User | Revision | Line number | New contents of line |
ykuroda |
0:13a5d365ba16
|
1
|
// This file is part of Eigen, a lightweight C++ template library
|
ykuroda |
0:13a5d365ba16
|
2
|
// for linear algebra.
|
ykuroda |
0:13a5d365ba16
|
3
|
//
|
ykuroda |
0:13a5d365ba16
|
4
|
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
ykuroda |
0:13a5d365ba16
|
5
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
ykuroda |
0:13a5d365ba16
|
6
|
//
|
ykuroda |
0:13a5d365ba16
|
7
|
// This Source Code Form is subject to the terms of the Mozilla
|
ykuroda |
0:13a5d365ba16
|
8
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
ykuroda |
0:13a5d365ba16
|
9
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
ykuroda |
0:13a5d365ba16
|
10
|
|
ykuroda |
0:13a5d365ba16
|
11
|
#ifndef EIGEN_PARTIALLU_H
|
ykuroda |
0:13a5d365ba16
|
12
|
#define EIGEN_PARTIALLU_H
|
ykuroda |
0:13a5d365ba16
|
13
|
|
ykuroda |
0:13a5d365ba16
|
14
|
namespace Eigen {
|
ykuroda |
0:13a5d365ba16
|
15
|
|
ykuroda |
0:13a5d365ba16
|
16
|
/** \ingroup LU_Module
|
ykuroda |
0:13a5d365ba16
|
17
|
*
|
ykuroda |
0:13a5d365ba16
|
18
|
* \class PartialPivLU
|
ykuroda |
0:13a5d365ba16
|
19
|
*
|
ykuroda |
0:13a5d365ba16
|
20
|
* \brief LU decomposition of a matrix with partial pivoting, and related features
|
ykuroda |
0:13a5d365ba16
|
21
|
*
|
ykuroda |
0:13a5d365ba16
|
22
|
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
|
ykuroda |
0:13a5d365ba16
|
23
|
*
|
ykuroda |
0:13a5d365ba16
|
24
|
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
|
ykuroda |
0:13a5d365ba16
|
25
|
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
|
ykuroda |
0:13a5d365ba16
|
26
|
* is a permutation matrix.
|
ykuroda |
0:13a5d365ba16
|
27
|
*
|
ykuroda |
0:13a5d365ba16
|
28
|
* Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
|
ykuroda |
0:13a5d365ba16
|
29
|
* matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
|
ykuroda |
0:13a5d365ba16
|
30
|
* does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
|
ykuroda |
0:13a5d365ba16
|
31
|
* matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
|
ykuroda |
0:13a5d365ba16
|
32
|
*
|
ykuroda |
0:13a5d365ba16
|
33
|
* The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
|
ykuroda |
0:13a5d365ba16
|
34
|
* by class FullPivLU.
|
ykuroda |
0:13a5d365ba16
|
35
|
*
|
ykuroda |
0:13a5d365ba16
|
36
|
* This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
|
ykuroda |
0:13a5d365ba16
|
37
|
* such as rank computation. If you need these features, use class FullPivLU.
|
ykuroda |
0:13a5d365ba16
|
38
|
*
|
ykuroda |
0:13a5d365ba16
|
39
|
* This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
|
ykuroda |
0:13a5d365ba16
|
40
|
* in the general case.
|
ykuroda |
0:13a5d365ba16
|
41
|
* On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
|
ykuroda |
0:13a5d365ba16
|
42
|
*
|
ykuroda |
0:13a5d365ba16
|
43
|
* The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
|
ykuroda |
0:13a5d365ba16
|
44
|
*
|
ykuroda |
0:13a5d365ba16
|
45
|
* \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
|
ykuroda |
0:13a5d365ba16
|
46
|
*/
|
ykuroda |
0:13a5d365ba16
|
47
|
template<typename _MatrixType> class PartialPivLU
|
ykuroda |
0:13a5d365ba16
|
48
|
{
|
ykuroda |
0:13a5d365ba16
|
49
|
public:
|
ykuroda |
0:13a5d365ba16
|
50
|
|
ykuroda |
0:13a5d365ba16
|
51
|
typedef _MatrixType MatrixType;
|
ykuroda |
0:13a5d365ba16
|
52
|
enum {
|
ykuroda |
0:13a5d365ba16
|
53
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
54
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
55
|
Options = MatrixType::Options,
|
ykuroda |
0:13a5d365ba16
|
56
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
57
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
ykuroda |
0:13a5d365ba16
|
58
|
};
|
ykuroda |
0:13a5d365ba16
|
59
|
typedef typename MatrixType::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
60
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
ykuroda |
0:13a5d365ba16
|
61
|
typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
|
ykuroda |
0:13a5d365ba16
|
62
|
typedef typename MatrixType::Index Index;
|
ykuroda |
0:13a5d365ba16
|
63
|
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
|
ykuroda |
0:13a5d365ba16
|
64
|
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
|
ykuroda |
0:13a5d365ba16
|
65
|
|
ykuroda |
0:13a5d365ba16
|
66
|
|
ykuroda |
0:13a5d365ba16
|
67
|
/**
|
ykuroda |
0:13a5d365ba16
|
68
|
* \brief Default Constructor.
|
ykuroda |
0:13a5d365ba16
|
69
|
*
|
ykuroda |
0:13a5d365ba16
|
70
|
* The default constructor is useful in cases in which the user intends to
|
ykuroda |
0:13a5d365ba16
|
71
|
* perform decompositions via PartialPivLU::compute(const MatrixType&).
|
ykuroda |
0:13a5d365ba16
|
72
|
*/
|
ykuroda |
0:13a5d365ba16
|
73
|
PartialPivLU();
|
ykuroda |
0:13a5d365ba16
|
74
|
|
ykuroda |
0:13a5d365ba16
|
75
|
/** \brief Default Constructor with memory preallocation
|
ykuroda |
0:13a5d365ba16
|
76
|
*
|
ykuroda |
0:13a5d365ba16
|
77
|
* Like the default constructor but with preallocation of the internal data
|
ykuroda |
0:13a5d365ba16
|
78
|
* according to the specified problem \a size.
|
ykuroda |
0:13a5d365ba16
|
79
|
* \sa PartialPivLU()
|
ykuroda |
0:13a5d365ba16
|
80
|
*/
|
ykuroda |
0:13a5d365ba16
|
81
|
PartialPivLU(Index size);
|
ykuroda |
0:13a5d365ba16
|
82
|
|
ykuroda |
0:13a5d365ba16
|
83
|
/** Constructor.
|
ykuroda |
0:13a5d365ba16
|
84
|
*
|
ykuroda |
0:13a5d365ba16
|
85
|
* \param matrix the matrix of which to compute the LU decomposition.
|
ykuroda |
0:13a5d365ba16
|
86
|
*
|
ykuroda |
0:13a5d365ba16
|
87
|
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
|
ykuroda |
0:13a5d365ba16
|
88
|
* If you need to deal with non-full rank, use class FullPivLU instead.
|
ykuroda |
0:13a5d365ba16
|
89
|
*/
|
ykuroda |
0:13a5d365ba16
|
90
|
PartialPivLU(const MatrixType& matrix);
|
ykuroda |
0:13a5d365ba16
|
91
|
|
ykuroda |
0:13a5d365ba16
|
92
|
PartialPivLU& compute(const MatrixType& matrix);
|
ykuroda |
0:13a5d365ba16
|
93
|
|
ykuroda |
0:13a5d365ba16
|
94
|
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
|
ykuroda |
0:13a5d365ba16
|
95
|
* unit-lower-triangular part is L (at least for square matrices; in the non-square
|
ykuroda |
0:13a5d365ba16
|
96
|
* case, special care is needed, see the documentation of class FullPivLU).
|
ykuroda |
0:13a5d365ba16
|
97
|
*
|
ykuroda |
0:13a5d365ba16
|
98
|
* \sa matrixL(), matrixU()
|
ykuroda |
0:13a5d365ba16
|
99
|
*/
|
ykuroda |
0:13a5d365ba16
|
100
|
inline const MatrixType& matrixLU() const
|
ykuroda |
0:13a5d365ba16
|
101
|
{
|
ykuroda |
0:13a5d365ba16
|
102
|
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
103
|
return m_lu;
|
ykuroda |
0:13a5d365ba16
|
104
|
}
|
ykuroda |
0:13a5d365ba16
|
105
|
|
ykuroda |
0:13a5d365ba16
|
106
|
/** \returns the permutation matrix P.
|
ykuroda |
0:13a5d365ba16
|
107
|
*/
|
ykuroda |
0:13a5d365ba16
|
108
|
inline const PermutationType& permutationP() const
|
ykuroda |
0:13a5d365ba16
|
109
|
{
|
ykuroda |
0:13a5d365ba16
|
110
|
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
111
|
return m_p;
|
ykuroda |
0:13a5d365ba16
|
112
|
}
|
ykuroda |
0:13a5d365ba16
|
113
|
|
ykuroda |
0:13a5d365ba16
|
114
|
/** This method returns the solution x to the equation Ax=b, where A is the matrix of which
|
ykuroda |
0:13a5d365ba16
|
115
|
* *this is the LU decomposition.
|
ykuroda |
0:13a5d365ba16
|
116
|
*
|
ykuroda |
0:13a5d365ba16
|
117
|
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
|
ykuroda |
0:13a5d365ba16
|
118
|
* the only requirement in order for the equation to make sense is that
|
ykuroda |
0:13a5d365ba16
|
119
|
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
|
ykuroda |
0:13a5d365ba16
|
120
|
*
|
ykuroda |
0:13a5d365ba16
|
121
|
* \returns the solution.
|
ykuroda |
0:13a5d365ba16
|
122
|
*
|
ykuroda |
0:13a5d365ba16
|
123
|
* Example: \include PartialPivLU_solve.cpp
|
ykuroda |
0:13a5d365ba16
|
124
|
* Output: \verbinclude PartialPivLU_solve.out
|
ykuroda |
0:13a5d365ba16
|
125
|
*
|
ykuroda |
0:13a5d365ba16
|
126
|
* Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
|
ykuroda |
0:13a5d365ba16
|
127
|
* theoretically exists and is unique regardless of b.
|
ykuroda |
0:13a5d365ba16
|
128
|
*
|
ykuroda |
0:13a5d365ba16
|
129
|
* \sa TriangularView::solve(), inverse(), computeInverse()
|
ykuroda |
0:13a5d365ba16
|
130
|
*/
|
ykuroda |
0:13a5d365ba16
|
131
|
template<typename Rhs>
|
ykuroda |
0:13a5d365ba16
|
132
|
inline const internal::solve_retval<PartialPivLU, Rhs>
|
ykuroda |
0:13a5d365ba16
|
133
|
solve(const MatrixBase<Rhs>& b) const
|
ykuroda |
0:13a5d365ba16
|
134
|
{
|
ykuroda |
0:13a5d365ba16
|
135
|
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
136
|
return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived());
|
ykuroda |
0:13a5d365ba16
|
137
|
}
|
ykuroda |
0:13a5d365ba16
|
138
|
|
ykuroda |
0:13a5d365ba16
|
139
|
/** \returns the inverse of the matrix of which *this is the LU decomposition.
|
ykuroda |
0:13a5d365ba16
|
140
|
*
|
ykuroda |
0:13a5d365ba16
|
141
|
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
|
ykuroda |
0:13a5d365ba16
|
142
|
* invertibility, use class FullPivLU instead.
|
ykuroda |
0:13a5d365ba16
|
143
|
*
|
ykuroda |
0:13a5d365ba16
|
144
|
* \sa MatrixBase::inverse(), LU::inverse()
|
ykuroda |
0:13a5d365ba16
|
145
|
*/
|
ykuroda |
0:13a5d365ba16
|
146
|
inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
|
ykuroda |
0:13a5d365ba16
|
147
|
{
|
ykuroda |
0:13a5d365ba16
|
148
|
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
149
|
return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
|
ykuroda |
0:13a5d365ba16
|
150
|
(*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
|
ykuroda |
0:13a5d365ba16
|
151
|
}
|
ykuroda |
0:13a5d365ba16
|
152
|
|
ykuroda |
0:13a5d365ba16
|
153
|
/** \returns the determinant of the matrix of which
|
ykuroda |
0:13a5d365ba16
|
154
|
* *this is the LU decomposition. It has only linear complexity
|
ykuroda |
0:13a5d365ba16
|
155
|
* (that is, O(n) where n is the dimension of the square matrix)
|
ykuroda |
0:13a5d365ba16
|
156
|
* as the LU decomposition has already been computed.
|
ykuroda |
0:13a5d365ba16
|
157
|
*
|
ykuroda |
0:13a5d365ba16
|
158
|
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
|
ykuroda |
0:13a5d365ba16
|
159
|
* optimized paths.
|
ykuroda |
0:13a5d365ba16
|
160
|
*
|
ykuroda |
0:13a5d365ba16
|
161
|
* \warning a determinant can be very big or small, so for matrices
|
ykuroda |
0:13a5d365ba16
|
162
|
* of large enough dimension, there is a risk of overflow/underflow.
|
ykuroda |
0:13a5d365ba16
|
163
|
*
|
ykuroda |
0:13a5d365ba16
|
164
|
* \sa MatrixBase::determinant()
|
ykuroda |
0:13a5d365ba16
|
165
|
*/
|
ykuroda |
0:13a5d365ba16
|
166
|
typename internal::traits<MatrixType>::Scalar determinant() const;
|
ykuroda |
0:13a5d365ba16
|
167
|
|
ykuroda |
0:13a5d365ba16
|
168
|
MatrixType reconstructedMatrix() const;
|
ykuroda |
0:13a5d365ba16
|
169
|
|
ykuroda |
0:13a5d365ba16
|
170
|
inline Index rows() const { return m_lu.rows(); }
|
ykuroda |
0:13a5d365ba16
|
171
|
inline Index cols() const { return m_lu.cols(); }
|
ykuroda |
0:13a5d365ba16
|
172
|
|
ykuroda |
0:13a5d365ba16
|
173
|
protected:
|
ykuroda |
0:13a5d365ba16
|
174
|
|
ykuroda |
0:13a5d365ba16
|
175
|
static void check_template_parameters()
|
ykuroda |
0:13a5d365ba16
|
176
|
{
|
ykuroda |
0:13a5d365ba16
|
177
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
ykuroda |
0:13a5d365ba16
|
178
|
}
|
ykuroda |
0:13a5d365ba16
|
179
|
|
ykuroda |
0:13a5d365ba16
|
180
|
MatrixType m_lu;
|
ykuroda |
0:13a5d365ba16
|
181
|
PermutationType m_p;
|
ykuroda |
0:13a5d365ba16
|
182
|
TranspositionType m_rowsTranspositions;
|
ykuroda |
0:13a5d365ba16
|
183
|
Index m_det_p;
|
ykuroda |
0:13a5d365ba16
|
184
|
bool m_isInitialized;
|
ykuroda |
0:13a5d365ba16
|
185
|
};
|
ykuroda |
0:13a5d365ba16
|
186
|
|
ykuroda |
0:13a5d365ba16
|
187
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
188
|
PartialPivLU<MatrixType>::PartialPivLU()
|
ykuroda |
0:13a5d365ba16
|
189
|
: m_lu(),
|
ykuroda |
0:13a5d365ba16
|
190
|
m_p(),
|
ykuroda |
0:13a5d365ba16
|
191
|
m_rowsTranspositions(),
|
ykuroda |
0:13a5d365ba16
|
192
|
m_det_p(0),
|
ykuroda |
0:13a5d365ba16
|
193
|
m_isInitialized(false)
|
ykuroda |
0:13a5d365ba16
|
194
|
{
|
ykuroda |
0:13a5d365ba16
|
195
|
}
|
ykuroda |
0:13a5d365ba16
|
196
|
|
ykuroda |
0:13a5d365ba16
|
197
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
198
|
PartialPivLU<MatrixType>::PartialPivLU(Index size)
|
ykuroda |
0:13a5d365ba16
|
199
|
: m_lu(size, size),
|
ykuroda |
0:13a5d365ba16
|
200
|
m_p(size),
|
ykuroda |
0:13a5d365ba16
|
201
|
m_rowsTranspositions(size),
|
ykuroda |
0:13a5d365ba16
|
202
|
m_det_p(0),
|
ykuroda |
0:13a5d365ba16
|
203
|
m_isInitialized(false)
|
ykuroda |
0:13a5d365ba16
|
204
|
{
|
ykuroda |
0:13a5d365ba16
|
205
|
}
|
ykuroda |
0:13a5d365ba16
|
206
|
|
ykuroda |
0:13a5d365ba16
|
207
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
208
|
PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
|
ykuroda |
0:13a5d365ba16
|
209
|
: m_lu(matrix.rows(), matrix.rows()),
|
ykuroda |
0:13a5d365ba16
|
210
|
m_p(matrix.rows()),
|
ykuroda |
0:13a5d365ba16
|
211
|
m_rowsTranspositions(matrix.rows()),
|
ykuroda |
0:13a5d365ba16
|
212
|
m_det_p(0),
|
ykuroda |
0:13a5d365ba16
|
213
|
m_isInitialized(false)
|
ykuroda |
0:13a5d365ba16
|
214
|
{
|
ykuroda |
0:13a5d365ba16
|
215
|
compute(matrix);
|
ykuroda |
0:13a5d365ba16
|
216
|
}
|
ykuroda |
0:13a5d365ba16
|
217
|
|
ykuroda |
0:13a5d365ba16
|
218
|
namespace internal {
|
ykuroda |
0:13a5d365ba16
|
219
|
|
ykuroda |
0:13a5d365ba16
|
220
|
/** \internal This is the blocked version of fullpivlu_unblocked() */
|
ykuroda |
0:13a5d365ba16
|
221
|
template<typename Scalar, int StorageOrder, typename PivIndex>
|
ykuroda |
0:13a5d365ba16
|
222
|
struct partial_lu_impl
|
ykuroda |
0:13a5d365ba16
|
223
|
{
|
ykuroda |
0:13a5d365ba16
|
224
|
// FIXME add a stride to Map, so that the following mapping becomes easier,
|
ykuroda |
0:13a5d365ba16
|
225
|
// another option would be to create an expression being able to automatically
|
ykuroda |
0:13a5d365ba16
|
226
|
// warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
|
ykuroda |
0:13a5d365ba16
|
227
|
// a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
|
ykuroda |
0:13a5d365ba16
|
228
|
// and Block.
|
ykuroda |
0:13a5d365ba16
|
229
|
typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
|
ykuroda |
0:13a5d365ba16
|
230
|
typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
|
ykuroda |
0:13a5d365ba16
|
231
|
typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
|
ykuroda |
0:13a5d365ba16
|
232
|
typedef typename MatrixType::RealScalar RealScalar;
|
ykuroda |
0:13a5d365ba16
|
233
|
typedef typename MatrixType::Index Index;
|
ykuroda |
0:13a5d365ba16
|
234
|
|
ykuroda |
0:13a5d365ba16
|
235
|
/** \internal performs the LU decomposition in-place of the matrix \a lu
|
ykuroda |
0:13a5d365ba16
|
236
|
* using an unblocked algorithm.
|
ykuroda |
0:13a5d365ba16
|
237
|
*
|
ykuroda |
0:13a5d365ba16
|
238
|
* In addition, this function returns the row transpositions in the
|
ykuroda |
0:13a5d365ba16
|
239
|
* vector \a row_transpositions which must have a size equal to the number
|
ykuroda |
0:13a5d365ba16
|
240
|
* of columns of the matrix \a lu, and an integer \a nb_transpositions
|
ykuroda |
0:13a5d365ba16
|
241
|
* which returns the actual number of transpositions.
|
ykuroda |
0:13a5d365ba16
|
242
|
*
|
ykuroda |
0:13a5d365ba16
|
243
|
* \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
|
ykuroda |
0:13a5d365ba16
|
244
|
*/
|
ykuroda |
0:13a5d365ba16
|
245
|
static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
|
ykuroda |
0:13a5d365ba16
|
246
|
{
|
ykuroda |
0:13a5d365ba16
|
247
|
const Index rows = lu.rows();
|
ykuroda |
0:13a5d365ba16
|
248
|
const Index cols = lu.cols();
|
ykuroda |
0:13a5d365ba16
|
249
|
const Index size = (std::min)(rows,cols);
|
ykuroda |
0:13a5d365ba16
|
250
|
nb_transpositions = 0;
|
ykuroda |
0:13a5d365ba16
|
251
|
Index first_zero_pivot = -1;
|
ykuroda |
0:13a5d365ba16
|
252
|
for(Index k = 0; k < size; ++k)
|
ykuroda |
0:13a5d365ba16
|
253
|
{
|
ykuroda |
0:13a5d365ba16
|
254
|
Index rrows = rows-k-1;
|
ykuroda |
0:13a5d365ba16
|
255
|
Index rcols = cols-k-1;
|
ykuroda |
0:13a5d365ba16
|
256
|
|
ykuroda |
0:13a5d365ba16
|
257
|
Index row_of_biggest_in_col;
|
ykuroda |
0:13a5d365ba16
|
258
|
RealScalar biggest_in_corner
|
ykuroda |
0:13a5d365ba16
|
259
|
= lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
|
ykuroda |
0:13a5d365ba16
|
260
|
row_of_biggest_in_col += k;
|
ykuroda |
0:13a5d365ba16
|
261
|
|
ykuroda |
0:13a5d365ba16
|
262
|
row_transpositions[k] = PivIndex(row_of_biggest_in_col);
|
ykuroda |
0:13a5d365ba16
|
263
|
|
ykuroda |
0:13a5d365ba16
|
264
|
if(biggest_in_corner != RealScalar(0))
|
ykuroda |
0:13a5d365ba16
|
265
|
{
|
ykuroda |
0:13a5d365ba16
|
266
|
if(k != row_of_biggest_in_col)
|
ykuroda |
0:13a5d365ba16
|
267
|
{
|
ykuroda |
0:13a5d365ba16
|
268
|
lu.row(k).swap(lu.row(row_of_biggest_in_col));
|
ykuroda |
0:13a5d365ba16
|
269
|
++nb_transpositions;
|
ykuroda |
0:13a5d365ba16
|
270
|
}
|
ykuroda |
0:13a5d365ba16
|
271
|
|
ykuroda |
0:13a5d365ba16
|
272
|
// FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k)
|
ykuroda |
0:13a5d365ba16
|
273
|
// overflow but not the actual quotient?
|
ykuroda |
0:13a5d365ba16
|
274
|
lu.col(k).tail(rrows) /= lu.coeff(k,k);
|
ykuroda |
0:13a5d365ba16
|
275
|
}
|
ykuroda |
0:13a5d365ba16
|
276
|
else if(first_zero_pivot==-1)
|
ykuroda |
0:13a5d365ba16
|
277
|
{
|
ykuroda |
0:13a5d365ba16
|
278
|
// the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
|
ykuroda |
0:13a5d365ba16
|
279
|
// and continue the factorization such we still have A = PLU
|
ykuroda |
0:13a5d365ba16
|
280
|
first_zero_pivot = k;
|
ykuroda |
0:13a5d365ba16
|
281
|
}
|
ykuroda |
0:13a5d365ba16
|
282
|
|
ykuroda |
0:13a5d365ba16
|
283
|
if(k<rows-1)
|
ykuroda |
0:13a5d365ba16
|
284
|
lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
|
ykuroda |
0:13a5d365ba16
|
285
|
}
|
ykuroda |
0:13a5d365ba16
|
286
|
return first_zero_pivot;
|
ykuroda |
0:13a5d365ba16
|
287
|
}
|
ykuroda |
0:13a5d365ba16
|
288
|
|
ykuroda |
0:13a5d365ba16
|
289
|
/** \internal performs the LU decomposition in-place of the matrix represented
|
ykuroda |
0:13a5d365ba16
|
290
|
* by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
|
ykuroda |
0:13a5d365ba16
|
291
|
* recursive, blocked algorithm.
|
ykuroda |
0:13a5d365ba16
|
292
|
*
|
ykuroda |
0:13a5d365ba16
|
293
|
* In addition, this function returns the row transpositions in the
|
ykuroda |
0:13a5d365ba16
|
294
|
* vector \a row_transpositions which must have a size equal to the number
|
ykuroda |
0:13a5d365ba16
|
295
|
* of columns of the matrix \a lu, and an integer \a nb_transpositions
|
ykuroda |
0:13a5d365ba16
|
296
|
* which returns the actual number of transpositions.
|
ykuroda |
0:13a5d365ba16
|
297
|
*
|
ykuroda |
0:13a5d365ba16
|
298
|
* \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
|
ykuroda |
0:13a5d365ba16
|
299
|
*
|
ykuroda |
0:13a5d365ba16
|
300
|
* \note This very low level interface using pointers, etc. is to:
|
ykuroda |
0:13a5d365ba16
|
301
|
* 1 - reduce the number of instanciations to the strict minimum
|
ykuroda |
0:13a5d365ba16
|
302
|
* 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
|
ykuroda |
0:13a5d365ba16
|
303
|
*/
|
ykuroda |
0:13a5d365ba16
|
304
|
static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
|
ykuroda |
0:13a5d365ba16
|
305
|
{
|
ykuroda |
0:13a5d365ba16
|
306
|
MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
|
ykuroda |
0:13a5d365ba16
|
307
|
MatrixType lu(lu1,0,0,rows,cols);
|
ykuroda |
0:13a5d365ba16
|
308
|
|
ykuroda |
0:13a5d365ba16
|
309
|
const Index size = (std::min)(rows,cols);
|
ykuroda |
0:13a5d365ba16
|
310
|
|
ykuroda |
0:13a5d365ba16
|
311
|
// if the matrix is too small, no blocking:
|
ykuroda |
0:13a5d365ba16
|
312
|
if(size<=16)
|
ykuroda |
0:13a5d365ba16
|
313
|
{
|
ykuroda |
0:13a5d365ba16
|
314
|
return unblocked_lu(lu, row_transpositions, nb_transpositions);
|
ykuroda |
0:13a5d365ba16
|
315
|
}
|
ykuroda |
0:13a5d365ba16
|
316
|
|
ykuroda |
0:13a5d365ba16
|
317
|
// automatically adjust the number of subdivisions to the size
|
ykuroda |
0:13a5d365ba16
|
318
|
// of the matrix so that there is enough sub blocks:
|
ykuroda |
0:13a5d365ba16
|
319
|
Index blockSize;
|
ykuroda |
0:13a5d365ba16
|
320
|
{
|
ykuroda |
0:13a5d365ba16
|
321
|
blockSize = size/8;
|
ykuroda |
0:13a5d365ba16
|
322
|
blockSize = (blockSize/16)*16;
|
ykuroda |
0:13a5d365ba16
|
323
|
blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
|
ykuroda |
0:13a5d365ba16
|
324
|
}
|
ykuroda |
0:13a5d365ba16
|
325
|
|
ykuroda |
0:13a5d365ba16
|
326
|
nb_transpositions = 0;
|
ykuroda |
0:13a5d365ba16
|
327
|
Index first_zero_pivot = -1;
|
ykuroda |
0:13a5d365ba16
|
328
|
for(Index k = 0; k < size; k+=blockSize)
|
ykuroda |
0:13a5d365ba16
|
329
|
{
|
ykuroda |
0:13a5d365ba16
|
330
|
Index bs = (std::min)(size-k,blockSize); // actual size of the block
|
ykuroda |
0:13a5d365ba16
|
331
|
Index trows = rows - k - bs; // trailing rows
|
ykuroda |
0:13a5d365ba16
|
332
|
Index tsize = size - k - bs; // trailing size
|
ykuroda |
0:13a5d365ba16
|
333
|
|
ykuroda |
0:13a5d365ba16
|
334
|
// partition the matrix:
|
ykuroda |
0:13a5d365ba16
|
335
|
// A00 | A01 | A02
|
ykuroda |
0:13a5d365ba16
|
336
|
// lu = A_0 | A_1 | A_2 = A10 | A11 | A12
|
ykuroda |
0:13a5d365ba16
|
337
|
// A20 | A21 | A22
|
ykuroda |
0:13a5d365ba16
|
338
|
BlockType A_0(lu,0,0,rows,k);
|
ykuroda |
0:13a5d365ba16
|
339
|
BlockType A_2(lu,0,k+bs,rows,tsize);
|
ykuroda |
0:13a5d365ba16
|
340
|
BlockType A11(lu,k,k,bs,bs);
|
ykuroda |
0:13a5d365ba16
|
341
|
BlockType A12(lu,k,k+bs,bs,tsize);
|
ykuroda |
0:13a5d365ba16
|
342
|
BlockType A21(lu,k+bs,k,trows,bs);
|
ykuroda |
0:13a5d365ba16
|
343
|
BlockType A22(lu,k+bs,k+bs,trows,tsize);
|
ykuroda |
0:13a5d365ba16
|
344
|
|
ykuroda |
0:13a5d365ba16
|
345
|
PivIndex nb_transpositions_in_panel;
|
ykuroda |
0:13a5d365ba16
|
346
|
// recursively call the blocked LU algorithm on [A11^T A21^T]^T
|
ykuroda |
0:13a5d365ba16
|
347
|
// with a very small blocking size:
|
ykuroda |
0:13a5d365ba16
|
348
|
Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
|
ykuroda |
0:13a5d365ba16
|
349
|
row_transpositions+k, nb_transpositions_in_panel, 16);
|
ykuroda |
0:13a5d365ba16
|
350
|
if(ret>=0 && first_zero_pivot==-1)
|
ykuroda |
0:13a5d365ba16
|
351
|
first_zero_pivot = k+ret;
|
ykuroda |
0:13a5d365ba16
|
352
|
|
ykuroda |
0:13a5d365ba16
|
353
|
nb_transpositions += nb_transpositions_in_panel;
|
ykuroda |
0:13a5d365ba16
|
354
|
// update permutations and apply them to A_0
|
ykuroda |
0:13a5d365ba16
|
355
|
for(Index i=k; i<k+bs; ++i)
|
ykuroda |
0:13a5d365ba16
|
356
|
{
|
ykuroda |
0:13a5d365ba16
|
357
|
Index piv = (row_transpositions[i] += k);
|
ykuroda |
0:13a5d365ba16
|
358
|
A_0.row(i).swap(A_0.row(piv));
|
ykuroda |
0:13a5d365ba16
|
359
|
}
|
ykuroda |
0:13a5d365ba16
|
360
|
|
ykuroda |
0:13a5d365ba16
|
361
|
if(trows)
|
ykuroda |
0:13a5d365ba16
|
362
|
{
|
ykuroda |
0:13a5d365ba16
|
363
|
// apply permutations to A_2
|
ykuroda |
0:13a5d365ba16
|
364
|
for(Index i=k;i<k+bs; ++i)
|
ykuroda |
0:13a5d365ba16
|
365
|
A_2.row(i).swap(A_2.row(row_transpositions[i]));
|
ykuroda |
0:13a5d365ba16
|
366
|
|
ykuroda |
0:13a5d365ba16
|
367
|
// A12 = A11^-1 A12
|
ykuroda |
0:13a5d365ba16
|
368
|
A11.template triangularView<UnitLower>().solveInPlace(A12);
|
ykuroda |
0:13a5d365ba16
|
369
|
|
ykuroda |
0:13a5d365ba16
|
370
|
A22.noalias() -= A21 * A12;
|
ykuroda |
0:13a5d365ba16
|
371
|
}
|
ykuroda |
0:13a5d365ba16
|
372
|
}
|
ykuroda |
0:13a5d365ba16
|
373
|
return first_zero_pivot;
|
ykuroda |
0:13a5d365ba16
|
374
|
}
|
ykuroda |
0:13a5d365ba16
|
375
|
};
|
ykuroda |
0:13a5d365ba16
|
376
|
|
ykuroda |
0:13a5d365ba16
|
377
|
/** \internal performs the LU decomposition with partial pivoting in-place.
|
ykuroda |
0:13a5d365ba16
|
378
|
*/
|
ykuroda |
0:13a5d365ba16
|
379
|
template<typename MatrixType, typename TranspositionType>
|
ykuroda |
0:13a5d365ba16
|
380
|
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
|
ykuroda |
0:13a5d365ba16
|
381
|
{
|
ykuroda |
0:13a5d365ba16
|
382
|
eigen_assert(lu.cols() == row_transpositions.size());
|
ykuroda |
0:13a5d365ba16
|
383
|
eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
|
ykuroda |
0:13a5d365ba16
|
384
|
|
ykuroda |
0:13a5d365ba16
|
385
|
partial_lu_impl
|
ykuroda |
0:13a5d365ba16
|
386
|
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
|
ykuroda |
0:13a5d365ba16
|
387
|
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
|
ykuroda |
0:13a5d365ba16
|
388
|
}
|
ykuroda |
0:13a5d365ba16
|
389
|
|
ykuroda |
0:13a5d365ba16
|
390
|
} // end namespace internal
|
ykuroda |
0:13a5d365ba16
|
391
|
|
ykuroda |
0:13a5d365ba16
|
392
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
393
|
PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
|
ykuroda |
0:13a5d365ba16
|
394
|
{
|
ykuroda |
0:13a5d365ba16
|
395
|
check_template_parameters();
|
ykuroda |
0:13a5d365ba16
|
396
|
|
ykuroda |
0:13a5d365ba16
|
397
|
// the row permutation is stored as int indices, so just to be sure:
|
ykuroda |
0:13a5d365ba16
|
398
|
eigen_assert(matrix.rows()<NumTraits<int>::highest());
|
ykuroda |
0:13a5d365ba16
|
399
|
|
ykuroda |
0:13a5d365ba16
|
400
|
m_lu = matrix;
|
ykuroda |
0:13a5d365ba16
|
401
|
|
ykuroda |
0:13a5d365ba16
|
402
|
eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
|
ykuroda |
0:13a5d365ba16
|
403
|
const Index size = matrix.rows();
|
ykuroda |
0:13a5d365ba16
|
404
|
|
ykuroda |
0:13a5d365ba16
|
405
|
m_rowsTranspositions.resize(size);
|
ykuroda |
0:13a5d365ba16
|
406
|
|
ykuroda |
0:13a5d365ba16
|
407
|
typename TranspositionType::Index nb_transpositions;
|
ykuroda |
0:13a5d365ba16
|
408
|
internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
|
ykuroda |
0:13a5d365ba16
|
409
|
m_det_p = (nb_transpositions%2) ? -1 : 1;
|
ykuroda |
0:13a5d365ba16
|
410
|
|
ykuroda |
0:13a5d365ba16
|
411
|
m_p = m_rowsTranspositions;
|
ykuroda |
0:13a5d365ba16
|
412
|
|
ykuroda |
0:13a5d365ba16
|
413
|
m_isInitialized = true;
|
ykuroda |
0:13a5d365ba16
|
414
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
415
|
}
|
ykuroda |
0:13a5d365ba16
|
416
|
|
ykuroda |
0:13a5d365ba16
|
417
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
418
|
typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
|
ykuroda |
0:13a5d365ba16
|
419
|
{
|
ykuroda |
0:13a5d365ba16
|
420
|
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
421
|
return Scalar(m_det_p) * m_lu.diagonal().prod();
|
ykuroda |
0:13a5d365ba16
|
422
|
}
|
ykuroda |
0:13a5d365ba16
|
423
|
|
ykuroda |
0:13a5d365ba16
|
424
|
/** \returns the matrix represented by the decomposition,
|
ykuroda |
0:13a5d365ba16
|
425
|
* i.e., it returns the product: P^{-1} L U.
|
ykuroda |
0:13a5d365ba16
|
426
|
* This function is provided for debug purpose. */
|
ykuroda |
0:13a5d365ba16
|
427
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
428
|
MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
|
ykuroda |
0:13a5d365ba16
|
429
|
{
|
ykuroda |
0:13a5d365ba16
|
430
|
eigen_assert(m_isInitialized && "LU is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
431
|
// LU
|
ykuroda |
0:13a5d365ba16
|
432
|
MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
|
ykuroda |
0:13a5d365ba16
|
433
|
* m_lu.template triangularView<Upper>();
|
ykuroda |
0:13a5d365ba16
|
434
|
|
ykuroda |
0:13a5d365ba16
|
435
|
// P^{-1}(LU)
|
ykuroda |
0:13a5d365ba16
|
436
|
res = m_p.inverse() * res;
|
ykuroda |
0:13a5d365ba16
|
437
|
|
ykuroda |
0:13a5d365ba16
|
438
|
return res;
|
ykuroda |
0:13a5d365ba16
|
439
|
}
|
ykuroda |
0:13a5d365ba16
|
440
|
|
ykuroda |
0:13a5d365ba16
|
441
|
/***** Implementation of solve() *****************************************************/
|
ykuroda |
0:13a5d365ba16
|
442
|
|
ykuroda |
0:13a5d365ba16
|
443
|
namespace internal {
|
ykuroda |
0:13a5d365ba16
|
444
|
|
ykuroda |
0:13a5d365ba16
|
445
|
template<typename _MatrixType, typename Rhs>
|
ykuroda |
0:13a5d365ba16
|
446
|
struct solve_retval<PartialPivLU<_MatrixType>, Rhs>
|
ykuroda |
0:13a5d365ba16
|
447
|
: solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
|
ykuroda |
0:13a5d365ba16
|
448
|
{
|
ykuroda |
0:13a5d365ba16
|
449
|
EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
|
ykuroda |
0:13a5d365ba16
|
450
|
|
ykuroda |
0:13a5d365ba16
|
451
|
template<typename Dest> void evalTo(Dest& dst) const
|
ykuroda |
0:13a5d365ba16
|
452
|
{
|
ykuroda |
0:13a5d365ba16
|
453
|
/* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
|
ykuroda |
0:13a5d365ba16
|
454
|
* So we proceed as follows:
|
ykuroda |
0:13a5d365ba16
|
455
|
* Step 1: compute c = Pb.
|
ykuroda |
0:13a5d365ba16
|
456
|
* Step 2: replace c by the solution x to Lx = c.
|
ykuroda |
0:13a5d365ba16
|
457
|
* Step 3: replace c by the solution x to Ux = c.
|
ykuroda |
0:13a5d365ba16
|
458
|
*/
|
ykuroda |
0:13a5d365ba16
|
459
|
|
ykuroda |
0:13a5d365ba16
|
460
|
eigen_assert(rhs().rows() == dec().matrixLU().rows());
|
ykuroda |
0:13a5d365ba16
|
461
|
|
ykuroda |
0:13a5d365ba16
|
462
|
// Step 1
|
ykuroda |
0:13a5d365ba16
|
463
|
dst = dec().permutationP() * rhs();
|
ykuroda |
0:13a5d365ba16
|
464
|
|
ykuroda |
0:13a5d365ba16
|
465
|
// Step 2
|
ykuroda |
0:13a5d365ba16
|
466
|
dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
|
ykuroda |
0:13a5d365ba16
|
467
|
|
ykuroda |
0:13a5d365ba16
|
468
|
// Step 3
|
ykuroda |
0:13a5d365ba16
|
469
|
dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
|
ykuroda |
0:13a5d365ba16
|
470
|
}
|
ykuroda |
0:13a5d365ba16
|
471
|
};
|
ykuroda |
0:13a5d365ba16
|
472
|
|
ykuroda |
0:13a5d365ba16
|
473
|
} // end namespace internal
|
ykuroda |
0:13a5d365ba16
|
474
|
|
ykuroda |
0:13a5d365ba16
|
475
|
/******** MatrixBase methods *******/
|
ykuroda |
0:13a5d365ba16
|
476
|
|
ykuroda |
0:13a5d365ba16
|
477
|
/** \lu_module
|
ykuroda |
0:13a5d365ba16
|
478
|
*
|
ykuroda |
0:13a5d365ba16
|
479
|
* \return the partial-pivoting LU decomposition of \c *this.
|
ykuroda |
0:13a5d365ba16
|
480
|
*
|
ykuroda |
0:13a5d365ba16
|
481
|
* \sa class PartialPivLU
|
ykuroda |
0:13a5d365ba16
|
482
|
*/
|
ykuroda |
0:13a5d365ba16
|
483
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
484
|
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
|
ykuroda |
0:13a5d365ba16
|
485
|
MatrixBase<Derived>::partialPivLu() const
|
ykuroda |
0:13a5d365ba16
|
486
|
{
|
ykuroda |
0:13a5d365ba16
|
487
|
return PartialPivLU<PlainObject>(eval());
|
ykuroda |
0:13a5d365ba16
|
488
|
}
|
ykuroda |
0:13a5d365ba16
|
489
|
|
ykuroda |
0:13a5d365ba16
|
490
|
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
|
ykuroda |
0:13a5d365ba16
|
491
|
/** \lu_module
|
ykuroda |
0:13a5d365ba16
|
492
|
*
|
ykuroda |
0:13a5d365ba16
|
493
|
* Synonym of partialPivLu().
|
ykuroda |
0:13a5d365ba16
|
494
|
*
|
ykuroda |
0:13a5d365ba16
|
495
|
* \return the partial-pivoting LU decomposition of \c *this.
|
ykuroda |
0:13a5d365ba16
|
496
|
*
|
ykuroda |
0:13a5d365ba16
|
497
|
* \sa class PartialPivLU
|
ykuroda |
0:13a5d365ba16
|
498
|
*/
|
ykuroda |
0:13a5d365ba16
|
499
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
500
|
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
|
ykuroda |
0:13a5d365ba16
|
501
|
MatrixBase<Derived>::lu() const
|
ykuroda |
0:13a5d365ba16
|
502
|
{
|
ykuroda |
0:13a5d365ba16
|
503
|
return PartialPivLU<PlainObject>(eval());
|
ykuroda |
0:13a5d365ba16
|
504
|
}
|
ykuroda |
0:13a5d365ba16
|
505
|
#endif
|
ykuroda |
0:13a5d365ba16
|
506
|
|
ykuroda |
0:13a5d365ba16
|
507
|
} // end namespace Eigen
|
ykuroda |
0:13a5d365ba16
|
508
|
|
ykuroda |
0:13a5d365ba16
|
509
|
#endif // EIGEN_PARTIALLU_H |