User | Revision | Line number | New contents of line |
ykuroda |
0:13a5d365ba16
|
1
|
// This file is part of Eigen, a lightweight C++ template library
|
ykuroda |
0:13a5d365ba16
|
2
|
// for linear algebra.
|
ykuroda |
0:13a5d365ba16
|
3
|
//
|
ykuroda |
0:13a5d365ba16
|
4
|
// Copyright (C) 2009 Claire Maurice
|
ykuroda |
0:13a5d365ba16
|
5
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
ykuroda |
0:13a5d365ba16
|
6
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
ykuroda |
0:13a5d365ba16
|
7
|
//
|
ykuroda |
0:13a5d365ba16
|
8
|
// This Source Code Form is subject to the terms of the Mozilla
|
ykuroda |
0:13a5d365ba16
|
9
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
ykuroda |
0:13a5d365ba16
|
10
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
ykuroda |
0:13a5d365ba16
|
11
|
|
ykuroda |
0:13a5d365ba16
|
12
|
#ifndef EIGEN_COMPLEX_SCHUR_H
|
ykuroda |
0:13a5d365ba16
|
13
|
#define EIGEN_COMPLEX_SCHUR_H
|
ykuroda |
0:13a5d365ba16
|
14
|
|
ykuroda |
0:13a5d365ba16
|
15
|
#include "./HessenbergDecomposition.h"
|
ykuroda |
0:13a5d365ba16
|
16
|
|
ykuroda |
0:13a5d365ba16
|
17
|
namespace Eigen {
|
ykuroda |
0:13a5d365ba16
|
18
|
|
ykuroda |
0:13a5d365ba16
|
19
|
namespace internal {
|
ykuroda |
0:13a5d365ba16
|
20
|
template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
|
ykuroda |
0:13a5d365ba16
|
21
|
}
|
ykuroda |
0:13a5d365ba16
|
22
|
|
ykuroda |
0:13a5d365ba16
|
23
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
ykuroda |
0:13a5d365ba16
|
24
|
*
|
ykuroda |
0:13a5d365ba16
|
25
|
*
|
ykuroda |
0:13a5d365ba16
|
26
|
* \class ComplexSchur
|
ykuroda |
0:13a5d365ba16
|
27
|
*
|
ykuroda |
0:13a5d365ba16
|
28
|
* \brief Performs a complex Schur decomposition of a real or complex square matrix
|
ykuroda |
0:13a5d365ba16
|
29
|
*
|
ykuroda |
0:13a5d365ba16
|
30
|
* \tparam _MatrixType the type of the matrix of which we are
|
ykuroda |
0:13a5d365ba16
|
31
|
* computing the Schur decomposition; this is expected to be an
|
ykuroda |
0:13a5d365ba16
|
32
|
* instantiation of the Matrix class template.
|
ykuroda |
0:13a5d365ba16
|
33
|
*
|
ykuroda |
0:13a5d365ba16
|
34
|
* Given a real or complex square matrix A, this class computes the
|
ykuroda |
0:13a5d365ba16
|
35
|
* Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
|
ykuroda |
0:13a5d365ba16
|
36
|
* complex matrix, and T is a complex upper triangular matrix. The
|
ykuroda |
0:13a5d365ba16
|
37
|
* diagonal of the matrix T corresponds to the eigenvalues of the
|
ykuroda |
0:13a5d365ba16
|
38
|
* matrix A.
|
ykuroda |
0:13a5d365ba16
|
39
|
*
|
ykuroda |
0:13a5d365ba16
|
40
|
* Call the function compute() to compute the Schur decomposition of
|
ykuroda |
0:13a5d365ba16
|
41
|
* a given matrix. Alternatively, you can use the
|
ykuroda |
0:13a5d365ba16
|
42
|
* ComplexSchur(const MatrixType&, bool) constructor which computes
|
ykuroda |
0:13a5d365ba16
|
43
|
* the Schur decomposition at construction time. Once the
|
ykuroda |
0:13a5d365ba16
|
44
|
* decomposition is computed, you can use the matrixU() and matrixT()
|
ykuroda |
0:13a5d365ba16
|
45
|
* functions to retrieve the matrices U and V in the decomposition.
|
ykuroda |
0:13a5d365ba16
|
46
|
*
|
ykuroda |
0:13a5d365ba16
|
47
|
* \note This code is inspired from Jampack
|
ykuroda |
0:13a5d365ba16
|
48
|
*
|
ykuroda |
0:13a5d365ba16
|
49
|
* \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
|
ykuroda |
0:13a5d365ba16
|
50
|
*/
|
ykuroda |
0:13a5d365ba16
|
51
|
template<typename _MatrixType> class ComplexSchur
|
ykuroda |
0:13a5d365ba16
|
52
|
{
|
ykuroda |
0:13a5d365ba16
|
53
|
public:
|
ykuroda |
0:13a5d365ba16
|
54
|
typedef _MatrixType MatrixType;
|
ykuroda |
0:13a5d365ba16
|
55
|
enum {
|
ykuroda |
0:13a5d365ba16
|
56
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
57
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
58
|
Options = MatrixType::Options,
|
ykuroda |
0:13a5d365ba16
|
59
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
60
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
ykuroda |
0:13a5d365ba16
|
61
|
};
|
ykuroda |
0:13a5d365ba16
|
62
|
|
ykuroda |
0:13a5d365ba16
|
63
|
/** \brief Scalar type for matrices of type \p _MatrixType. */
|
ykuroda |
0:13a5d365ba16
|
64
|
typedef typename MatrixType::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
65
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
ykuroda |
0:13a5d365ba16
|
66
|
typedef typename MatrixType::Index Index;
|
ykuroda |
0:13a5d365ba16
|
67
|
|
ykuroda |
0:13a5d365ba16
|
68
|
/** \brief Complex scalar type for \p _MatrixType.
|
ykuroda |
0:13a5d365ba16
|
69
|
*
|
ykuroda |
0:13a5d365ba16
|
70
|
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
ykuroda |
0:13a5d365ba16
|
71
|
* \c float or \c double) and just \c Scalar if #Scalar is
|
ykuroda |
0:13a5d365ba16
|
72
|
* complex.
|
ykuroda |
0:13a5d365ba16
|
73
|
*/
|
ykuroda |
0:13a5d365ba16
|
74
|
typedef std::complex<RealScalar> ComplexScalar;
|
ykuroda |
0:13a5d365ba16
|
75
|
|
ykuroda |
0:13a5d365ba16
|
76
|
/** \brief Type for the matrices in the Schur decomposition.
|
ykuroda |
0:13a5d365ba16
|
77
|
*
|
ykuroda |
0:13a5d365ba16
|
78
|
* This is a square matrix with entries of type #ComplexScalar.
|
ykuroda |
0:13a5d365ba16
|
79
|
* The size is the same as the size of \p _MatrixType.
|
ykuroda |
0:13a5d365ba16
|
80
|
*/
|
ykuroda |
0:13a5d365ba16
|
81
|
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
|
ykuroda |
0:13a5d365ba16
|
82
|
|
ykuroda |
0:13a5d365ba16
|
83
|
/** \brief Default constructor.
|
ykuroda |
0:13a5d365ba16
|
84
|
*
|
ykuroda |
0:13a5d365ba16
|
85
|
* \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
|
ykuroda |
0:13a5d365ba16
|
86
|
*
|
ykuroda |
0:13a5d365ba16
|
87
|
* The default constructor is useful in cases in which the user
|
ykuroda |
0:13a5d365ba16
|
88
|
* intends to perform decompositions via compute(). The \p size
|
ykuroda |
0:13a5d365ba16
|
89
|
* parameter is only used as a hint. It is not an error to give a
|
ykuroda |
0:13a5d365ba16
|
90
|
* wrong \p size, but it may impair performance.
|
ykuroda |
0:13a5d365ba16
|
91
|
*
|
ykuroda |
0:13a5d365ba16
|
92
|
* \sa compute() for an example.
|
ykuroda |
0:13a5d365ba16
|
93
|
*/
|
ykuroda |
0:13a5d365ba16
|
94
|
ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
|
ykuroda |
0:13a5d365ba16
|
95
|
: m_matT(size,size),
|
ykuroda |
0:13a5d365ba16
|
96
|
m_matU(size,size),
|
ykuroda |
0:13a5d365ba16
|
97
|
m_hess(size),
|
ykuroda |
0:13a5d365ba16
|
98
|
m_isInitialized(false),
|
ykuroda |
0:13a5d365ba16
|
99
|
m_matUisUptodate(false),
|
ykuroda |
0:13a5d365ba16
|
100
|
m_maxIters(-1)
|
ykuroda |
0:13a5d365ba16
|
101
|
{}
|
ykuroda |
0:13a5d365ba16
|
102
|
|
ykuroda |
0:13a5d365ba16
|
103
|
/** \brief Constructor; computes Schur decomposition of given matrix.
|
ykuroda |
0:13a5d365ba16
|
104
|
*
|
ykuroda |
0:13a5d365ba16
|
105
|
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
ykuroda |
0:13a5d365ba16
|
106
|
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
ykuroda |
0:13a5d365ba16
|
107
|
*
|
ykuroda |
0:13a5d365ba16
|
108
|
* This constructor calls compute() to compute the Schur decomposition.
|
ykuroda |
0:13a5d365ba16
|
109
|
*
|
ykuroda |
0:13a5d365ba16
|
110
|
* \sa matrixT() and matrixU() for examples.
|
ykuroda |
0:13a5d365ba16
|
111
|
*/
|
ykuroda |
0:13a5d365ba16
|
112
|
ComplexSchur(const MatrixType& matrix, bool computeU = true)
|
ykuroda |
0:13a5d365ba16
|
113
|
: m_matT(matrix.rows(),matrix.cols()),
|
ykuroda |
0:13a5d365ba16
|
114
|
m_matU(matrix.rows(),matrix.cols()),
|
ykuroda |
0:13a5d365ba16
|
115
|
m_hess(matrix.rows()),
|
ykuroda |
0:13a5d365ba16
|
116
|
m_isInitialized(false),
|
ykuroda |
0:13a5d365ba16
|
117
|
m_matUisUptodate(false),
|
ykuroda |
0:13a5d365ba16
|
118
|
m_maxIters(-1)
|
ykuroda |
0:13a5d365ba16
|
119
|
{
|
ykuroda |
0:13a5d365ba16
|
120
|
compute(matrix, computeU);
|
ykuroda |
0:13a5d365ba16
|
121
|
}
|
ykuroda |
0:13a5d365ba16
|
122
|
|
ykuroda |
0:13a5d365ba16
|
123
|
/** \brief Returns the unitary matrix in the Schur decomposition.
|
ykuroda |
0:13a5d365ba16
|
124
|
*
|
ykuroda |
0:13a5d365ba16
|
125
|
* \returns A const reference to the matrix U.
|
ykuroda |
0:13a5d365ba16
|
126
|
*
|
ykuroda |
0:13a5d365ba16
|
127
|
* It is assumed that either the constructor
|
ykuroda |
0:13a5d365ba16
|
128
|
* ComplexSchur(const MatrixType& matrix, bool computeU) or the
|
ykuroda |
0:13a5d365ba16
|
129
|
* member function compute(const MatrixType& matrix, bool computeU)
|
ykuroda |
0:13a5d365ba16
|
130
|
* has been called before to compute the Schur decomposition of a
|
ykuroda |
0:13a5d365ba16
|
131
|
* matrix, and that \p computeU was set to true (the default
|
ykuroda |
0:13a5d365ba16
|
132
|
* value).
|
ykuroda |
0:13a5d365ba16
|
133
|
*
|
ykuroda |
0:13a5d365ba16
|
134
|
* Example: \include ComplexSchur_matrixU.cpp
|
ykuroda |
0:13a5d365ba16
|
135
|
* Output: \verbinclude ComplexSchur_matrixU.out
|
ykuroda |
0:13a5d365ba16
|
136
|
*/
|
ykuroda |
0:13a5d365ba16
|
137
|
const ComplexMatrixType& matrixU() const
|
ykuroda |
0:13a5d365ba16
|
138
|
{
|
ykuroda |
0:13a5d365ba16
|
139
|
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
140
|
eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
|
ykuroda |
0:13a5d365ba16
|
141
|
return m_matU;
|
ykuroda |
0:13a5d365ba16
|
142
|
}
|
ykuroda |
0:13a5d365ba16
|
143
|
|
ykuroda |
0:13a5d365ba16
|
144
|
/** \brief Returns the triangular matrix in the Schur decomposition.
|
ykuroda |
0:13a5d365ba16
|
145
|
*
|
ykuroda |
0:13a5d365ba16
|
146
|
* \returns A const reference to the matrix T.
|
ykuroda |
0:13a5d365ba16
|
147
|
*
|
ykuroda |
0:13a5d365ba16
|
148
|
* It is assumed that either the constructor
|
ykuroda |
0:13a5d365ba16
|
149
|
* ComplexSchur(const MatrixType& matrix, bool computeU) or the
|
ykuroda |
0:13a5d365ba16
|
150
|
* member function compute(const MatrixType& matrix, bool computeU)
|
ykuroda |
0:13a5d365ba16
|
151
|
* has been called before to compute the Schur decomposition of a
|
ykuroda |
0:13a5d365ba16
|
152
|
* matrix.
|
ykuroda |
0:13a5d365ba16
|
153
|
*
|
ykuroda |
0:13a5d365ba16
|
154
|
* Note that this function returns a plain square matrix. If you want to reference
|
ykuroda |
0:13a5d365ba16
|
155
|
* only the upper triangular part, use:
|
ykuroda |
0:13a5d365ba16
|
156
|
* \code schur.matrixT().triangularView<Upper>() \endcode
|
ykuroda |
0:13a5d365ba16
|
157
|
*
|
ykuroda |
0:13a5d365ba16
|
158
|
* Example: \include ComplexSchur_matrixT.cpp
|
ykuroda |
0:13a5d365ba16
|
159
|
* Output: \verbinclude ComplexSchur_matrixT.out
|
ykuroda |
0:13a5d365ba16
|
160
|
*/
|
ykuroda |
0:13a5d365ba16
|
161
|
const ComplexMatrixType& matrixT() const
|
ykuroda |
0:13a5d365ba16
|
162
|
{
|
ykuroda |
0:13a5d365ba16
|
163
|
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
164
|
return m_matT;
|
ykuroda |
0:13a5d365ba16
|
165
|
}
|
ykuroda |
0:13a5d365ba16
|
166
|
|
ykuroda |
0:13a5d365ba16
|
167
|
/** \brief Computes Schur decomposition of given matrix.
|
ykuroda |
0:13a5d365ba16
|
168
|
*
|
ykuroda |
0:13a5d365ba16
|
169
|
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
ykuroda |
0:13a5d365ba16
|
170
|
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
ykuroda |
0:13a5d365ba16
|
171
|
|
ykuroda |
0:13a5d365ba16
|
172
|
* \returns Reference to \c *this
|
ykuroda |
0:13a5d365ba16
|
173
|
*
|
ykuroda |
0:13a5d365ba16
|
174
|
* The Schur decomposition is computed by first reducing the
|
ykuroda |
0:13a5d365ba16
|
175
|
* matrix to Hessenberg form using the class
|
ykuroda |
0:13a5d365ba16
|
176
|
* HessenbergDecomposition. The Hessenberg matrix is then reduced
|
ykuroda |
0:13a5d365ba16
|
177
|
* to triangular form by performing QR iterations with a single
|
ykuroda |
0:13a5d365ba16
|
178
|
* shift. The cost of computing the Schur decomposition depends
|
ykuroda |
0:13a5d365ba16
|
179
|
* on the number of iterations; as a rough guide, it may be taken
|
ykuroda |
0:13a5d365ba16
|
180
|
* on the number of iterations; as a rough guide, it may be taken
|
ykuroda |
0:13a5d365ba16
|
181
|
* to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
|
ykuroda |
0:13a5d365ba16
|
182
|
* if \a computeU is false.
|
ykuroda |
0:13a5d365ba16
|
183
|
*
|
ykuroda |
0:13a5d365ba16
|
184
|
* Example: \include ComplexSchur_compute.cpp
|
ykuroda |
0:13a5d365ba16
|
185
|
* Output: \verbinclude ComplexSchur_compute.out
|
ykuroda |
0:13a5d365ba16
|
186
|
*
|
ykuroda |
0:13a5d365ba16
|
187
|
* \sa compute(const MatrixType&, bool, Index)
|
ykuroda |
0:13a5d365ba16
|
188
|
*/
|
ykuroda |
0:13a5d365ba16
|
189
|
ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
|
ykuroda |
0:13a5d365ba16
|
190
|
|
ykuroda |
0:13a5d365ba16
|
191
|
/** \brief Compute Schur decomposition from a given Hessenberg matrix
|
ykuroda |
0:13a5d365ba16
|
192
|
* \param[in] matrixH Matrix in Hessenberg form H
|
ykuroda |
0:13a5d365ba16
|
193
|
* \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
|
ykuroda |
0:13a5d365ba16
|
194
|
* \param computeU Computes the matriX U of the Schur vectors
|
ykuroda |
0:13a5d365ba16
|
195
|
* \return Reference to \c *this
|
ykuroda |
0:13a5d365ba16
|
196
|
*
|
ykuroda |
0:13a5d365ba16
|
197
|
* This routine assumes that the matrix is already reduced in Hessenberg form matrixH
|
ykuroda |
0:13a5d365ba16
|
198
|
* using either the class HessenbergDecomposition or another mean.
|
ykuroda |
0:13a5d365ba16
|
199
|
* It computes the upper quasi-triangular matrix T of the Schur decomposition of H
|
ykuroda |
0:13a5d365ba16
|
200
|
* When computeU is true, this routine computes the matrix U such that
|
ykuroda |
0:13a5d365ba16
|
201
|
* A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
|
ykuroda |
0:13a5d365ba16
|
202
|
*
|
ykuroda |
0:13a5d365ba16
|
203
|
* NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
|
ykuroda |
0:13a5d365ba16
|
204
|
* is not available, the user should give an identity matrix (Q.setIdentity())
|
ykuroda |
0:13a5d365ba16
|
205
|
*
|
ykuroda |
0:13a5d365ba16
|
206
|
* \sa compute(const MatrixType&, bool)
|
ykuroda |
0:13a5d365ba16
|
207
|
*/
|
ykuroda |
0:13a5d365ba16
|
208
|
template<typename HessMatrixType, typename OrthMatrixType>
|
ykuroda |
0:13a5d365ba16
|
209
|
ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true);
|
ykuroda |
0:13a5d365ba16
|
210
|
|
ykuroda |
0:13a5d365ba16
|
211
|
/** \brief Reports whether previous computation was successful.
|
ykuroda |
0:13a5d365ba16
|
212
|
*
|
ykuroda |
0:13a5d365ba16
|
213
|
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
ykuroda |
0:13a5d365ba16
|
214
|
*/
|
ykuroda |
0:13a5d365ba16
|
215
|
ComputationInfo info() const
|
ykuroda |
0:13a5d365ba16
|
216
|
{
|
ykuroda |
0:13a5d365ba16
|
217
|
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
218
|
return m_info;
|
ykuroda |
0:13a5d365ba16
|
219
|
}
|
ykuroda |
0:13a5d365ba16
|
220
|
|
ykuroda |
0:13a5d365ba16
|
221
|
/** \brief Sets the maximum number of iterations allowed.
|
ykuroda |
0:13a5d365ba16
|
222
|
*
|
ykuroda |
0:13a5d365ba16
|
223
|
* If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
|
ykuroda |
0:13a5d365ba16
|
224
|
* of the matrix.
|
ykuroda |
0:13a5d365ba16
|
225
|
*/
|
ykuroda |
0:13a5d365ba16
|
226
|
ComplexSchur& setMaxIterations(Index maxIters)
|
ykuroda |
0:13a5d365ba16
|
227
|
{
|
ykuroda |
0:13a5d365ba16
|
228
|
m_maxIters = maxIters;
|
ykuroda |
0:13a5d365ba16
|
229
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
230
|
}
|
ykuroda |
0:13a5d365ba16
|
231
|
|
ykuroda |
0:13a5d365ba16
|
232
|
/** \brief Returns the maximum number of iterations. */
|
ykuroda |
0:13a5d365ba16
|
233
|
Index getMaxIterations()
|
ykuroda |
0:13a5d365ba16
|
234
|
{
|
ykuroda |
0:13a5d365ba16
|
235
|
return m_maxIters;
|
ykuroda |
0:13a5d365ba16
|
236
|
}
|
ykuroda |
0:13a5d365ba16
|
237
|
|
ykuroda |
0:13a5d365ba16
|
238
|
/** \brief Maximum number of iterations per row.
|
ykuroda |
0:13a5d365ba16
|
239
|
*
|
ykuroda |
0:13a5d365ba16
|
240
|
* If not otherwise specified, the maximum number of iterations is this number times the size of the
|
ykuroda |
0:13a5d365ba16
|
241
|
* matrix. It is currently set to 30.
|
ykuroda |
0:13a5d365ba16
|
242
|
*/
|
ykuroda |
0:13a5d365ba16
|
243
|
static const int m_maxIterationsPerRow = 30;
|
ykuroda |
0:13a5d365ba16
|
244
|
|
ykuroda |
0:13a5d365ba16
|
245
|
protected:
|
ykuroda |
0:13a5d365ba16
|
246
|
ComplexMatrixType m_matT, m_matU;
|
ykuroda |
0:13a5d365ba16
|
247
|
HessenbergDecomposition<MatrixType> m_hess;
|
ykuroda |
0:13a5d365ba16
|
248
|
ComputationInfo m_info;
|
ykuroda |
0:13a5d365ba16
|
249
|
bool m_isInitialized;
|
ykuroda |
0:13a5d365ba16
|
250
|
bool m_matUisUptodate;
|
ykuroda |
0:13a5d365ba16
|
251
|
Index m_maxIters;
|
ykuroda |
0:13a5d365ba16
|
252
|
|
ykuroda |
0:13a5d365ba16
|
253
|
private:
|
ykuroda |
0:13a5d365ba16
|
254
|
bool subdiagonalEntryIsNeglegible(Index i);
|
ykuroda |
0:13a5d365ba16
|
255
|
ComplexScalar computeShift(Index iu, Index iter);
|
ykuroda |
0:13a5d365ba16
|
256
|
void reduceToTriangularForm(bool computeU);
|
ykuroda |
0:13a5d365ba16
|
257
|
friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
|
ykuroda |
0:13a5d365ba16
|
258
|
};
|
ykuroda |
0:13a5d365ba16
|
259
|
|
ykuroda |
0:13a5d365ba16
|
260
|
/** If m_matT(i+1,i) is neglegible in floating point arithmetic
|
ykuroda |
0:13a5d365ba16
|
261
|
* compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
|
ykuroda |
0:13a5d365ba16
|
262
|
* return true, else return false. */
|
ykuroda |
0:13a5d365ba16
|
263
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
264
|
inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
|
ykuroda |
0:13a5d365ba16
|
265
|
{
|
ykuroda |
0:13a5d365ba16
|
266
|
RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
|
ykuroda |
0:13a5d365ba16
|
267
|
RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
|
ykuroda |
0:13a5d365ba16
|
268
|
if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
|
ykuroda |
0:13a5d365ba16
|
269
|
{
|
ykuroda |
0:13a5d365ba16
|
270
|
m_matT.coeffRef(i+1,i) = ComplexScalar(0);
|
ykuroda |
0:13a5d365ba16
|
271
|
return true;
|
ykuroda |
0:13a5d365ba16
|
272
|
}
|
ykuroda |
0:13a5d365ba16
|
273
|
return false;
|
ykuroda |
0:13a5d365ba16
|
274
|
}
|
ykuroda |
0:13a5d365ba16
|
275
|
|
ykuroda |
0:13a5d365ba16
|
276
|
|
ykuroda |
0:13a5d365ba16
|
277
|
/** Compute the shift in the current QR iteration. */
|
ykuroda |
0:13a5d365ba16
|
278
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
279
|
typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
|
ykuroda |
0:13a5d365ba16
|
280
|
{
|
ykuroda |
0:13a5d365ba16
|
281
|
using std::abs;
|
ykuroda |
0:13a5d365ba16
|
282
|
if (iter == 10 || iter == 20)
|
ykuroda |
0:13a5d365ba16
|
283
|
{
|
ykuroda |
0:13a5d365ba16
|
284
|
// exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
|
ykuroda |
0:13a5d365ba16
|
285
|
return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
|
ykuroda |
0:13a5d365ba16
|
286
|
}
|
ykuroda |
0:13a5d365ba16
|
287
|
|
ykuroda |
0:13a5d365ba16
|
288
|
// compute the shift as one of the eigenvalues of t, the 2x2
|
ykuroda |
0:13a5d365ba16
|
289
|
// diagonal block on the bottom of the active submatrix
|
ykuroda |
0:13a5d365ba16
|
290
|
Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
|
ykuroda |
0:13a5d365ba16
|
291
|
RealScalar normt = t.cwiseAbs().sum();
|
ykuroda |
0:13a5d365ba16
|
292
|
t /= normt; // the normalization by sf is to avoid under/overflow
|
ykuroda |
0:13a5d365ba16
|
293
|
|
ykuroda |
0:13a5d365ba16
|
294
|
ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
|
ykuroda |
0:13a5d365ba16
|
295
|
ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
|
ykuroda |
0:13a5d365ba16
|
296
|
ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
|
ykuroda |
0:13a5d365ba16
|
297
|
ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
|
ykuroda |
0:13a5d365ba16
|
298
|
ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
|
ykuroda |
0:13a5d365ba16
|
299
|
ComplexScalar eival1 = (trace + disc) / RealScalar(2);
|
ykuroda |
0:13a5d365ba16
|
300
|
ComplexScalar eival2 = (trace - disc) / RealScalar(2);
|
ykuroda |
0:13a5d365ba16
|
301
|
|
ykuroda |
0:13a5d365ba16
|
302
|
if(numext::norm1(eival1) > numext::norm1(eival2))
|
ykuroda |
0:13a5d365ba16
|
303
|
eival2 = det / eival1;
|
ykuroda |
0:13a5d365ba16
|
304
|
else
|
ykuroda |
0:13a5d365ba16
|
305
|
eival1 = det / eival2;
|
ykuroda |
0:13a5d365ba16
|
306
|
|
ykuroda |
0:13a5d365ba16
|
307
|
// choose the eigenvalue closest to the bottom entry of the diagonal
|
ykuroda |
0:13a5d365ba16
|
308
|
if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
|
ykuroda |
0:13a5d365ba16
|
309
|
return normt * eival1;
|
ykuroda |
0:13a5d365ba16
|
310
|
else
|
ykuroda |
0:13a5d365ba16
|
311
|
return normt * eival2;
|
ykuroda |
0:13a5d365ba16
|
312
|
}
|
ykuroda |
0:13a5d365ba16
|
313
|
|
ykuroda |
0:13a5d365ba16
|
314
|
|
ykuroda |
0:13a5d365ba16
|
315
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
316
|
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
|
ykuroda |
0:13a5d365ba16
|
317
|
{
|
ykuroda |
0:13a5d365ba16
|
318
|
m_matUisUptodate = false;
|
ykuroda |
0:13a5d365ba16
|
319
|
eigen_assert(matrix.cols() == matrix.rows());
|
ykuroda |
0:13a5d365ba16
|
320
|
|
ykuroda |
0:13a5d365ba16
|
321
|
if(matrix.cols() == 1)
|
ykuroda |
0:13a5d365ba16
|
322
|
{
|
ykuroda |
0:13a5d365ba16
|
323
|
m_matT = matrix.template cast<ComplexScalar>();
|
ykuroda |
0:13a5d365ba16
|
324
|
if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
|
ykuroda |
0:13a5d365ba16
|
325
|
m_info = Success;
|
ykuroda |
0:13a5d365ba16
|
326
|
m_isInitialized = true;
|
ykuroda |
0:13a5d365ba16
|
327
|
m_matUisUptodate = computeU;
|
ykuroda |
0:13a5d365ba16
|
328
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
329
|
}
|
ykuroda |
0:13a5d365ba16
|
330
|
|
ykuroda |
0:13a5d365ba16
|
331
|
internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
|
ykuroda |
0:13a5d365ba16
|
332
|
computeFromHessenberg(m_matT, m_matU, computeU);
|
ykuroda |
0:13a5d365ba16
|
333
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
334
|
}
|
ykuroda |
0:13a5d365ba16
|
335
|
|
ykuroda |
0:13a5d365ba16
|
336
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
337
|
template<typename HessMatrixType, typename OrthMatrixType>
|
ykuroda |
0:13a5d365ba16
|
338
|
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
|
ykuroda |
0:13a5d365ba16
|
339
|
{
|
ykuroda |
0:13a5d365ba16
|
340
|
m_matT = matrixH;
|
ykuroda |
0:13a5d365ba16
|
341
|
if(computeU)
|
ykuroda |
0:13a5d365ba16
|
342
|
m_matU = matrixQ;
|
ykuroda |
0:13a5d365ba16
|
343
|
reduceToTriangularForm(computeU);
|
ykuroda |
0:13a5d365ba16
|
344
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
345
|
}
|
ykuroda |
0:13a5d365ba16
|
346
|
namespace internal {
|
ykuroda |
0:13a5d365ba16
|
347
|
|
ykuroda |
0:13a5d365ba16
|
348
|
/* Reduce given matrix to Hessenberg form */
|
ykuroda |
0:13a5d365ba16
|
349
|
template<typename MatrixType, bool IsComplex>
|
ykuroda |
0:13a5d365ba16
|
350
|
struct complex_schur_reduce_to_hessenberg
|
ykuroda |
0:13a5d365ba16
|
351
|
{
|
ykuroda |
0:13a5d365ba16
|
352
|
// this is the implementation for the case IsComplex = true
|
ykuroda |
0:13a5d365ba16
|
353
|
static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
|
ykuroda |
0:13a5d365ba16
|
354
|
{
|
ykuroda |
0:13a5d365ba16
|
355
|
_this.m_hess.compute(matrix);
|
ykuroda |
0:13a5d365ba16
|
356
|
_this.m_matT = _this.m_hess.matrixH();
|
ykuroda |
0:13a5d365ba16
|
357
|
if(computeU) _this.m_matU = _this.m_hess.matrixQ();
|
ykuroda |
0:13a5d365ba16
|
358
|
}
|
ykuroda |
0:13a5d365ba16
|
359
|
};
|
ykuroda |
0:13a5d365ba16
|
360
|
|
ykuroda |
0:13a5d365ba16
|
361
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
362
|
struct complex_schur_reduce_to_hessenberg<MatrixType, false>
|
ykuroda |
0:13a5d365ba16
|
363
|
{
|
ykuroda |
0:13a5d365ba16
|
364
|
static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
|
ykuroda |
0:13a5d365ba16
|
365
|
{
|
ykuroda |
0:13a5d365ba16
|
366
|
typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
|
ykuroda |
0:13a5d365ba16
|
367
|
|
ykuroda |
0:13a5d365ba16
|
368
|
// Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
|
ykuroda |
0:13a5d365ba16
|
369
|
_this.m_hess.compute(matrix);
|
ykuroda |
0:13a5d365ba16
|
370
|
_this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
|
ykuroda |
0:13a5d365ba16
|
371
|
if(computeU)
|
ykuroda |
0:13a5d365ba16
|
372
|
{
|
ykuroda |
0:13a5d365ba16
|
373
|
// This may cause an allocation which seems to be avoidable
|
ykuroda |
0:13a5d365ba16
|
374
|
MatrixType Q = _this.m_hess.matrixQ();
|
ykuroda |
0:13a5d365ba16
|
375
|
_this.m_matU = Q.template cast<ComplexScalar>();
|
ykuroda |
0:13a5d365ba16
|
376
|
}
|
ykuroda |
0:13a5d365ba16
|
377
|
}
|
ykuroda |
0:13a5d365ba16
|
378
|
};
|
ykuroda |
0:13a5d365ba16
|
379
|
|
ykuroda |
0:13a5d365ba16
|
380
|
} // end namespace internal
|
ykuroda |
0:13a5d365ba16
|
381
|
|
ykuroda |
0:13a5d365ba16
|
382
|
// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
|
ykuroda |
0:13a5d365ba16
|
383
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
384
|
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
|
ykuroda |
0:13a5d365ba16
|
385
|
{
|
ykuroda |
0:13a5d365ba16
|
386
|
Index maxIters = m_maxIters;
|
ykuroda |
0:13a5d365ba16
|
387
|
if (maxIters == -1)
|
ykuroda |
0:13a5d365ba16
|
388
|
maxIters = m_maxIterationsPerRow * m_matT.rows();
|
ykuroda |
0:13a5d365ba16
|
389
|
|
ykuroda |
0:13a5d365ba16
|
390
|
// The matrix m_matT is divided in three parts.
|
ykuroda |
0:13a5d365ba16
|
391
|
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
|
ykuroda |
0:13a5d365ba16
|
392
|
// Rows il,...,iu is the part we are working on (the active submatrix).
|
ykuroda |
0:13a5d365ba16
|
393
|
// Rows iu+1,...,end are already brought in triangular form.
|
ykuroda |
0:13a5d365ba16
|
394
|
Index iu = m_matT.cols() - 1;
|
ykuroda |
0:13a5d365ba16
|
395
|
Index il;
|
ykuroda |
0:13a5d365ba16
|
396
|
Index iter = 0; // number of iterations we are working on the (iu,iu) element
|
ykuroda |
0:13a5d365ba16
|
397
|
Index totalIter = 0; // number of iterations for whole matrix
|
ykuroda |
0:13a5d365ba16
|
398
|
|
ykuroda |
0:13a5d365ba16
|
399
|
while(true)
|
ykuroda |
0:13a5d365ba16
|
400
|
{
|
ykuroda |
0:13a5d365ba16
|
401
|
// find iu, the bottom row of the active submatrix
|
ykuroda |
0:13a5d365ba16
|
402
|
while(iu > 0)
|
ykuroda |
0:13a5d365ba16
|
403
|
{
|
ykuroda |
0:13a5d365ba16
|
404
|
if(!subdiagonalEntryIsNeglegible(iu-1)) break;
|
ykuroda |
0:13a5d365ba16
|
405
|
iter = 0;
|
ykuroda |
0:13a5d365ba16
|
406
|
--iu;
|
ykuroda |
0:13a5d365ba16
|
407
|
}
|
ykuroda |
0:13a5d365ba16
|
408
|
|
ykuroda |
0:13a5d365ba16
|
409
|
// if iu is zero then we are done; the whole matrix is triangularized
|
ykuroda |
0:13a5d365ba16
|
410
|
if(iu==0) break;
|
ykuroda |
0:13a5d365ba16
|
411
|
|
ykuroda |
0:13a5d365ba16
|
412
|
// if we spent too many iterations, we give up
|
ykuroda |
0:13a5d365ba16
|
413
|
iter++;
|
ykuroda |
0:13a5d365ba16
|
414
|
totalIter++;
|
ykuroda |
0:13a5d365ba16
|
415
|
if(totalIter > maxIters) break;
|
ykuroda |
0:13a5d365ba16
|
416
|
|
ykuroda |
0:13a5d365ba16
|
417
|
// find il, the top row of the active submatrix
|
ykuroda |
0:13a5d365ba16
|
418
|
il = iu-1;
|
ykuroda |
0:13a5d365ba16
|
419
|
while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
|
ykuroda |
0:13a5d365ba16
|
420
|
{
|
ykuroda |
0:13a5d365ba16
|
421
|
--il;
|
ykuroda |
0:13a5d365ba16
|
422
|
}
|
ykuroda |
0:13a5d365ba16
|
423
|
|
ykuroda |
0:13a5d365ba16
|
424
|
/* perform the QR step using Givens rotations. The first rotation
|
ykuroda |
0:13a5d365ba16
|
425
|
creates a bulge; the (il+2,il) element becomes nonzero. This
|
ykuroda |
0:13a5d365ba16
|
426
|
bulge is chased down to the bottom of the active submatrix. */
|
ykuroda |
0:13a5d365ba16
|
427
|
|
ykuroda |
0:13a5d365ba16
|
428
|
ComplexScalar shift = computeShift(iu, iter);
|
ykuroda |
0:13a5d365ba16
|
429
|
JacobiRotation<ComplexScalar> rot;
|
ykuroda |
0:13a5d365ba16
|
430
|
rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
|
ykuroda |
0:13a5d365ba16
|
431
|
m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
|
ykuroda |
0:13a5d365ba16
|
432
|
m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
|
ykuroda |
0:13a5d365ba16
|
433
|
if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
|
ykuroda |
0:13a5d365ba16
|
434
|
|
ykuroda |
0:13a5d365ba16
|
435
|
for(Index i=il+1 ; i<iu ; i++)
|
ykuroda |
0:13a5d365ba16
|
436
|
{
|
ykuroda |
0:13a5d365ba16
|
437
|
rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
|
ykuroda |
0:13a5d365ba16
|
438
|
m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
|
ykuroda |
0:13a5d365ba16
|
439
|
m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
|
ykuroda |
0:13a5d365ba16
|
440
|
m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
|
ykuroda |
0:13a5d365ba16
|
441
|
if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
|
ykuroda |
0:13a5d365ba16
|
442
|
}
|
ykuroda |
0:13a5d365ba16
|
443
|
}
|
ykuroda |
0:13a5d365ba16
|
444
|
|
ykuroda |
0:13a5d365ba16
|
445
|
if(totalIter <= maxIters)
|
ykuroda |
0:13a5d365ba16
|
446
|
m_info = Success;
|
ykuroda |
0:13a5d365ba16
|
447
|
else
|
ykuroda |
0:13a5d365ba16
|
448
|
m_info = NoConvergence;
|
ykuroda |
0:13a5d365ba16
|
449
|
|
ykuroda |
0:13a5d365ba16
|
450
|
m_isInitialized = true;
|
ykuroda |
0:13a5d365ba16
|
451
|
m_matUisUptodate = computeU;
|
ykuroda |
0:13a5d365ba16
|
452
|
}
|
ykuroda |
0:13a5d365ba16
|
453
|
|
ykuroda |
0:13a5d365ba16
|
454
|
} // end namespace Eigen
|
ykuroda |
0:13a5d365ba16
|
455
|
|
ykuroda |
0:13a5d365ba16
|
456
|
#endif // EIGEN_COMPLEX_SCHUR_H |