User | Revision | Line number | New contents of line |
ykuroda |
0:13a5d365ba16
|
1
|
// This file is part of Eigen, a lightweight C++ template library
|
ykuroda |
0:13a5d365ba16
|
2
|
// for linear algebra.
|
ykuroda |
0:13a5d365ba16
|
3
|
//
|
ykuroda |
0:13a5d365ba16
|
4
|
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
ykuroda |
0:13a5d365ba16
|
5
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
ykuroda |
0:13a5d365ba16
|
6
|
//
|
ykuroda |
0:13a5d365ba16
|
7
|
// This Source Code Form is subject to the terms of the Mozilla
|
ykuroda |
0:13a5d365ba16
|
8
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
ykuroda |
0:13a5d365ba16
|
9
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
ykuroda |
0:13a5d365ba16
|
10
|
|
ykuroda |
0:13a5d365ba16
|
11
|
#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
|
ykuroda |
0:13a5d365ba16
|
12
|
#define EIGEN_GENERALIZEDEIGENSOLVER_H
|
ykuroda |
0:13a5d365ba16
|
13
|
|
ykuroda |
0:13a5d365ba16
|
14
|
#include "./RealQZ.h"
|
ykuroda |
0:13a5d365ba16
|
15
|
|
ykuroda |
0:13a5d365ba16
|
16
|
namespace Eigen {
|
ykuroda |
0:13a5d365ba16
|
17
|
|
ykuroda |
0:13a5d365ba16
|
18
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
ykuroda |
0:13a5d365ba16
|
19
|
*
|
ykuroda |
0:13a5d365ba16
|
20
|
*
|
ykuroda |
0:13a5d365ba16
|
21
|
* \class GeneralizedEigenSolver
|
ykuroda |
0:13a5d365ba16
|
22
|
*
|
ykuroda |
0:13a5d365ba16
|
23
|
* \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
|
ykuroda |
0:13a5d365ba16
|
24
|
*
|
ykuroda |
0:13a5d365ba16
|
25
|
* \tparam _MatrixType the type of the matrices of which we are computing the
|
ykuroda |
0:13a5d365ba16
|
26
|
* eigen-decomposition; this is expected to be an instantiation of the Matrix
|
ykuroda |
0:13a5d365ba16
|
27
|
* class template. Currently, only real matrices are supported.
|
ykuroda |
0:13a5d365ba16
|
28
|
*
|
ykuroda |
0:13a5d365ba16
|
29
|
* The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
|
ykuroda |
0:13a5d365ba16
|
30
|
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
|
ykuroda |
0:13a5d365ba16
|
31
|
* \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
|
ykuroda |
0:13a5d365ba16
|
32
|
* \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
|
ykuroda |
0:13a5d365ba16
|
33
|
* B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
|
ykuroda |
0:13a5d365ba16
|
34
|
* have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
|
ykuroda |
0:13a5d365ba16
|
35
|
*
|
ykuroda |
0:13a5d365ba16
|
36
|
* The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
|
ykuroda |
0:13a5d365ba16
|
37
|
* matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
|
ykuroda |
0:13a5d365ba16
|
38
|
* singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
|
ykuroda |
0:13a5d365ba16
|
39
|
* and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
|
ykuroda |
0:13a5d365ba16
|
40
|
* then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
|
ykuroda |
0:13a5d365ba16
|
41
|
* \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
|
ykuroda |
0:13a5d365ba16
|
42
|
* called the left eigenvector.
|
ykuroda |
0:13a5d365ba16
|
43
|
*
|
ykuroda |
0:13a5d365ba16
|
44
|
* Call the function compute() to compute the generalized eigenvalues and eigenvectors of
|
ykuroda |
0:13a5d365ba16
|
45
|
* a given matrix pair. Alternatively, you can use the
|
ykuroda |
0:13a5d365ba16
|
46
|
* GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
|
ykuroda |
0:13a5d365ba16
|
47
|
* eigenvalues and eigenvectors at construction time. Once the eigenvalue and
|
ykuroda |
0:13a5d365ba16
|
48
|
* eigenvectors are computed, they can be retrieved with the eigenvalues() and
|
ykuroda |
0:13a5d365ba16
|
49
|
* eigenvectors() functions.
|
ykuroda |
0:13a5d365ba16
|
50
|
*
|
ykuroda |
0:13a5d365ba16
|
51
|
* Here is an usage example of this class:
|
ykuroda |
0:13a5d365ba16
|
52
|
* Example: \include GeneralizedEigenSolver.cpp
|
ykuroda |
0:13a5d365ba16
|
53
|
* Output: \verbinclude GeneralizedEigenSolver.out
|
ykuroda |
0:13a5d365ba16
|
54
|
*
|
ykuroda |
0:13a5d365ba16
|
55
|
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
|
ykuroda |
0:13a5d365ba16
|
56
|
*/
|
ykuroda |
0:13a5d365ba16
|
57
|
template<typename _MatrixType> class GeneralizedEigenSolver
|
ykuroda |
0:13a5d365ba16
|
58
|
{
|
ykuroda |
0:13a5d365ba16
|
59
|
public:
|
ykuroda |
0:13a5d365ba16
|
60
|
|
ykuroda |
0:13a5d365ba16
|
61
|
/** \brief Synonym for the template parameter \p _MatrixType. */
|
ykuroda |
0:13a5d365ba16
|
62
|
typedef _MatrixType MatrixType;
|
ykuroda |
0:13a5d365ba16
|
63
|
|
ykuroda |
0:13a5d365ba16
|
64
|
enum {
|
ykuroda |
0:13a5d365ba16
|
65
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
66
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
67
|
Options = MatrixType::Options,
|
ykuroda |
0:13a5d365ba16
|
68
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
69
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
ykuroda |
0:13a5d365ba16
|
70
|
};
|
ykuroda |
0:13a5d365ba16
|
71
|
|
ykuroda |
0:13a5d365ba16
|
72
|
/** \brief Scalar type for matrices of type #MatrixType. */
|
ykuroda |
0:13a5d365ba16
|
73
|
typedef typename MatrixType::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
74
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
ykuroda |
0:13a5d365ba16
|
75
|
typedef typename MatrixType::Index Index;
|
ykuroda |
0:13a5d365ba16
|
76
|
|
ykuroda |
0:13a5d365ba16
|
77
|
/** \brief Complex scalar type for #MatrixType.
|
ykuroda |
0:13a5d365ba16
|
78
|
*
|
ykuroda |
0:13a5d365ba16
|
79
|
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
ykuroda |
0:13a5d365ba16
|
80
|
* \c float or \c double) and just \c Scalar if #Scalar is
|
ykuroda |
0:13a5d365ba16
|
81
|
* complex.
|
ykuroda |
0:13a5d365ba16
|
82
|
*/
|
ykuroda |
0:13a5d365ba16
|
83
|
typedef std::complex<RealScalar> ComplexScalar;
|
ykuroda |
0:13a5d365ba16
|
84
|
|
ykuroda |
0:13a5d365ba16
|
85
|
/** \brief Type for vector of real scalar values eigenvalues as returned by betas().
|
ykuroda |
0:13a5d365ba16
|
86
|
*
|
ykuroda |
0:13a5d365ba16
|
87
|
* This is a column vector with entries of type #Scalar.
|
ykuroda |
0:13a5d365ba16
|
88
|
* The length of the vector is the size of #MatrixType.
|
ykuroda |
0:13a5d365ba16
|
89
|
*/
|
ykuroda |
0:13a5d365ba16
|
90
|
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
|
ykuroda |
0:13a5d365ba16
|
91
|
|
ykuroda |
0:13a5d365ba16
|
92
|
/** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
|
ykuroda |
0:13a5d365ba16
|
93
|
*
|
ykuroda |
0:13a5d365ba16
|
94
|
* This is a column vector with entries of type #ComplexScalar.
|
ykuroda |
0:13a5d365ba16
|
95
|
* The length of the vector is the size of #MatrixType.
|
ykuroda |
0:13a5d365ba16
|
96
|
*/
|
ykuroda |
0:13a5d365ba16
|
97
|
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
|
ykuroda |
0:13a5d365ba16
|
98
|
|
ykuroda |
0:13a5d365ba16
|
99
|
/** \brief Expression type for the eigenvalues as returned by eigenvalues().
|
ykuroda |
0:13a5d365ba16
|
100
|
*/
|
ykuroda |
0:13a5d365ba16
|
101
|
typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
|
ykuroda |
0:13a5d365ba16
|
102
|
|
ykuroda |
0:13a5d365ba16
|
103
|
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
ykuroda |
0:13a5d365ba16
|
104
|
*
|
ykuroda |
0:13a5d365ba16
|
105
|
* This is a square matrix with entries of type #ComplexScalar.
|
ykuroda |
0:13a5d365ba16
|
106
|
* The size is the same as the size of #MatrixType.
|
ykuroda |
0:13a5d365ba16
|
107
|
*/
|
ykuroda |
0:13a5d365ba16
|
108
|
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
|
ykuroda |
0:13a5d365ba16
|
109
|
|
ykuroda |
0:13a5d365ba16
|
110
|
/** \brief Default constructor.
|
ykuroda |
0:13a5d365ba16
|
111
|
*
|
ykuroda |
0:13a5d365ba16
|
112
|
* The default constructor is useful in cases in which the user intends to
|
ykuroda |
0:13a5d365ba16
|
113
|
* perform decompositions via EigenSolver::compute(const MatrixType&, bool).
|
ykuroda |
0:13a5d365ba16
|
114
|
*
|
ykuroda |
0:13a5d365ba16
|
115
|
* \sa compute() for an example.
|
ykuroda |
0:13a5d365ba16
|
116
|
*/
|
ykuroda |
0:13a5d365ba16
|
117
|
GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
|
ykuroda |
0:13a5d365ba16
|
118
|
|
ykuroda |
0:13a5d365ba16
|
119
|
/** \brief Default constructor with memory preallocation
|
ykuroda |
0:13a5d365ba16
|
120
|
*
|
ykuroda |
0:13a5d365ba16
|
121
|
* Like the default constructor but with preallocation of the internal data
|
ykuroda |
0:13a5d365ba16
|
122
|
* according to the specified problem \a size.
|
ykuroda |
0:13a5d365ba16
|
123
|
* \sa GeneralizedEigenSolver()
|
ykuroda |
0:13a5d365ba16
|
124
|
*/
|
ykuroda |
0:13a5d365ba16
|
125
|
GeneralizedEigenSolver(Index size)
|
ykuroda |
0:13a5d365ba16
|
126
|
: m_eivec(size, size),
|
ykuroda |
0:13a5d365ba16
|
127
|
m_alphas(size),
|
ykuroda |
0:13a5d365ba16
|
128
|
m_betas(size),
|
ykuroda |
0:13a5d365ba16
|
129
|
m_isInitialized(false),
|
ykuroda |
0:13a5d365ba16
|
130
|
m_eigenvectorsOk(false),
|
ykuroda |
0:13a5d365ba16
|
131
|
m_realQZ(size),
|
ykuroda |
0:13a5d365ba16
|
132
|
m_matS(size, size),
|
ykuroda |
0:13a5d365ba16
|
133
|
m_tmp(size)
|
ykuroda |
0:13a5d365ba16
|
134
|
{}
|
ykuroda |
0:13a5d365ba16
|
135
|
|
ykuroda |
0:13a5d365ba16
|
136
|
/** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
|
ykuroda |
0:13a5d365ba16
|
137
|
*
|
ykuroda |
0:13a5d365ba16
|
138
|
* \param[in] A Square matrix whose eigendecomposition is to be computed.
|
ykuroda |
0:13a5d365ba16
|
139
|
* \param[in] B Square matrix whose eigendecomposition is to be computed.
|
ykuroda |
0:13a5d365ba16
|
140
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
ykuroda |
0:13a5d365ba16
|
141
|
* eigenvalues are computed; if false, only the eigenvalues are computed.
|
ykuroda |
0:13a5d365ba16
|
142
|
*
|
ykuroda |
0:13a5d365ba16
|
143
|
* This constructor calls compute() to compute the generalized eigenvalues
|
ykuroda |
0:13a5d365ba16
|
144
|
* and eigenvectors.
|
ykuroda |
0:13a5d365ba16
|
145
|
*
|
ykuroda |
0:13a5d365ba16
|
146
|
* \sa compute()
|
ykuroda |
0:13a5d365ba16
|
147
|
*/
|
ykuroda |
0:13a5d365ba16
|
148
|
GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
|
ykuroda |
0:13a5d365ba16
|
149
|
: m_eivec(A.rows(), A.cols()),
|
ykuroda |
0:13a5d365ba16
|
150
|
m_alphas(A.cols()),
|
ykuroda |
0:13a5d365ba16
|
151
|
m_betas(A.cols()),
|
ykuroda |
0:13a5d365ba16
|
152
|
m_isInitialized(false),
|
ykuroda |
0:13a5d365ba16
|
153
|
m_eigenvectorsOk(false),
|
ykuroda |
0:13a5d365ba16
|
154
|
m_realQZ(A.cols()),
|
ykuroda |
0:13a5d365ba16
|
155
|
m_matS(A.rows(), A.cols()),
|
ykuroda |
0:13a5d365ba16
|
156
|
m_tmp(A.cols())
|
ykuroda |
0:13a5d365ba16
|
157
|
{
|
ykuroda |
0:13a5d365ba16
|
158
|
compute(A, B, computeEigenvectors);
|
ykuroda |
0:13a5d365ba16
|
159
|
}
|
ykuroda |
0:13a5d365ba16
|
160
|
|
ykuroda |
0:13a5d365ba16
|
161
|
/* \brief Returns the computed generalized eigenvectors.
|
ykuroda |
0:13a5d365ba16
|
162
|
*
|
ykuroda |
0:13a5d365ba16
|
163
|
* \returns %Matrix whose columns are the (possibly complex) eigenvectors.
|
ykuroda |
0:13a5d365ba16
|
164
|
*
|
ykuroda |
0:13a5d365ba16
|
165
|
* \pre Either the constructor
|
ykuroda |
0:13a5d365ba16
|
166
|
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
|
ykuroda |
0:13a5d365ba16
|
167
|
* compute(const MatrixType&, const MatrixType& bool) has been called before, and
|
ykuroda |
0:13a5d365ba16
|
168
|
* \p computeEigenvectors was set to true (the default).
|
ykuroda |
0:13a5d365ba16
|
169
|
*
|
ykuroda |
0:13a5d365ba16
|
170
|
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
|
ykuroda |
0:13a5d365ba16
|
171
|
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
|
ykuroda |
0:13a5d365ba16
|
172
|
* eigenvectors are normalized to have (Euclidean) norm equal to one. The
|
ykuroda |
0:13a5d365ba16
|
173
|
* matrix returned by this function is the matrix \f$ V \f$ in the
|
ykuroda |
0:13a5d365ba16
|
174
|
* generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
|
ykuroda |
0:13a5d365ba16
|
175
|
*
|
ykuroda |
0:13a5d365ba16
|
176
|
* \sa eigenvalues()
|
ykuroda |
0:13a5d365ba16
|
177
|
*/
|
ykuroda |
0:13a5d365ba16
|
178
|
// EigenvectorsType eigenvectors() const;
|
ykuroda |
0:13a5d365ba16
|
179
|
|
ykuroda |
0:13a5d365ba16
|
180
|
/** \brief Returns an expression of the computed generalized eigenvalues.
|
ykuroda |
0:13a5d365ba16
|
181
|
*
|
ykuroda |
0:13a5d365ba16
|
182
|
* \returns An expression of the column vector containing the eigenvalues.
|
ykuroda |
0:13a5d365ba16
|
183
|
*
|
ykuroda |
0:13a5d365ba16
|
184
|
* It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
|
ykuroda |
0:13a5d365ba16
|
185
|
* Not that betas might contain zeros. It is therefore not recommended to use this function,
|
ykuroda |
0:13a5d365ba16
|
186
|
* but rather directly deal with the alphas and betas vectors.
|
ykuroda |
0:13a5d365ba16
|
187
|
*
|
ykuroda |
0:13a5d365ba16
|
188
|
* \pre Either the constructor
|
ykuroda |
0:13a5d365ba16
|
189
|
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
|
ykuroda |
0:13a5d365ba16
|
190
|
* compute(const MatrixType&,const MatrixType&,bool) has been called before.
|
ykuroda |
0:13a5d365ba16
|
191
|
*
|
ykuroda |
0:13a5d365ba16
|
192
|
* The eigenvalues are repeated according to their algebraic multiplicity,
|
ykuroda |
0:13a5d365ba16
|
193
|
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
|
ykuroda |
0:13a5d365ba16
|
194
|
* are not sorted in any particular order.
|
ykuroda |
0:13a5d365ba16
|
195
|
*
|
ykuroda |
0:13a5d365ba16
|
196
|
* \sa alphas(), betas(), eigenvectors()
|
ykuroda |
0:13a5d365ba16
|
197
|
*/
|
ykuroda |
0:13a5d365ba16
|
198
|
EigenvalueType eigenvalues() const
|
ykuroda |
0:13a5d365ba16
|
199
|
{
|
ykuroda |
0:13a5d365ba16
|
200
|
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
201
|
return EigenvalueType(m_alphas,m_betas);
|
ykuroda |
0:13a5d365ba16
|
202
|
}
|
ykuroda |
0:13a5d365ba16
|
203
|
|
ykuroda |
0:13a5d365ba16
|
204
|
/** \returns A const reference to the vectors containing the alpha values
|
ykuroda |
0:13a5d365ba16
|
205
|
*
|
ykuroda |
0:13a5d365ba16
|
206
|
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
|
ykuroda |
0:13a5d365ba16
|
207
|
*
|
ykuroda |
0:13a5d365ba16
|
208
|
* \sa betas(), eigenvalues() */
|
ykuroda |
0:13a5d365ba16
|
209
|
ComplexVectorType alphas() const
|
ykuroda |
0:13a5d365ba16
|
210
|
{
|
ykuroda |
0:13a5d365ba16
|
211
|
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
212
|
return m_alphas;
|
ykuroda |
0:13a5d365ba16
|
213
|
}
|
ykuroda |
0:13a5d365ba16
|
214
|
|
ykuroda |
0:13a5d365ba16
|
215
|
/** \returns A const reference to the vectors containing the beta values
|
ykuroda |
0:13a5d365ba16
|
216
|
*
|
ykuroda |
0:13a5d365ba16
|
217
|
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
|
ykuroda |
0:13a5d365ba16
|
218
|
*
|
ykuroda |
0:13a5d365ba16
|
219
|
* \sa alphas(), eigenvalues() */
|
ykuroda |
0:13a5d365ba16
|
220
|
VectorType betas() const
|
ykuroda |
0:13a5d365ba16
|
221
|
{
|
ykuroda |
0:13a5d365ba16
|
222
|
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
223
|
return m_betas;
|
ykuroda |
0:13a5d365ba16
|
224
|
}
|
ykuroda |
0:13a5d365ba16
|
225
|
|
ykuroda |
0:13a5d365ba16
|
226
|
/** \brief Computes generalized eigendecomposition of given matrix.
|
ykuroda |
0:13a5d365ba16
|
227
|
*
|
ykuroda |
0:13a5d365ba16
|
228
|
* \param[in] A Square matrix whose eigendecomposition is to be computed.
|
ykuroda |
0:13a5d365ba16
|
229
|
* \param[in] B Square matrix whose eigendecomposition is to be computed.
|
ykuroda |
0:13a5d365ba16
|
230
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
ykuroda |
0:13a5d365ba16
|
231
|
* eigenvalues are computed; if false, only the eigenvalues are
|
ykuroda |
0:13a5d365ba16
|
232
|
* computed.
|
ykuroda |
0:13a5d365ba16
|
233
|
* \returns Reference to \c *this
|
ykuroda |
0:13a5d365ba16
|
234
|
*
|
ykuroda |
0:13a5d365ba16
|
235
|
* This function computes the eigenvalues of the real matrix \p matrix.
|
ykuroda |
0:13a5d365ba16
|
236
|
* The eigenvalues() function can be used to retrieve them. If
|
ykuroda |
0:13a5d365ba16
|
237
|
* \p computeEigenvectors is true, then the eigenvectors are also computed
|
ykuroda |
0:13a5d365ba16
|
238
|
* and can be retrieved by calling eigenvectors().
|
ykuroda |
0:13a5d365ba16
|
239
|
*
|
ykuroda |
0:13a5d365ba16
|
240
|
* The matrix is first reduced to real generalized Schur form using the RealQZ
|
ykuroda |
0:13a5d365ba16
|
241
|
* class. The generalized Schur decomposition is then used to compute the eigenvalues
|
ykuroda |
0:13a5d365ba16
|
242
|
* and eigenvectors.
|
ykuroda |
0:13a5d365ba16
|
243
|
*
|
ykuroda |
0:13a5d365ba16
|
244
|
* The cost of the computation is dominated by the cost of the
|
ykuroda |
0:13a5d365ba16
|
245
|
* generalized Schur decomposition.
|
ykuroda |
0:13a5d365ba16
|
246
|
*
|
ykuroda |
0:13a5d365ba16
|
247
|
* This method reuses of the allocated data in the GeneralizedEigenSolver object.
|
ykuroda |
0:13a5d365ba16
|
248
|
*/
|
ykuroda |
0:13a5d365ba16
|
249
|
GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
|
ykuroda |
0:13a5d365ba16
|
250
|
|
ykuroda |
0:13a5d365ba16
|
251
|
ComputationInfo info() const
|
ykuroda |
0:13a5d365ba16
|
252
|
{
|
ykuroda |
0:13a5d365ba16
|
253
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
254
|
return m_realQZ.info();
|
ykuroda |
0:13a5d365ba16
|
255
|
}
|
ykuroda |
0:13a5d365ba16
|
256
|
|
ykuroda |
0:13a5d365ba16
|
257
|
/** Sets the maximal number of iterations allowed.
|
ykuroda |
0:13a5d365ba16
|
258
|
*/
|
ykuroda |
0:13a5d365ba16
|
259
|
GeneralizedEigenSolver& setMaxIterations(Index maxIters)
|
ykuroda |
0:13a5d365ba16
|
260
|
{
|
ykuroda |
0:13a5d365ba16
|
261
|
m_realQZ.setMaxIterations(maxIters);
|
ykuroda |
0:13a5d365ba16
|
262
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
263
|
}
|
ykuroda |
0:13a5d365ba16
|
264
|
|
ykuroda |
0:13a5d365ba16
|
265
|
protected:
|
ykuroda |
0:13a5d365ba16
|
266
|
|
ykuroda |
0:13a5d365ba16
|
267
|
static void check_template_parameters()
|
ykuroda |
0:13a5d365ba16
|
268
|
{
|
ykuroda |
0:13a5d365ba16
|
269
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
ykuroda |
0:13a5d365ba16
|
270
|
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
|
ykuroda |
0:13a5d365ba16
|
271
|
}
|
ykuroda |
0:13a5d365ba16
|
272
|
|
ykuroda |
0:13a5d365ba16
|
273
|
MatrixType m_eivec;
|
ykuroda |
0:13a5d365ba16
|
274
|
ComplexVectorType m_alphas;
|
ykuroda |
0:13a5d365ba16
|
275
|
VectorType m_betas;
|
ykuroda |
0:13a5d365ba16
|
276
|
bool m_isInitialized;
|
ykuroda |
0:13a5d365ba16
|
277
|
bool m_eigenvectorsOk;
|
ykuroda |
0:13a5d365ba16
|
278
|
RealQZ<MatrixType> m_realQZ;
|
ykuroda |
0:13a5d365ba16
|
279
|
MatrixType m_matS;
|
ykuroda |
0:13a5d365ba16
|
280
|
|
ykuroda |
0:13a5d365ba16
|
281
|
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
|
ykuroda |
0:13a5d365ba16
|
282
|
ColumnVectorType m_tmp;
|
ykuroda |
0:13a5d365ba16
|
283
|
};
|
ykuroda |
0:13a5d365ba16
|
284
|
|
ykuroda |
0:13a5d365ba16
|
285
|
//template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
286
|
//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
|
ykuroda |
0:13a5d365ba16
|
287
|
//{
|
ykuroda |
0:13a5d365ba16
|
288
|
// eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
289
|
// eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
ykuroda |
0:13a5d365ba16
|
290
|
// Index n = m_eivec.cols();
|
ykuroda |
0:13a5d365ba16
|
291
|
// EigenvectorsType matV(n,n);
|
ykuroda |
0:13a5d365ba16
|
292
|
// // TODO
|
ykuroda |
0:13a5d365ba16
|
293
|
// return matV;
|
ykuroda |
0:13a5d365ba16
|
294
|
//}
|
ykuroda |
0:13a5d365ba16
|
295
|
|
ykuroda |
0:13a5d365ba16
|
296
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
297
|
GeneralizedEigenSolver<MatrixType>&
|
ykuroda |
0:13a5d365ba16
|
298
|
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
|
ykuroda |
0:13a5d365ba16
|
299
|
{
|
ykuroda |
0:13a5d365ba16
|
300
|
check_template_parameters();
|
ykuroda |
0:13a5d365ba16
|
301
|
|
ykuroda |
0:13a5d365ba16
|
302
|
using std::sqrt;
|
ykuroda |
0:13a5d365ba16
|
303
|
using std::abs;
|
ykuroda |
0:13a5d365ba16
|
304
|
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
|
ykuroda |
0:13a5d365ba16
|
305
|
|
ykuroda |
0:13a5d365ba16
|
306
|
// Reduce to generalized real Schur form:
|
ykuroda |
0:13a5d365ba16
|
307
|
// A = Q S Z and B = Q T Z
|
ykuroda |
0:13a5d365ba16
|
308
|
m_realQZ.compute(A, B, computeEigenvectors);
|
ykuroda |
0:13a5d365ba16
|
309
|
|
ykuroda |
0:13a5d365ba16
|
310
|
if (m_realQZ.info() == Success)
|
ykuroda |
0:13a5d365ba16
|
311
|
{
|
ykuroda |
0:13a5d365ba16
|
312
|
m_matS = m_realQZ.matrixS();
|
ykuroda |
0:13a5d365ba16
|
313
|
if (computeEigenvectors)
|
ykuroda |
0:13a5d365ba16
|
314
|
m_eivec = m_realQZ.matrixZ().transpose();
|
ykuroda |
0:13a5d365ba16
|
315
|
|
ykuroda |
0:13a5d365ba16
|
316
|
// Compute eigenvalues from matS
|
ykuroda |
0:13a5d365ba16
|
317
|
m_alphas.resize(A.cols());
|
ykuroda |
0:13a5d365ba16
|
318
|
m_betas.resize(A.cols());
|
ykuroda |
0:13a5d365ba16
|
319
|
Index i = 0;
|
ykuroda |
0:13a5d365ba16
|
320
|
while (i < A.cols())
|
ykuroda |
0:13a5d365ba16
|
321
|
{
|
ykuroda |
0:13a5d365ba16
|
322
|
if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
|
ykuroda |
0:13a5d365ba16
|
323
|
{
|
ykuroda |
0:13a5d365ba16
|
324
|
m_alphas.coeffRef(i) = m_matS.coeff(i, i);
|
ykuroda |
0:13a5d365ba16
|
325
|
m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
|
ykuroda |
0:13a5d365ba16
|
326
|
++i;
|
ykuroda |
0:13a5d365ba16
|
327
|
}
|
ykuroda |
0:13a5d365ba16
|
328
|
else
|
ykuroda |
0:13a5d365ba16
|
329
|
{
|
ykuroda |
0:13a5d365ba16
|
330
|
Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
|
ykuroda |
0:13a5d365ba16
|
331
|
Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
|
ykuroda |
0:13a5d365ba16
|
332
|
m_alphas.coeffRef(i) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
|
ykuroda |
0:13a5d365ba16
|
333
|
m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
|
ykuroda |
0:13a5d365ba16
|
334
|
|
ykuroda |
0:13a5d365ba16
|
335
|
m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
|
ykuroda |
0:13a5d365ba16
|
336
|
m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
|
ykuroda |
0:13a5d365ba16
|
337
|
i += 2;
|
ykuroda |
0:13a5d365ba16
|
338
|
}
|
ykuroda |
0:13a5d365ba16
|
339
|
}
|
ykuroda |
0:13a5d365ba16
|
340
|
}
|
ykuroda |
0:13a5d365ba16
|
341
|
|
ykuroda |
0:13a5d365ba16
|
342
|
m_isInitialized = true;
|
ykuroda |
0:13a5d365ba16
|
343
|
m_eigenvectorsOk = false;//computeEigenvectors;
|
ykuroda |
0:13a5d365ba16
|
344
|
|
ykuroda |
0:13a5d365ba16
|
345
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
346
|
}
|
ykuroda |
0:13a5d365ba16
|
347
|
|
ykuroda |
0:13a5d365ba16
|
348
|
} // end namespace Eigen
|
ykuroda |
0:13a5d365ba16
|
349
|
|
ykuroda |
0:13a5d365ba16
|
350
|
#endif // EIGEN_GENERALIZEDEIGENSOLVER_H |