykuroda |
0:13a5d365ba16
|
108
|
m_bidiagonal.template diagonal<0>().coeffRef(k));
|
ykuroda |
0:13a5d365ba16
|
109
|
// apply householder transform to remaining part of m_householder on the left
|
ykuroda |
0:13a5d365ba16
|
110
|
m_householder.bottomRightCorner(remainingRows, remainingCols)
|
ykuroda |
0:13a5d365ba16
|
111
|
.applyHouseholderOnTheLeft(m_householder.col(k).tail(remainingRows-1),
|
ykuroda |
0:13a5d365ba16
|
112
|
m_householder.coeff(k,k),
|
ykuroda |
0:13a5d365ba16
|
113
|
temp.data());
|
ykuroda |
0:13a5d365ba16
|
114
|
|
ykuroda |
0:13a5d365ba16
|
115
|
if(k == cols-1) break;
|
ykuroda |
0:13a5d365ba16
|
116
|
|
ykuroda |
0:13a5d365ba16
|
117
|
// construct right householder transform in-place in m_householder
|
ykuroda |
0:13a5d365ba16
|
118
|
m_householder.row(k).tail(remainingCols)
|
ykuroda |
0:13a5d365ba16
|
119
|
.makeHouseholderInPlace(m_householder.coeffRef(k,k+1),
|
ykuroda |
0:13a5d365ba16
|
120
|
m_bidiagonal.template diagonal<1>().coeffRef(k));
|
ykuroda |
0:13a5d365ba16
|
121
|
// apply householder transform to remaining part of m_householder on the left
|
ykuroda |
0:13a5d365ba16
|
122
|
m_householder.bottomRightCorner(remainingRows-1, remainingCols)
|
ykuroda |
0:13a5d365ba16
|
123
|
.applyHouseholderOnTheRight(m_householder.row(k).tail(remainingCols-1).transpose(),
|
ykuroda |
0:13a5d365ba16
|
124
|
m_householder.coeff(k,k+1),
|
ykuroda |
0:13a5d365ba16
|
125
|
temp.data());
|
ykuroda |
0:13a5d365ba16
|
126
|
}
|
ykuroda |
0:13a5d365ba16
|
127
|
m_isInitialized = true;
|
ykuroda |
0:13a5d365ba16
|
128
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
129
|
}
|
ykuroda |
0:13a5d365ba16
|
130
|
|
ykuroda |
0:13a5d365ba16
|
131
|
#if 0
|
ykuroda |
0:13a5d365ba16
|
132
|
/** \return the Householder QR decomposition of \c *this.
|
ykuroda |
0:13a5d365ba16
|
133
|
*
|
ykuroda |
0:13a5d365ba16
|
134
|
* \sa class Bidiagonalization
|
ykuroda |
0:13a5d365ba16
|
135
|
*/
|
ykuroda |
0:13a5d365ba16
|
136
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
137
|
const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject>
|
ykuroda |
0:13a5d365ba16
|
138
|
MatrixBase<Derived>::bidiagonalization() const
|
ykuroda |
0:13a5d365ba16
|
139
|
{
|
ykuroda |
0:13a5d365ba16
|
140
|
return UpperBidiagonalization<PlainObject>(eval());
|
ykuroda |
0:13a5d365ba16
|
141
|
}
|
ykuroda |
0:13a5d365ba16
|
142
|
#endif
|
ykuroda |
0:13a5d365ba16
|
143
|
|
ykuroda |
0:13a5d365ba16
|
144
|
} // end namespace internal
|
ykuroda |
0:13a5d365ba16
|
145
|
|
ykuroda |
0:13a5d365ba16
|
146
|
} // end namespace Eigen
|
ykuroda |
0:13a5d365ba16
|
147
|
|
ykuroda |
0:13a5d365ba16
|
148
|
#endif // EIGEN_BIDIAGONALIZATION_H |