Eigen libary for mbed

Revision:
0:13a5d365ba16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Core/Redux.h	Thu Oct 13 04:07:23 2016 +0000
@@ -0,0 +1,409 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_REDUX_H
+#define EIGEN_REDUX_H
+
+namespace Eigen { 
+
+namespace internal {
+
+// TODO
+//  * implement other kind of vectorization
+//  * factorize code
+
+/***************************************************************************
+* Part 1 : the logic deciding a strategy for vectorization and unrolling
+***************************************************************************/
+
+template<typename Func, typename Derived>
+struct redux_traits
+{
+public:
+  enum {
+    PacketSize = packet_traits<typename Derived::Scalar>::size,
+    InnerMaxSize = int(Derived::IsRowMajor)
+                 ? Derived::MaxColsAtCompileTime
+                 : Derived::MaxRowsAtCompileTime
+  };
+
+  enum {
+    MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
+                  && (functor_traits<Func>::PacketAccess),
+    MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit),
+    MaySliceVectorize  = MightVectorize && int(InnerMaxSize)>=3*PacketSize
+  };
+
+public:
+  enum {
+    Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
+              : int(MaySliceVectorize)  ? int(SliceVectorizedTraversal)
+                                        : int(DefaultTraversal)
+  };
+
+public:
+  enum {
+    Cost = (  Derived::SizeAtCompileTime == Dynamic
+           || Derived::CoeffReadCost == Dynamic
+           || (Derived::SizeAtCompileTime!=1 && functor_traits<Func>::Cost == Dynamic)
+           ) ? Dynamic
+           : Derived::SizeAtCompileTime * Derived::CoeffReadCost
+               + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
+    UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
+  };
+
+public:
+  enum {
+    Unrolling = Cost != Dynamic && Cost <= UnrollingLimit
+              ? CompleteUnrolling
+              : NoUnrolling
+  };
+};
+
+/***************************************************************************
+* Part 2 : unrollers
+***************************************************************************/
+
+/*** no vectorization ***/
+
+template<typename Func, typename Derived, int Start, int Length>
+struct redux_novec_unroller
+{
+  enum {
+    HalfLength = Length/2
+  };
+
+  typedef typename Derived::Scalar Scalar;
+
+  static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
+  {
+    return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
+                redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
+  }
+};
+
+template<typename Func, typename Derived, int Start>
+struct redux_novec_unroller<Func, Derived, Start, 1>
+{
+  enum {
+    outer = Start / Derived::InnerSizeAtCompileTime,
+    inner = Start % Derived::InnerSizeAtCompileTime
+  };
+
+  typedef typename Derived::Scalar Scalar;
+
+  static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
+  {
+    return mat.coeffByOuterInner(outer, inner);
+  }
+};
+
+// This is actually dead code and will never be called. It is required
+// to prevent false warnings regarding failed inlining though
+// for 0 length run() will never be called at all.
+template<typename Func, typename Derived, int Start>
+struct redux_novec_unroller<Func, Derived, Start, 0>
+{
+  typedef typename Derived::Scalar Scalar;
+  static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
+};
+
+/*** vectorization ***/
+
+template<typename Func, typename Derived, int Start, int Length>
+struct redux_vec_unroller
+{
+  enum {
+    PacketSize = packet_traits<typename Derived::Scalar>::size,
+    HalfLength = Length/2
+  };
+
+  typedef typename Derived::Scalar Scalar;
+  typedef typename packet_traits<Scalar>::type PacketScalar;
+
+  static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
+  {
+    return func.packetOp(
+            redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
+            redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
+  }
+};
+
+template<typename Func, typename Derived, int Start>
+struct redux_vec_unroller<Func, Derived, Start, 1>
+{
+  enum {
+    index = Start * packet_traits<typename Derived::Scalar>::size,
+    outer = index / int(Derived::InnerSizeAtCompileTime),
+    inner = index % int(Derived::InnerSizeAtCompileTime),
+    alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
+  };
+
+  typedef typename Derived::Scalar Scalar;
+  typedef typename packet_traits<Scalar>::type PacketScalar;
+
+  static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
+  {
+    return mat.template packetByOuterInner<alignment>(outer, inner);
+  }
+};
+
+/***************************************************************************
+* Part 3 : implementation of all cases
+***************************************************************************/
+
+template<typename Func, typename Derived,
+         int Traversal = redux_traits<Func, Derived>::Traversal,
+         int Unrolling = redux_traits<Func, Derived>::Unrolling
+>
+struct redux_impl;
+
+template<typename Func, typename Derived>
+struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
+{
+  typedef typename Derived::Scalar Scalar;
+  typedef typename Derived::Index Index;
+  static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
+  {
+    eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
+    Scalar res;
+    res = mat.coeffByOuterInner(0, 0);
+    for(Index i = 1; i < mat.innerSize(); ++i)
+      res = func(res, mat.coeffByOuterInner(0, i));
+    for(Index i = 1; i < mat.outerSize(); ++i)
+      for(Index j = 0; j < mat.innerSize(); ++j)
+        res = func(res, mat.coeffByOuterInner(i, j));
+    return res;
+  }
+};
+
+template<typename Func, typename Derived>
+struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
+  : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
+{};
+
+template<typename Func, typename Derived>
+struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
+{
+  typedef typename Derived::Scalar Scalar;
+  typedef typename packet_traits<Scalar>::type PacketScalar;
+  typedef typename Derived::Index Index;
+
+  static Scalar run(const Derived& mat, const Func& func)
+  {
+    const Index size = mat.size();
+    eigen_assert(size && "you are using an empty matrix");
+    const Index packetSize = packet_traits<Scalar>::size;
+    const Index alignedStart = internal::first_aligned(mat);
+    enum {
+      alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit)
+                ? Aligned : Unaligned
+    };
+    const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
+    const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
+    const Index alignedEnd2 = alignedStart + alignedSize2;
+    const Index alignedEnd  = alignedStart + alignedSize;
+    Scalar res;
+    if(alignedSize)
+    {
+      PacketScalar packet_res0 = mat.template packet<alignment>(alignedStart);
+      if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
+      {
+        PacketScalar packet_res1 = mat.template packet<alignment>(alignedStart+packetSize);
+        for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
+        {
+          packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(index));
+          packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment>(index+packetSize));
+        }
+
+        packet_res0 = func.packetOp(packet_res0,packet_res1);
+        if(alignedEnd>alignedEnd2)
+          packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(alignedEnd2));
+      }
+      res = func.predux(packet_res0);
+
+      for(Index index = 0; index < alignedStart; ++index)
+        res = func(res,mat.coeff(index));
+
+      for(Index index = alignedEnd; index < size; ++index)
+        res = func(res,mat.coeff(index));
+    }
+    else // too small to vectorize anything.
+         // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
+    {
+      res = mat.coeff(0);
+      for(Index index = 1; index < size; ++index)
+        res = func(res,mat.coeff(index));
+    }
+
+    return res;
+  }
+};
+
+// NOTE: for SliceVectorizedTraversal we simply bypass unrolling
+template<typename Func, typename Derived, int Unrolling>
+struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling>
+{
+  typedef typename Derived::Scalar Scalar;
+  typedef typename packet_traits<Scalar>::type PacketScalar;
+  typedef typename Derived::Index Index;
+
+  static Scalar run(const Derived& mat, const Func& func)
+  {
+    eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
+    const Index innerSize = mat.innerSize();
+    const Index outerSize = mat.outerSize();
+    enum {
+      packetSize = packet_traits<Scalar>::size
+    };
+    const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
+    Scalar res;
+    if(packetedInnerSize)
+    {
+      PacketScalar packet_res = mat.template packet<Unaligned>(0,0);
+      for(Index j=0; j<outerSize; ++j)
+        for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
+          packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i));
+
+      res = func.predux(packet_res);
+      for(Index j=0; j<outerSize; ++j)
+        for(Index i=packetedInnerSize; i<innerSize; ++i)
+          res = func(res, mat.coeffByOuterInner(j,i));
+    }
+    else // too small to vectorize anything.
+         // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
+    {
+      res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
+    }
+
+    return res;
+  }
+};
+
+template<typename Func, typename Derived>
+struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
+{
+  typedef typename Derived::Scalar Scalar;
+  typedef typename packet_traits<Scalar>::type PacketScalar;
+  enum {
+    PacketSize = packet_traits<Scalar>::size,
+    Size = Derived::SizeAtCompileTime,
+    VectorizedSize = (Size / PacketSize) * PacketSize
+  };
+  static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
+  {
+    eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
+    Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
+    if (VectorizedSize != Size)
+      res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
+    return res;
+  }
+};
+
+} // end namespace internal
+
+/***************************************************************************
+* Part 4 : public API
+***************************************************************************/
+
+
+/** \returns the result of a full redux operation on the whole matrix or vector using \a func
+  *
+  * The template parameter \a BinaryOp is the type of the functor \a func which must be
+  * an associative operator. Both current STL and TR1 functor styles are handled.
+  *
+  * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
+  */
+template<typename Derived>
+template<typename Func>
+EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type
+DenseBase<Derived>::redux(const Func& func) const
+{
+  typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
+  return internal::redux_impl<Func, ThisNested>
+            ::run(derived(), func);
+}
+
+/** \returns the minimum of all coefficients of \c *this.
+  * \warning the result is undefined if \c *this contains NaN.
+  */
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::minCoeff() const
+{
+  return this->redux(Eigen::internal::scalar_min_op<Scalar>());
+}
+
+/** \returns the maximum of all coefficients of \c *this.
+  * \warning the result is undefined if \c *this contains NaN.
+  */
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::maxCoeff() const
+{
+  return this->redux(Eigen::internal::scalar_max_op<Scalar>());
+}
+
+/** \returns the sum of all coefficients of *this
+  *
+  * \sa trace(), prod(), mean()
+  */
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::sum() const
+{
+  if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
+    return Scalar(0);
+  return this->redux(Eigen::internal::scalar_sum_op<Scalar>());
+}
+
+/** \returns the mean of all coefficients of *this
+*
+* \sa trace(), prod(), sum()
+*/
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::mean() const
+{
+  return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
+}
+
+/** \returns the product of all coefficients of *this
+  *
+  * Example: \include MatrixBase_prod.cpp
+  * Output: \verbinclude MatrixBase_prod.out
+  *
+  * \sa sum(), mean(), trace()
+  */
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::prod() const
+{
+  if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
+    return Scalar(1);
+  return this->redux(Eigen::internal::scalar_product_op<Scalar>());
+}
+
+/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
+  *
+  * \c *this can be any matrix, not necessarily square.
+  *
+  * \sa diagonal(), sum()
+  */
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+MatrixBase<Derived>::trace() const
+{
+  return derived().diagonal().sum();
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_REDUX_H
\ No newline at end of file