User | Revision | Line number | New contents of line |
ykuroda |
0:13a5d365ba16
|
1
|
// This file is part of Eigen, a lightweight C++ template library
|
ykuroda |
0:13a5d365ba16
|
2
|
// for linear algebra.
|
ykuroda |
0:13a5d365ba16
|
3
|
//
|
ykuroda |
0:13a5d365ba16
|
4
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
ykuroda |
0:13a5d365ba16
|
5
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
ykuroda |
0:13a5d365ba16
|
6
|
//
|
ykuroda |
0:13a5d365ba16
|
7
|
// This Source Code Form is subject to the terms of the Mozilla
|
ykuroda |
0:13a5d365ba16
|
8
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
ykuroda |
0:13a5d365ba16
|
9
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
ykuroda |
0:13a5d365ba16
|
10
|
|
ykuroda |
0:13a5d365ba16
|
11
|
#ifndef EIGEN_REDUX_H
|
ykuroda |
0:13a5d365ba16
|
12
|
#define EIGEN_REDUX_H
|
ykuroda |
0:13a5d365ba16
|
13
|
|
ykuroda |
0:13a5d365ba16
|
14
|
namespace Eigen {
|
ykuroda |
0:13a5d365ba16
|
15
|
|
ykuroda |
0:13a5d365ba16
|
16
|
namespace internal {
|
ykuroda |
0:13a5d365ba16
|
17
|
|
ykuroda |
0:13a5d365ba16
|
18
|
// TODO
|
ykuroda |
0:13a5d365ba16
|
19
|
// * implement other kind of vectorization
|
ykuroda |
0:13a5d365ba16
|
20
|
// * factorize code
|
ykuroda |
0:13a5d365ba16
|
21
|
|
ykuroda |
0:13a5d365ba16
|
22
|
/***************************************************************************
|
ykuroda |
0:13a5d365ba16
|
23
|
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
ykuroda |
0:13a5d365ba16
|
24
|
***************************************************************************/
|
ykuroda |
0:13a5d365ba16
|
25
|
|
ykuroda |
0:13a5d365ba16
|
26
|
template<typename Func, typename Derived>
|
ykuroda |
0:13a5d365ba16
|
27
|
struct redux_traits
|
ykuroda |
0:13a5d365ba16
|
28
|
{
|
ykuroda |
0:13a5d365ba16
|
29
|
public:
|
ykuroda |
0:13a5d365ba16
|
30
|
enum {
|
ykuroda |
0:13a5d365ba16
|
31
|
PacketSize = packet_traits<typename Derived::Scalar>::size,
|
ykuroda |
0:13a5d365ba16
|
32
|
InnerMaxSize = int(Derived::IsRowMajor)
|
ykuroda |
0:13a5d365ba16
|
33
|
? Derived::MaxColsAtCompileTime
|
ykuroda |
0:13a5d365ba16
|
34
|
: Derived::MaxRowsAtCompileTime
|
ykuroda |
0:13a5d365ba16
|
35
|
};
|
ykuroda |
0:13a5d365ba16
|
36
|
|
ykuroda |
0:13a5d365ba16
|
37
|
enum {
|
ykuroda |
0:13a5d365ba16
|
38
|
MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
|
ykuroda |
0:13a5d365ba16
|
39
|
&& (functor_traits<Func>::PacketAccess),
|
ykuroda |
0:13a5d365ba16
|
40
|
MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit),
|
ykuroda |
0:13a5d365ba16
|
41
|
MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize
|
ykuroda |
0:13a5d365ba16
|
42
|
};
|
ykuroda |
0:13a5d365ba16
|
43
|
|
ykuroda |
0:13a5d365ba16
|
44
|
public:
|
ykuroda |
0:13a5d365ba16
|
45
|
enum {
|
ykuroda |
0:13a5d365ba16
|
46
|
Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
|
ykuroda |
0:13a5d365ba16
|
47
|
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
|
ykuroda |
0:13a5d365ba16
|
48
|
: int(DefaultTraversal)
|
ykuroda |
0:13a5d365ba16
|
49
|
};
|
ykuroda |
0:13a5d365ba16
|
50
|
|
ykuroda |
0:13a5d365ba16
|
51
|
public:
|
ykuroda |
0:13a5d365ba16
|
52
|
enum {
|
ykuroda |
0:13a5d365ba16
|
53
|
Cost = ( Derived::SizeAtCompileTime == Dynamic
|
ykuroda |
0:13a5d365ba16
|
54
|
|| Derived::CoeffReadCost == Dynamic
|
ykuroda |
0:13a5d365ba16
|
55
|
|| (Derived::SizeAtCompileTime!=1 && functor_traits<Func>::Cost == Dynamic)
|
ykuroda |
0:13a5d365ba16
|
56
|
) ? Dynamic
|
ykuroda |
0:13a5d365ba16
|
57
|
: Derived::SizeAtCompileTime * Derived::CoeffReadCost
|
ykuroda |
0:13a5d365ba16
|
58
|
+ (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
|
ykuroda |
0:13a5d365ba16
|
59
|
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
|
ykuroda |
0:13a5d365ba16
|
60
|
};
|
ykuroda |
0:13a5d365ba16
|
61
|
|
ykuroda |
0:13a5d365ba16
|
62
|
public:
|
ykuroda |
0:13a5d365ba16
|
63
|
enum {
|
ykuroda |
0:13a5d365ba16
|
64
|
Unrolling = Cost != Dynamic && Cost <= UnrollingLimit
|
ykuroda |
0:13a5d365ba16
|
65
|
? CompleteUnrolling
|
ykuroda |
0:13a5d365ba16
|
66
|
: NoUnrolling
|
ykuroda |
0:13a5d365ba16
|
67
|
};
|
ykuroda |
0:13a5d365ba16
|
68
|
};
|
ykuroda |
0:13a5d365ba16
|
69
|
|
ykuroda |
0:13a5d365ba16
|
70
|
/***************************************************************************
|
ykuroda |
0:13a5d365ba16
|
71
|
* Part 2 : unrollers
|
ykuroda |
0:13a5d365ba16
|
72
|
***************************************************************************/
|
ykuroda |
0:13a5d365ba16
|
73
|
|
ykuroda |
0:13a5d365ba16
|
74
|
/*** no vectorization ***/
|
ykuroda |
0:13a5d365ba16
|
75
|
|
ykuroda |
0:13a5d365ba16
|
76
|
template<typename Func, typename Derived, int Start, int Length>
|
ykuroda |
0:13a5d365ba16
|
77
|
struct redux_novec_unroller
|
ykuroda |
0:13a5d365ba16
|
78
|
{
|
ykuroda |
0:13a5d365ba16
|
79
|
enum {
|
ykuroda |
0:13a5d365ba16
|
80
|
HalfLength = Length/2
|
ykuroda |
0:13a5d365ba16
|
81
|
};
|
ykuroda |
0:13a5d365ba16
|
82
|
|
ykuroda |
0:13a5d365ba16
|
83
|
typedef typename Derived::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
84
|
|
ykuroda |
0:13a5d365ba16
|
85
|
static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
|
ykuroda |
0:13a5d365ba16
|
86
|
{
|
ykuroda |
0:13a5d365ba16
|
87
|
return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
ykuroda |
0:13a5d365ba16
|
88
|
redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
|
ykuroda |
0:13a5d365ba16
|
89
|
}
|
ykuroda |
0:13a5d365ba16
|
90
|
};
|
ykuroda |
0:13a5d365ba16
|
91
|
|
ykuroda |
0:13a5d365ba16
|
92
|
template<typename Func, typename Derived, int Start>
|
ykuroda |
0:13a5d365ba16
|
93
|
struct redux_novec_unroller<Func, Derived, Start, 1>
|
ykuroda |
0:13a5d365ba16
|
94
|
{
|
ykuroda |
0:13a5d365ba16
|
95
|
enum {
|
ykuroda |
0:13a5d365ba16
|
96
|
outer = Start / Derived::InnerSizeAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
97
|
inner = Start % Derived::InnerSizeAtCompileTime
|
ykuroda |
0:13a5d365ba16
|
98
|
};
|
ykuroda |
0:13a5d365ba16
|
99
|
|
ykuroda |
0:13a5d365ba16
|
100
|
typedef typename Derived::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
101
|
|
ykuroda |
0:13a5d365ba16
|
102
|
static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
|
ykuroda |
0:13a5d365ba16
|
103
|
{
|
ykuroda |
0:13a5d365ba16
|
104
|
return mat.coeffByOuterInner(outer, inner);
|
ykuroda |
0:13a5d365ba16
|
105
|
}
|
ykuroda |
0:13a5d365ba16
|
106
|
};
|
ykuroda |
0:13a5d365ba16
|
107
|
|
ykuroda |
0:13a5d365ba16
|
108
|
// This is actually dead code and will never be called. It is required
|
ykuroda |
0:13a5d365ba16
|
109
|
// to prevent false warnings regarding failed inlining though
|
ykuroda |
0:13a5d365ba16
|
110
|
// for 0 length run() will never be called at all.
|
ykuroda |
0:13a5d365ba16
|
111
|
template<typename Func, typename Derived, int Start>
|
ykuroda |
0:13a5d365ba16
|
112
|
struct redux_novec_unroller<Func, Derived, Start, 0>
|
ykuroda |
0:13a5d365ba16
|
113
|
{
|
ykuroda |
0:13a5d365ba16
|
114
|
typedef typename Derived::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
115
|
static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
|
ykuroda |
0:13a5d365ba16
|
116
|
};
|
ykuroda |
0:13a5d365ba16
|
117
|
|
ykuroda |
0:13a5d365ba16
|
118
|
/*** vectorization ***/
|
ykuroda |
0:13a5d365ba16
|
119
|
|
ykuroda |
0:13a5d365ba16
|
120
|
template<typename Func, typename Derived, int Start, int Length>
|
ykuroda |
0:13a5d365ba16
|
121
|
struct redux_vec_unroller
|
ykuroda |
0:13a5d365ba16
|
122
|
{
|
ykuroda |
0:13a5d365ba16
|
123
|
enum {
|
ykuroda |
0:13a5d365ba16
|
124
|
PacketSize = packet_traits<typename Derived::Scalar>::size,
|
ykuroda |
0:13a5d365ba16
|
125
|
HalfLength = Length/2
|
ykuroda |
0:13a5d365ba16
|
126
|
};
|
ykuroda |
0:13a5d365ba16
|
127
|
|
ykuroda |
0:13a5d365ba16
|
128
|
typedef typename Derived::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
129
|
typedef typename packet_traits<Scalar>::type PacketScalar;
|
ykuroda |
0:13a5d365ba16
|
130
|
|
ykuroda |
0:13a5d365ba16
|
131
|
static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
|
ykuroda |
0:13a5d365ba16
|
132
|
{
|
ykuroda |
0:13a5d365ba16
|
133
|
return func.packetOp(
|
ykuroda |
0:13a5d365ba16
|
134
|
redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
ykuroda |
0:13a5d365ba16
|
135
|
redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
|
ykuroda |
0:13a5d365ba16
|
136
|
}
|
ykuroda |
0:13a5d365ba16
|
137
|
};
|
ykuroda |
0:13a5d365ba16
|
138
|
|
ykuroda |
0:13a5d365ba16
|
139
|
template<typename Func, typename Derived, int Start>
|
ykuroda |
0:13a5d365ba16
|
140
|
struct redux_vec_unroller<Func, Derived, Start, 1>
|
ykuroda |
0:13a5d365ba16
|
141
|
{
|
ykuroda |
0:13a5d365ba16
|
142
|
enum {
|
ykuroda |
0:13a5d365ba16
|
143
|
index = Start * packet_traits<typename Derived::Scalar>::size,
|
ykuroda |
0:13a5d365ba16
|
144
|
outer = index / int(Derived::InnerSizeAtCompileTime),
|
ykuroda |
0:13a5d365ba16
|
145
|
inner = index % int(Derived::InnerSizeAtCompileTime),
|
ykuroda |
0:13a5d365ba16
|
146
|
alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
|
ykuroda |
0:13a5d365ba16
|
147
|
};
|
ykuroda |
0:13a5d365ba16
|
148
|
|
ykuroda |
0:13a5d365ba16
|
149
|
typedef typename Derived::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
150
|
typedef typename packet_traits<Scalar>::type PacketScalar;
|
ykuroda |
0:13a5d365ba16
|
151
|
|
ykuroda |
0:13a5d365ba16
|
152
|
static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
|
ykuroda |
0:13a5d365ba16
|
153
|
{
|
ykuroda |
0:13a5d365ba16
|
154
|
return mat.template packetByOuterInner<alignment>(outer, inner);
|
ykuroda |
0:13a5d365ba16
|
155
|
}
|
ykuroda |
0:13a5d365ba16
|
156
|
};
|
ykuroda |
0:13a5d365ba16
|
157
|
|
ykuroda |
0:13a5d365ba16
|
158
|
/***************************************************************************
|
ykuroda |
0:13a5d365ba16
|
159
|
* Part 3 : implementation of all cases
|
ykuroda |
0:13a5d365ba16
|
160
|
***************************************************************************/
|
ykuroda |
0:13a5d365ba16
|
161
|
|
ykuroda |
0:13a5d365ba16
|
162
|
template<typename Func, typename Derived,
|
ykuroda |
0:13a5d365ba16
|
163
|
int Traversal = redux_traits<Func, Derived>::Traversal,
|
ykuroda |
0:13a5d365ba16
|
164
|
int Unrolling = redux_traits<Func, Derived>::Unrolling
|
ykuroda |
0:13a5d365ba16
|
165
|
>
|
ykuroda |
0:13a5d365ba16
|
166
|
struct redux_impl;
|
ykuroda |
0:13a5d365ba16
|
167
|
|
ykuroda |
0:13a5d365ba16
|
168
|
template<typename Func, typename Derived>
|
ykuroda |
0:13a5d365ba16
|
169
|
struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
|
ykuroda |
0:13a5d365ba16
|
170
|
{
|
ykuroda |
0:13a5d365ba16
|
171
|
typedef typename Derived::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
172
|
typedef typename Derived::Index Index;
|
ykuroda |
0:13a5d365ba16
|
173
|
static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
|
ykuroda |
0:13a5d365ba16
|
174
|
{
|
ykuroda |
0:13a5d365ba16
|
175
|
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
ykuroda |
0:13a5d365ba16
|
176
|
Scalar res;
|
ykuroda |
0:13a5d365ba16
|
177
|
res = mat.coeffByOuterInner(0, 0);
|
ykuroda |
0:13a5d365ba16
|
178
|
for(Index i = 1; i < mat.innerSize(); ++i)
|
ykuroda |
0:13a5d365ba16
|
179
|
res = func(res, mat.coeffByOuterInner(0, i));
|
ykuroda |
0:13a5d365ba16
|
180
|
for(Index i = 1; i < mat.outerSize(); ++i)
|
ykuroda |
0:13a5d365ba16
|
181
|
for(Index j = 0; j < mat.innerSize(); ++j)
|
ykuroda |
0:13a5d365ba16
|
182
|
res = func(res, mat.coeffByOuterInner(i, j));
|
ykuroda |
0:13a5d365ba16
|
183
|
return res;
|
ykuroda |
0:13a5d365ba16
|
184
|
}
|
ykuroda |
0:13a5d365ba16
|
185
|
};
|
ykuroda |
0:13a5d365ba16
|
186
|
|
ykuroda |
0:13a5d365ba16
|
187
|
template<typename Func, typename Derived>
|
ykuroda |
0:13a5d365ba16
|
188
|
struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
|
ykuroda |
0:13a5d365ba16
|
189
|
: public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
|
ykuroda |
0:13a5d365ba16
|
190
|
{};
|
ykuroda |
0:13a5d365ba16
|
191
|
|
ykuroda |
0:13a5d365ba16
|
192
|
template<typename Func, typename Derived>
|
ykuroda |
0:13a5d365ba16
|
193
|
struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
|
ykuroda |
0:13a5d365ba16
|
194
|
{
|
ykuroda |
0:13a5d365ba16
|
195
|
typedef typename Derived::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
196
|
typedef typename packet_traits<Scalar>::type PacketScalar;
|
ykuroda |
0:13a5d365ba16
|
197
|
typedef typename Derived::Index Index;
|
ykuroda |
0:13a5d365ba16
|
198
|
|
ykuroda |
0:13a5d365ba16
|
199
|
static Scalar run(const Derived& mat, const Func& func)
|
ykuroda |
0:13a5d365ba16
|
200
|
{
|
ykuroda |
0:13a5d365ba16
|
201
|
const Index size = mat.size();
|
ykuroda |
0:13a5d365ba16
|
202
|
eigen_assert(size && "you are using an empty matrix");
|
ykuroda |
0:13a5d365ba16
|
203
|
const Index packetSize = packet_traits<Scalar>::size;
|
ykuroda |
0:13a5d365ba16
|
204
|
const Index alignedStart = internal::first_aligned(mat);
|
ykuroda |
0:13a5d365ba16
|
205
|
enum {
|
ykuroda |
0:13a5d365ba16
|
206
|
alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit)
|
ykuroda |
0:13a5d365ba16
|
207
|
? Aligned : Unaligned
|
ykuroda |
0:13a5d365ba16
|
208
|
};
|
ykuroda |
0:13a5d365ba16
|
209
|
const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
|
ykuroda |
0:13a5d365ba16
|
210
|
const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
|
ykuroda |
0:13a5d365ba16
|
211
|
const Index alignedEnd2 = alignedStart + alignedSize2;
|
ykuroda |
0:13a5d365ba16
|
212
|
const Index alignedEnd = alignedStart + alignedSize;
|
ykuroda |
0:13a5d365ba16
|
213
|
Scalar res;
|
ykuroda |
0:13a5d365ba16
|
214
|
if(alignedSize)
|
ykuroda |
0:13a5d365ba16
|
215
|
{
|
ykuroda |
0:13a5d365ba16
|
216
|
PacketScalar packet_res0 = mat.template packet<alignment>(alignedStart);
|
ykuroda |
0:13a5d365ba16
|
217
|
if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
|
ykuroda |
0:13a5d365ba16
|
218
|
{
|
ykuroda |
0:13a5d365ba16
|
219
|
PacketScalar packet_res1 = mat.template packet<alignment>(alignedStart+packetSize);
|
ykuroda |
0:13a5d365ba16
|
220
|
for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
|
ykuroda |
0:13a5d365ba16
|
221
|
{
|
ykuroda |
0:13a5d365ba16
|
222
|
packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(index));
|
ykuroda |
0:13a5d365ba16
|
223
|
packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment>(index+packetSize));
|
ykuroda |
0:13a5d365ba16
|
224
|
}
|
ykuroda |
0:13a5d365ba16
|
225
|
|
ykuroda |
0:13a5d365ba16
|
226
|
packet_res0 = func.packetOp(packet_res0,packet_res1);
|
ykuroda |
0:13a5d365ba16
|
227
|
if(alignedEnd>alignedEnd2)
|
ykuroda |
0:13a5d365ba16
|
228
|
packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(alignedEnd2));
|
ykuroda |
0:13a5d365ba16
|
229
|
}
|
ykuroda |
0:13a5d365ba16
|
230
|
res = func.predux(packet_res0);
|
ykuroda |
0:13a5d365ba16
|
231
|
|
ykuroda |
0:13a5d365ba16
|
232
|
for(Index index = 0; index < alignedStart; ++index)
|
ykuroda |
0:13a5d365ba16
|
233
|
res = func(res,mat.coeff(index));
|
ykuroda |
0:13a5d365ba16
|
234
|
|
ykuroda |
0:13a5d365ba16
|
235
|
for(Index index = alignedEnd; index < size; ++index)
|
ykuroda |
0:13a5d365ba16
|
236
|
res = func(res,mat.coeff(index));
|
ykuroda |
0:13a5d365ba16
|
237
|
}
|
ykuroda |
0:13a5d365ba16
|
238
|
else // too small to vectorize anything.
|
ykuroda |
0:13a5d365ba16
|
239
|
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
ykuroda |
0:13a5d365ba16
|
240
|
{
|
ykuroda |
0:13a5d365ba16
|
241
|
res = mat.coeff(0);
|
ykuroda |
0:13a5d365ba16
|
242
|
for(Index index = 1; index < size; ++index)
|
ykuroda |
0:13a5d365ba16
|
243
|
res = func(res,mat.coeff(index));
|
ykuroda |
0:13a5d365ba16
|
244
|
}
|
ykuroda |
0:13a5d365ba16
|
245
|
|
ykuroda |
0:13a5d365ba16
|
246
|
return res;
|
ykuroda |
0:13a5d365ba16
|
247
|
}
|
ykuroda |
0:13a5d365ba16
|
248
|
};
|
ykuroda |
0:13a5d365ba16
|
249
|
|
ykuroda |
0:13a5d365ba16
|
250
|
// NOTE: for SliceVectorizedTraversal we simply bypass unrolling
|
ykuroda |
0:13a5d365ba16
|
251
|
template<typename Func, typename Derived, int Unrolling>
|
ykuroda |
0:13a5d365ba16
|
252
|
struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling>
|
ykuroda |
0:13a5d365ba16
|
253
|
{
|
ykuroda |
0:13a5d365ba16
|
254
|
typedef typename Derived::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
255
|
typedef typename packet_traits<Scalar>::type PacketScalar;
|
ykuroda |
0:13a5d365ba16
|
256
|
typedef typename Derived::Index Index;
|
ykuroda |
0:13a5d365ba16
|
257
|
|
ykuroda |
0:13a5d365ba16
|
258
|
static Scalar run(const Derived& mat, const Func& func)
|
ykuroda |
0:13a5d365ba16
|
259
|
{
|
ykuroda |
0:13a5d365ba16
|
260
|
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
ykuroda |
0:13a5d365ba16
|
261
|
const Index innerSize = mat.innerSize();
|
ykuroda |
0:13a5d365ba16
|
262
|
const Index outerSize = mat.outerSize();
|
ykuroda |
0:13a5d365ba16
|
263
|
enum {
|
ykuroda |
0:13a5d365ba16
|
264
|
packetSize = packet_traits<Scalar>::size
|
ykuroda |
0:13a5d365ba16
|
265
|
};
|
ykuroda |
0:13a5d365ba16
|
266
|
const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
|
ykuroda |
0:13a5d365ba16
|
267
|
Scalar res;
|
ykuroda |
0:13a5d365ba16
|
268
|
if(packetedInnerSize)
|
ykuroda |
0:13a5d365ba16
|
269
|
{
|
ykuroda |
0:13a5d365ba16
|
270
|
PacketScalar packet_res = mat.template packet<Unaligned>(0,0);
|
ykuroda |
0:13a5d365ba16
|
271
|
for(Index j=0; j<outerSize; ++j)
|
ykuroda |
0:13a5d365ba16
|
272
|
for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
|
ykuroda |
0:13a5d365ba16
|
273
|
packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i));
|
ykuroda |
0:13a5d365ba16
|
274
|
|
ykuroda |
0:13a5d365ba16
|
275
|
res = func.predux(packet_res);
|
ykuroda |
0:13a5d365ba16
|
276
|
for(Index j=0; j<outerSize; ++j)
|
ykuroda |
0:13a5d365ba16
|
277
|
for(Index i=packetedInnerSize; i<innerSize; ++i)
|
ykuroda |
0:13a5d365ba16
|
278
|
res = func(res, mat.coeffByOuterInner(j,i));
|
ykuroda |
0:13a5d365ba16
|
279
|
}
|
ykuroda |
0:13a5d365ba16
|
280
|
else // too small to vectorize anything.
|
ykuroda |
0:13a5d365ba16
|
281
|
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
ykuroda |
0:13a5d365ba16
|
282
|
{
|
ykuroda |
0:13a5d365ba16
|
283
|
res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
|
ykuroda |
0:13a5d365ba16
|
284
|
}
|
ykuroda |
0:13a5d365ba16
|
285
|
|
ykuroda |
0:13a5d365ba16
|
286
|
return res;
|
ykuroda |
0:13a5d365ba16
|
287
|
}
|
ykuroda |
0:13a5d365ba16
|
288
|
};
|
ykuroda |
0:13a5d365ba16
|
289
|
|
ykuroda |
0:13a5d365ba16
|
290
|
template<typename Func, typename Derived>
|
ykuroda |
0:13a5d365ba16
|
291
|
struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
|
ykuroda |
0:13a5d365ba16
|
292
|
{
|
ykuroda |
0:13a5d365ba16
|
293
|
typedef typename Derived::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
294
|
typedef typename packet_traits<Scalar>::type PacketScalar;
|
ykuroda |
0:13a5d365ba16
|
295
|
enum {
|
ykuroda |
0:13a5d365ba16
|
296
|
PacketSize = packet_traits<Scalar>::size,
|
ykuroda |
0:13a5d365ba16
|
297
|
Size = Derived::SizeAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
298
|
VectorizedSize = (Size / PacketSize) * PacketSize
|
ykuroda |
0:13a5d365ba16
|
299
|
};
|
ykuroda |
0:13a5d365ba16
|
300
|
static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
|
ykuroda |
0:13a5d365ba16
|
301
|
{
|
ykuroda |
0:13a5d365ba16
|
302
|
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
ykuroda |
0:13a5d365ba16
|
303
|
Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
|
ykuroda |
0:13a5d365ba16
|
304
|
if (VectorizedSize != Size)
|
ykuroda |
0:13a5d365ba16
|
305
|
res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
|
ykuroda |
0:13a5d365ba16
|
306
|
return res;
|
ykuroda |
0:13a5d365ba16
|
307
|
}
|
ykuroda |
0:13a5d365ba16
|
308
|
};
|
ykuroda |
0:13a5d365ba16
|
309
|
|
ykuroda |
0:13a5d365ba16
|
310
|
} // end namespace internal
|
ykuroda |
0:13a5d365ba16
|
311
|
|
ykuroda |
0:13a5d365ba16
|
312
|
/***************************************************************************
|
ykuroda |
0:13a5d365ba16
|
313
|
* Part 4 : public API
|
ykuroda |
0:13a5d365ba16
|
314
|
***************************************************************************/
|
ykuroda |
0:13a5d365ba16
|
315
|
|
ykuroda |
0:13a5d365ba16
|
316
|
|
ykuroda |
0:13a5d365ba16
|
317
|
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
|
ykuroda |
0:13a5d365ba16
|
318
|
*
|
ykuroda |
0:13a5d365ba16
|
319
|
* The template parameter \a BinaryOp is the type of the functor \a func which must be
|
ykuroda |
0:13a5d365ba16
|
320
|
* an associative operator. Both current STL and TR1 functor styles are handled.
|
ykuroda |
0:13a5d365ba16
|
321
|
*
|
ykuroda |
0:13a5d365ba16
|
322
|
* \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
|
ykuroda |
0:13a5d365ba16
|
323
|
*/
|
ykuroda |
0:13a5d365ba16
|
324
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
325
|
template<typename Func>
|
ykuroda |
0:13a5d365ba16
|
326
|
EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type
|
ykuroda |
0:13a5d365ba16
|
327
|
DenseBase<Derived>::redux(const Func& func) const
|
ykuroda |
0:13a5d365ba16
|
328
|
{
|
ykuroda |
0:13a5d365ba16
|
329
|
typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
|
ykuroda |
0:13a5d365ba16
|
330
|
return internal::redux_impl<Func, ThisNested>
|
ykuroda |
0:13a5d365ba16
|
331
|
::run(derived(), func);
|
ykuroda |
0:13a5d365ba16
|
332
|
}
|
ykuroda |
0:13a5d365ba16
|
333
|
|
ykuroda |
0:13a5d365ba16
|
334
|
/** \returns the minimum of all coefficients of \c *this.
|
ykuroda |
0:13a5d365ba16
|
335
|
* \warning the result is undefined if \c *this contains NaN.
|
ykuroda |
0:13a5d365ba16
|
336
|
*/
|
ykuroda |
0:13a5d365ba16
|
337
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
338
|
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
ykuroda |
0:13a5d365ba16
|
339
|
DenseBase<Derived>::minCoeff() const
|
ykuroda |
0:13a5d365ba16
|
340
|
{
|
ykuroda |
0:13a5d365ba16
|
341
|
return this->redux(Eigen::internal::scalar_min_op<Scalar>());
|
ykuroda |
0:13a5d365ba16
|
342
|
}
|
ykuroda |
0:13a5d365ba16
|
343
|
|
ykuroda |
0:13a5d365ba16
|
344
|
/** \returns the maximum of all coefficients of \c *this.
|
ykuroda |
0:13a5d365ba16
|
345
|
* \warning the result is undefined if \c *this contains NaN.
|
ykuroda |
0:13a5d365ba16
|
346
|
*/
|
ykuroda |
0:13a5d365ba16
|
347
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
348
|
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
ykuroda |
0:13a5d365ba16
|
349
|
DenseBase<Derived>::maxCoeff() const
|
ykuroda |
0:13a5d365ba16
|
350
|
{
|
ykuroda |
0:13a5d365ba16
|
351
|
return this->redux(Eigen::internal::scalar_max_op<Scalar>());
|
ykuroda |
0:13a5d365ba16
|
352
|
}
|
ykuroda |
0:13a5d365ba16
|
353
|
|
ykuroda |
0:13a5d365ba16
|
354
|
/** \returns the sum of all coefficients of *this
|
ykuroda |
0:13a5d365ba16
|
355
|
*
|
ykuroda |
0:13a5d365ba16
|
356
|
* \sa trace(), prod(), mean()
|
ykuroda |
0:13a5d365ba16
|
357
|
*/
|
ykuroda |
0:13a5d365ba16
|
358
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
359
|
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
ykuroda |
0:13a5d365ba16
|
360
|
DenseBase<Derived>::sum() const
|
ykuroda |
0:13a5d365ba16
|
361
|
{
|
ykuroda |
0:13a5d365ba16
|
362
|
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
|
ykuroda |
0:13a5d365ba16
|
363
|
return Scalar(0);
|
ykuroda |
0:13a5d365ba16
|
364
|
return this->redux(Eigen::internal::scalar_sum_op<Scalar>());
|
ykuroda |
0:13a5d365ba16
|
365
|
}
|
ykuroda |
0:13a5d365ba16
|
366
|
|
ykuroda |
0:13a5d365ba16
|
367
|
/** \returns the mean of all coefficients of *this
|
ykuroda |
0:13a5d365ba16
|
368
|
*
|
ykuroda |
0:13a5d365ba16
|
369
|
* \sa trace(), prod(), sum()
|
ykuroda |
0:13a5d365ba16
|
370
|
*/
|
ykuroda |
0:13a5d365ba16
|
371
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
372
|
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
ykuroda |
0:13a5d365ba16
|
373
|
DenseBase<Derived>::mean() const
|
ykuroda |
0:13a5d365ba16
|
374
|
{
|
ykuroda |
0:13a5d365ba16
|
375
|
return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
|
ykuroda |
0:13a5d365ba16
|
376
|
}
|
ykuroda |
0:13a5d365ba16
|
377
|
|
ykuroda |
0:13a5d365ba16
|
378
|
/** \returns the product of all coefficients of *this
|
ykuroda |
0:13a5d365ba16
|
379
|
*
|
ykuroda |
0:13a5d365ba16
|
380
|
* Example: \include MatrixBase_prod.cpp
|
ykuroda |
0:13a5d365ba16
|
381
|
* Output: \verbinclude MatrixBase_prod.out
|
ykuroda |
0:13a5d365ba16
|
382
|
*
|
ykuroda |
0:13a5d365ba16
|
383
|
* \sa sum(), mean(), trace()
|
ykuroda |
0:13a5d365ba16
|
384
|
*/
|
ykuroda |
0:13a5d365ba16
|
385
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
386
|
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
ykuroda |
0:13a5d365ba16
|
387
|
DenseBase<Derived>::prod() const
|
ykuroda |
0:13a5d365ba16
|
388
|
{
|
ykuroda |
0:13a5d365ba16
|
389
|
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
|
ykuroda |
0:13a5d365ba16
|
390
|
return Scalar(1);
|
ykuroda |
0:13a5d365ba16
|
391
|
return this->redux(Eigen::internal::scalar_product_op<Scalar>());
|
ykuroda |
0:13a5d365ba16
|
392
|
}
|
ykuroda |
0:13a5d365ba16
|
393
|
|
ykuroda |
0:13a5d365ba16
|
394
|
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
|
ykuroda |
0:13a5d365ba16
|
395
|
*
|
ykuroda |
0:13a5d365ba16
|
396
|
* \c *this can be any matrix, not necessarily square.
|
ykuroda |
0:13a5d365ba16
|
397
|
*
|
ykuroda |
0:13a5d365ba16
|
398
|
* \sa diagonal(), sum()
|
ykuroda |
0:13a5d365ba16
|
399
|
*/
|
ykuroda |
0:13a5d365ba16
|
400
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
401
|
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
ykuroda |
0:13a5d365ba16
|
402
|
MatrixBase<Derived>::trace() const
|
ykuroda |
0:13a5d365ba16
|
403
|
{
|
ykuroda |
0:13a5d365ba16
|
404
|
return derived().diagonal().sum();
|
ykuroda |
0:13a5d365ba16
|
405
|
}
|
ykuroda |
0:13a5d365ba16
|
406
|
|
ykuroda |
0:13a5d365ba16
|
407
|
} // end namespace Eigen
|
ykuroda |
0:13a5d365ba16
|
408
|
|
ykuroda |
0:13a5d365ba16
|
409
|
#endif // EIGEN_REDUX_H |