User | Revision | Line number | New contents of line |
ykuroda |
0:13a5d365ba16
|
1
|
// This file is part of Eigen, a lightweight C++ template library
|
ykuroda |
0:13a5d365ba16
|
2
|
// for linear algebra.
|
ykuroda |
0:13a5d365ba16
|
3
|
//
|
ykuroda |
0:13a5d365ba16
|
4
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
ykuroda |
0:13a5d365ba16
|
5
|
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
ykuroda |
0:13a5d365ba16
|
6
|
//
|
ykuroda |
0:13a5d365ba16
|
7
|
// This Source Code Form is subject to the terms of the Mozilla
|
ykuroda |
0:13a5d365ba16
|
8
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
ykuroda |
0:13a5d365ba16
|
9
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
ykuroda |
0:13a5d365ba16
|
10
|
|
ykuroda |
0:13a5d365ba16
|
11
|
#ifndef EIGEN_MATRIXBASEEIGENVALUES_H
|
ykuroda |
0:13a5d365ba16
|
12
|
#define EIGEN_MATRIXBASEEIGENVALUES_H
|
ykuroda |
0:13a5d365ba16
|
13
|
|
ykuroda |
0:13a5d365ba16
|
14
|
namespace Eigen {
|
ykuroda |
0:13a5d365ba16
|
15
|
|
ykuroda |
0:13a5d365ba16
|
16
|
namespace internal {
|
ykuroda |
0:13a5d365ba16
|
17
|
|
ykuroda |
0:13a5d365ba16
|
18
|
template<typename Derived, bool IsComplex>
|
ykuroda |
0:13a5d365ba16
|
19
|
struct eigenvalues_selector
|
ykuroda |
0:13a5d365ba16
|
20
|
{
|
ykuroda |
0:13a5d365ba16
|
21
|
// this is the implementation for the case IsComplex = true
|
ykuroda |
0:13a5d365ba16
|
22
|
static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
|
ykuroda |
0:13a5d365ba16
|
23
|
run(const MatrixBase<Derived>& m)
|
ykuroda |
0:13a5d365ba16
|
24
|
{
|
ykuroda |
0:13a5d365ba16
|
25
|
typedef typename Derived::PlainObject PlainObject;
|
ykuroda |
0:13a5d365ba16
|
26
|
PlainObject m_eval(m);
|
ykuroda |
0:13a5d365ba16
|
27
|
return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues();
|
ykuroda |
0:13a5d365ba16
|
28
|
}
|
ykuroda |
0:13a5d365ba16
|
29
|
};
|
ykuroda |
0:13a5d365ba16
|
30
|
|
ykuroda |
0:13a5d365ba16
|
31
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
32
|
struct eigenvalues_selector<Derived, false>
|
ykuroda |
0:13a5d365ba16
|
33
|
{
|
ykuroda |
0:13a5d365ba16
|
34
|
static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
|
ykuroda |
0:13a5d365ba16
|
35
|
run(const MatrixBase<Derived>& m)
|
ykuroda |
0:13a5d365ba16
|
36
|
{
|
ykuroda |
0:13a5d365ba16
|
37
|
typedef typename Derived::PlainObject PlainObject;
|
ykuroda |
0:13a5d365ba16
|
38
|
PlainObject m_eval(m);
|
ykuroda |
0:13a5d365ba16
|
39
|
return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
|
ykuroda |
0:13a5d365ba16
|
40
|
}
|
ykuroda |
0:13a5d365ba16
|
41
|
};
|
ykuroda |
0:13a5d365ba16
|
42
|
|
ykuroda |
0:13a5d365ba16
|
43
|
} // end namespace internal
|
ykuroda |
0:13a5d365ba16
|
44
|
|
ykuroda |
0:13a5d365ba16
|
45
|
/** \brief Computes the eigenvalues of a matrix
|
ykuroda |
0:13a5d365ba16
|
46
|
* \returns Column vector containing the eigenvalues.
|
ykuroda |
0:13a5d365ba16
|
47
|
*
|
ykuroda |
0:13a5d365ba16
|
48
|
* \eigenvalues_module
|
ykuroda |
0:13a5d365ba16
|
49
|
* This function computes the eigenvalues with the help of the EigenSolver
|
ykuroda |
0:13a5d365ba16
|
50
|
* class (for real matrices) or the ComplexEigenSolver class (for complex
|
ykuroda |
0:13a5d365ba16
|
51
|
* matrices).
|
ykuroda |
0:13a5d365ba16
|
52
|
*
|
ykuroda |
0:13a5d365ba16
|
53
|
* The eigenvalues are repeated according to their algebraic multiplicity,
|
ykuroda |
0:13a5d365ba16
|
54
|
* so there are as many eigenvalues as rows in the matrix.
|
ykuroda |
0:13a5d365ba16
|
55
|
*
|
ykuroda |
0:13a5d365ba16
|
56
|
* The SelfAdjointView class provides a better algorithm for selfadjoint
|
ykuroda |
0:13a5d365ba16
|
57
|
* matrices.
|
ykuroda |
0:13a5d365ba16
|
58
|
*
|
ykuroda |
0:13a5d365ba16
|
59
|
* Example: \include MatrixBase_eigenvalues.cpp
|
ykuroda |
0:13a5d365ba16
|
60
|
* Output: \verbinclude MatrixBase_eigenvalues.out
|
ykuroda |
0:13a5d365ba16
|
61
|
*
|
ykuroda |
0:13a5d365ba16
|
62
|
* \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
|
ykuroda |
0:13a5d365ba16
|
63
|
* SelfAdjointView::eigenvalues()
|
ykuroda |
0:13a5d365ba16
|
64
|
*/
|
ykuroda |
0:13a5d365ba16
|
65
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
66
|
inline typename MatrixBase<Derived>::EigenvaluesReturnType
|
ykuroda |
0:13a5d365ba16
|
67
|
MatrixBase<Derived>::eigenvalues() const
|
ykuroda |
0:13a5d365ba16
|
68
|
{
|
ykuroda |
0:13a5d365ba16
|
69
|
typedef typename internal::traits<Derived>::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
70
|
return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived());
|
ykuroda |
0:13a5d365ba16
|
71
|
}
|
ykuroda |
0:13a5d365ba16
|
72
|
|
ykuroda |
0:13a5d365ba16
|
73
|
/** \brief Computes the eigenvalues of a matrix
|
ykuroda |
0:13a5d365ba16
|
74
|
* \returns Column vector containing the eigenvalues.
|
ykuroda |
0:13a5d365ba16
|
75
|
*
|
ykuroda |
0:13a5d365ba16
|
76
|
* \eigenvalues_module
|
ykuroda |
0:13a5d365ba16
|
77
|
* This function computes the eigenvalues with the help of the
|
ykuroda |
0:13a5d365ba16
|
78
|
* SelfAdjointEigenSolver class. The eigenvalues are repeated according to
|
ykuroda |
0:13a5d365ba16
|
79
|
* their algebraic multiplicity, so there are as many eigenvalues as rows in
|
ykuroda |
0:13a5d365ba16
|
80
|
* the matrix.
|
ykuroda |
0:13a5d365ba16
|
81
|
*
|
ykuroda |
0:13a5d365ba16
|
82
|
* Example: \include SelfAdjointView_eigenvalues.cpp
|
ykuroda |
0:13a5d365ba16
|
83
|
* Output: \verbinclude SelfAdjointView_eigenvalues.out
|
ykuroda |
0:13a5d365ba16
|
84
|
*
|
ykuroda |
0:13a5d365ba16
|
85
|
* \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues()
|
ykuroda |
0:13a5d365ba16
|
86
|
*/
|
ykuroda |
0:13a5d365ba16
|
87
|
template<typename MatrixType, unsigned int UpLo>
|
ykuroda |
0:13a5d365ba16
|
88
|
inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType
|
ykuroda |
0:13a5d365ba16
|
89
|
SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
|
ykuroda |
0:13a5d365ba16
|
90
|
{
|
ykuroda |
0:13a5d365ba16
|
91
|
typedef typename SelfAdjointView<MatrixType, UpLo>::PlainObject PlainObject;
|
ykuroda |
0:13a5d365ba16
|
92
|
PlainObject thisAsMatrix(*this);
|
ykuroda |
0:13a5d365ba16
|
93
|
return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues();
|
ykuroda |
0:13a5d365ba16
|
94
|
}
|
ykuroda |
0:13a5d365ba16
|
95
|
|
ykuroda |
0:13a5d365ba16
|
96
|
|
ykuroda |
0:13a5d365ba16
|
97
|
|
ykuroda |
0:13a5d365ba16
|
98
|
/** \brief Computes the L2 operator norm
|
ykuroda |
0:13a5d365ba16
|
99
|
* \returns Operator norm of the matrix.
|
ykuroda |
0:13a5d365ba16
|
100
|
*
|
ykuroda |
0:13a5d365ba16
|
101
|
* \eigenvalues_module
|
ykuroda |
0:13a5d365ba16
|
102
|
* This function computes the L2 operator norm of a matrix, which is also
|
ykuroda |
0:13a5d365ba16
|
103
|
* known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be
|
ykuroda |
0:13a5d365ba16
|
104
|
* \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f]
|
ykuroda |
0:13a5d365ba16
|
105
|
* where the maximum is over all vectors and the norm on the right is the
|
ykuroda |
0:13a5d365ba16
|
106
|
* Euclidean vector norm. The norm equals the largest singular value, which is
|
ykuroda |
0:13a5d365ba16
|
107
|
* the square root of the largest eigenvalue of the positive semi-definite
|
ykuroda |
0:13a5d365ba16
|
108
|
* matrix \f$ A^*A \f$.
|
ykuroda |
0:13a5d365ba16
|
109
|
*
|
ykuroda |
0:13a5d365ba16
|
110
|
* The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed
|
ykuroda |
0:13a5d365ba16
|
111
|
* by SelfAdjointView::eigenvalues(), to compute the operator norm of a
|
ykuroda |
0:13a5d365ba16
|
112
|
* matrix. The SelfAdjointView class provides a better algorithm for
|
ykuroda |
0:13a5d365ba16
|
113
|
* selfadjoint matrices.
|
ykuroda |
0:13a5d365ba16
|
114
|
*
|
ykuroda |
0:13a5d365ba16
|
115
|
* Example: \include MatrixBase_operatorNorm.cpp
|
ykuroda |
0:13a5d365ba16
|
116
|
* Output: \verbinclude MatrixBase_operatorNorm.out
|
ykuroda |
0:13a5d365ba16
|
117
|
*
|
ykuroda |
0:13a5d365ba16
|
118
|
* \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()
|
ykuroda |
0:13a5d365ba16
|
119
|
*/
|
ykuroda |
0:13a5d365ba16
|
120
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
121
|
inline typename MatrixBase<Derived>::RealScalar
|
ykuroda |
0:13a5d365ba16
|
122
|
MatrixBase<Derived>::operatorNorm() const
|
ykuroda |
0:13a5d365ba16
|
123
|
{
|
ykuroda |
0:13a5d365ba16
|
124
|
using std::sqrt;
|
ykuroda |
0:13a5d365ba16
|
125
|
typename Derived::PlainObject m_eval(derived());
|
ykuroda |
0:13a5d365ba16
|
126
|
// FIXME if it is really guaranteed that the eigenvalues are already sorted,
|
ykuroda |
0:13a5d365ba16
|
127
|
// then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
|
ykuroda |
0:13a5d365ba16
|
128
|
return sqrt((m_eval*m_eval.adjoint())
|
ykuroda |
0:13a5d365ba16
|
129
|
.eval()
|
ykuroda |
0:13a5d365ba16
|
130
|
.template selfadjointView<Lower>()
|
ykuroda |
0:13a5d365ba16
|
131
|
.eigenvalues()
|
ykuroda |
0:13a5d365ba16
|
132
|
.maxCoeff()
|
ykuroda |
0:13a5d365ba16
|
133
|
);
|
ykuroda |
0:13a5d365ba16
|
134
|
}
|
ykuroda |
0:13a5d365ba16
|
135
|
|
ykuroda |
0:13a5d365ba16
|
136
|
/** \brief Computes the L2 operator norm
|
ykuroda |
0:13a5d365ba16
|
137
|
* \returns Operator norm of the matrix.
|
ykuroda |
0:13a5d365ba16
|
138
|
*
|
ykuroda |
0:13a5d365ba16
|
139
|
* \eigenvalues_module
|
ykuroda |
0:13a5d365ba16
|
140
|
* This function computes the L2 operator norm of a self-adjoint matrix. For a
|
ykuroda |
0:13a5d365ba16
|
141
|
* self-adjoint matrix, the operator norm is the largest eigenvalue.
|
ykuroda |
0:13a5d365ba16
|
142
|
*
|
ykuroda |
0:13a5d365ba16
|
143
|
* The current implementation uses the eigenvalues of the matrix, as computed
|
ykuroda |
0:13a5d365ba16
|
144
|
* by eigenvalues(), to compute the operator norm of the matrix.
|
ykuroda |
0:13a5d365ba16
|
145
|
*
|
ykuroda |
0:13a5d365ba16
|
146
|
* Example: \include SelfAdjointView_operatorNorm.cpp
|
ykuroda |
0:13a5d365ba16
|
147
|
* Output: \verbinclude SelfAdjointView_operatorNorm.out
|
ykuroda |
0:13a5d365ba16
|
148
|
*
|
ykuroda |
0:13a5d365ba16
|
149
|
* \sa eigenvalues(), MatrixBase::operatorNorm()
|
ykuroda |
0:13a5d365ba16
|
150
|
*/
|
ykuroda |
0:13a5d365ba16
|
151
|
template<typename MatrixType, unsigned int UpLo>
|
ykuroda |
0:13a5d365ba16
|
152
|
inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar
|
ykuroda |
0:13a5d365ba16
|
153
|
SelfAdjointView<MatrixType, UpLo>::operatorNorm() const
|
ykuroda |
0:13a5d365ba16
|
154
|
{
|
ykuroda |
0:13a5d365ba16
|
155
|
return eigenvalues().cwiseAbs().maxCoeff();
|
ykuroda |
0:13a5d365ba16
|
156
|
}
|
ykuroda |
0:13a5d365ba16
|
157
|
|
ykuroda |
0:13a5d365ba16
|
158
|
} // end namespace Eigen
|
ykuroda |
0:13a5d365ba16
|
159
|
|
ykuroda |
0:13a5d365ba16
|
160
|
#endif |