Eigen libary for mbed

Revision:
0:13a5d365ba16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h	Thu Oct 13 04:07:23 2016 +0000
@@ -0,0 +1,227 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
+#define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
+
+#include "./Tridiagonalization.h"
+
+namespace Eigen { 
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class GeneralizedSelfAdjointEigenSolver
+  *
+  * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem
+  *
+  * \tparam _MatrixType the type of the matrix of which we are computing the
+  * eigendecomposition; this is expected to be an instantiation of the Matrix
+  * class template.
+  *
+  * This class solves the generalized eigenvalue problem
+  * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be
+  * selfadjoint and the matrix \f$ B \f$ should be positive definite.
+  *
+  * Only the \b lower \b triangular \b part of the input matrix is referenced.
+  *
+  * Call the function compute() to compute the eigenvalues and eigenvectors of
+  * a given matrix. Alternatively, you can use the
+  * GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
+  * constructor which computes the eigenvalues and eigenvectors at construction time.
+  * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues()
+  * and eigenvectors() functions.
+  *
+  * The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
+  * contains an example of the typical use of this class.
+  *
+  * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver
+  */
+template<typename _MatrixType>
+class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType>
+{
+    typedef SelfAdjointEigenSolver<_MatrixType> Base;
+  public:
+
+    typedef typename Base::Index Index;
+    typedef _MatrixType MatrixType;
+
+    /** \brief Default constructor for fixed-size matrices.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via compute(). This constructor
+      * can only be used if \p _MatrixType is a fixed-size matrix; use
+      * GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices.
+      */
+    GeneralizedSelfAdjointEigenSolver() : Base() {}
+
+    /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
+      *
+      * \param [in]  size  Positive integer, size of the matrix whose
+      * eigenvalues and eigenvectors will be computed.
+      *
+      * This constructor is useful for dynamic-size matrices, when the user
+      * intends to perform decompositions via compute(). The \p size
+      * parameter is only used as a hint. It is not an error to give a wrong
+      * \p size, but it may impair performance.
+      *
+      * \sa compute() for an example
+      */
+    GeneralizedSelfAdjointEigenSolver(Index size)
+        : Base(size)
+    {}
+
+    /** \brief Constructor; computes generalized eigendecomposition of given matrix pencil.
+      *
+      * \param[in]  matA  Selfadjoint matrix in matrix pencil.
+      *                   Only the lower triangular part of the matrix is referenced.
+      * \param[in]  matB  Positive-definite matrix in matrix pencil.
+      *                   Only the lower triangular part of the matrix is referenced.
+      * \param[in]  options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
+      *                     Default is #ComputeEigenvectors|#Ax_lBx.
+      *
+      * This constructor calls compute(const MatrixType&, const MatrixType&, int)
+      * to compute the eigenvalues and (if requested) the eigenvectors of the
+      * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
+      * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
+      * \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property
+      * \f$ x^* B x = 1 \f$. The eigenvectors are computed if
+      * \a options contains ComputeEigenvectors.
+      *
+      * In addition, the two following variants can be solved via \p options:
+      * - \c ABx_lx: \f$ ABx = \lambda x \f$
+      * - \c BAx_lx: \f$ BAx = \lambda x \f$
+      *
+      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
+      *
+      * \sa compute(const MatrixType&, const MatrixType&, int)
+      */
+    GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB,
+                                      int options = ComputeEigenvectors|Ax_lBx)
+      : Base(matA.cols())
+    {
+      compute(matA, matB, options);
+    }
+
+    /** \brief Computes generalized eigendecomposition of given matrix pencil.
+      *
+      * \param[in]  matA  Selfadjoint matrix in matrix pencil.
+      *                   Only the lower triangular part of the matrix is referenced.
+      * \param[in]  matB  Positive-definite matrix in matrix pencil.
+      *                   Only the lower triangular part of the matrix is referenced.
+      * \param[in]  options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
+      *                     Default is #ComputeEigenvectors|#Ax_lBx.
+      *
+      * \returns    Reference to \c *this
+      *
+      * Accoring to \p options, this function computes eigenvalues and (if requested)
+      * the eigenvectors of one of the following three generalized eigenproblems:
+      * - \c Ax_lBx: \f$ Ax = \lambda B x \f$
+      * - \c ABx_lx: \f$ ABx = \lambda x \f$
+      * - \c BAx_lx: \f$ BAx = \lambda x \f$
+      * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
+      * matrix \f$ B \f$.
+      * In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$.
+      *
+      * The eigenvalues() function can be used to retrieve
+      * the eigenvalues. If \p options contains ComputeEigenvectors, then the
+      * eigenvectors are also computed and can be retrieved by calling
+      * eigenvectors().
+      *
+      * The implementation uses LLT to compute the Cholesky decomposition
+      * \f$ B = LL^* \f$ and computes the classical eigendecomposition
+      * of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx
+      * and of \f$ L^{*} A L \f$ otherwise. This solves the
+      * generalized eigenproblem, because any solution of the generalized
+      * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution
+      * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the
+      * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements
+      * can be made for the two other variants.
+      *
+      * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out
+      *
+      * \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
+      */
+    GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB,
+                                               int options = ComputeEigenvectors|Ax_lBx);
+
+  protected:
+
+};
+
+
+template<typename MatrixType>
+GeneralizedSelfAdjointEigenSolver<MatrixType>& GeneralizedSelfAdjointEigenSolver<MatrixType>::
+compute(const MatrixType& matA, const MatrixType& matB, int options)
+{
+  eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
+  eigen_assert((options&~(EigVecMask|GenEigMask))==0
+          && (options&EigVecMask)!=EigVecMask
+          && ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx
+           || (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx)
+          && "invalid option parameter");
+
+  bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors);
+
+  // Compute the cholesky decomposition of matB = L L' = U'U
+  LLT<MatrixType> cholB(matB);
+
+  int type = (options&GenEigMask);
+  if(type==0)
+    type = Ax_lBx;
+
+  if(type==Ax_lBx)
+  {
+    // compute C = inv(L) A inv(L')
+    MatrixType matC = matA.template selfadjointView<Lower>();
+    cholB.matrixL().template solveInPlace<OnTheLeft>(matC);
+    cholB.matrixU().template solveInPlace<OnTheRight>(matC);
+
+    Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly );
+
+    // transform back the eigen vectors: evecs = inv(U) * evecs
+    if(computeEigVecs)
+      cholB.matrixU().solveInPlace(Base::m_eivec);
+  }
+  else if(type==ABx_lx)
+  {
+    // compute C = L' A L
+    MatrixType matC = matA.template selfadjointView<Lower>();
+    matC = matC * cholB.matrixL();
+    matC = cholB.matrixU() * matC;
+
+    Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
+
+    // transform back the eigen vectors: evecs = inv(U) * evecs
+    if(computeEigVecs)
+      cholB.matrixU().solveInPlace(Base::m_eivec);
+  }
+  else if(type==BAx_lx)
+  {
+    // compute C = L' A L
+    MatrixType matC = matA.template selfadjointView<Lower>();
+    matC = matC * cholB.matrixL();
+    matC = cholB.matrixU() * matC;
+
+    Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
+
+    // transform back the eigen vectors: evecs = L * evecs
+    if(computeEigVecs)
+      Base::m_eivec = cholB.matrixL() * Base::m_eivec;
+  }
+
+  return *this;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
\ No newline at end of file