Revision:
0:13a5d365ba16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Core/DenseCoeffsBase.h	Thu Oct 13 04:07:23 2016 +0000
@@ -0,0 +1,754 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_DENSECOEFFSBASE_H
+#define EIGEN_DENSECOEFFSBASE_H
+
+namespace Eigen {
+
+namespace internal {
+template<typename T> struct add_const_on_value_type_if_arithmetic
+{
+  typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
+};
+}
+
+/** \brief Base class providing read-only coefficient access to matrices and arrays.
+  * \ingroup Core_Module
+  * \tparam Derived Type of the derived class
+  * \tparam #ReadOnlyAccessors Constant indicating read-only access
+  *
+  * This class defines the \c operator() \c const function and friends, which can be used to read specific
+  * entries of a matrix or array.
+  * 
+  * \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
+  *     \ref TopicClassHierarchy
+  */
+template<typename Derived>
+class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
+{
+  public:
+    typedef typename internal::traits<Derived>::StorageKind StorageKind;
+    typedef typename internal::traits<Derived>::Index Index;
+    typedef typename internal::traits<Derived>::Scalar Scalar;
+    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
+
+    // Explanation for this CoeffReturnType typedef.
+    // - This is the return type of the coeff() method.
+    // - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
+    // to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
+    // - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
+    // while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
+    // not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
+    typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
+                         const Scalar&,
+                         typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
+                     >::type CoeffReturnType;
+
+    typedef typename internal::add_const_on_value_type_if_arithmetic<
+                         typename internal::packet_traits<Scalar>::type
+                     >::type PacketReturnType;
+
+    typedef EigenBase<Derived> Base;
+    using Base::rows;
+    using Base::cols;
+    using Base::size;
+    using Base::derived;
+
+    EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
+    {
+      return int(Derived::RowsAtCompileTime) == 1 ? 0
+          : int(Derived::ColsAtCompileTime) == 1 ? inner
+          : int(Derived::Flags)&RowMajorBit ? outer
+          : inner;
+    }
+
+    EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
+    {
+      return int(Derived::ColsAtCompileTime) == 1 ? 0
+          : int(Derived::RowsAtCompileTime) == 1 ? inner
+          : int(Derived::Flags)&RowMajorBit ? inner
+          : outer;
+    }
+
+    /** Short version: don't use this function, use
+      * \link operator()(Index,Index) const \endlink instead.
+      *
+      * Long version: this function is similar to
+      * \link operator()(Index,Index) const \endlink, but without the assertion.
+      * Use this for limiting the performance cost of debugging code when doing
+      * repeated coefficient access. Only use this when it is guaranteed that the
+      * parameters \a row and \a col are in range.
+      *
+      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
+      * function equivalent to \link operator()(Index,Index) const \endlink.
+      *
+      * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
+      */
+    EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
+    {
+      eigen_internal_assert(row >= 0 && row < rows()
+                        && col >= 0 && col < cols());
+      return derived().coeff(row, col);
+    }
+
+    EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
+    {
+      return coeff(rowIndexByOuterInner(outer, inner),
+                   colIndexByOuterInner(outer, inner));
+    }
+
+    /** \returns the coefficient at given the given row and column.
+      *
+      * \sa operator()(Index,Index), operator[](Index)
+      */
+    EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
+    {
+      eigen_assert(row >= 0 && row < rows()
+          && col >= 0 && col < cols());
+      return derived().coeff(row, col);
+    }
+
+    /** Short version: don't use this function, use
+      * \link operator[](Index) const \endlink instead.
+      *
+      * Long version: this function is similar to
+      * \link operator[](Index) const \endlink, but without the assertion.
+      * Use this for limiting the performance cost of debugging code when doing
+      * repeated coefficient access. Only use this when it is guaranteed that the
+      * parameter \a index is in range.
+      *
+      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
+      * function equivalent to \link operator[](Index) const \endlink.
+      *
+      * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
+      */
+
+    EIGEN_STRONG_INLINE CoeffReturnType
+    coeff(Index index) const
+    {
+      eigen_internal_assert(index >= 0 && index < size());
+      return derived().coeff(index);
+    }
+
+
+    /** \returns the coefficient at given index.
+      *
+      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
+      *
+      * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
+      * z() const, w() const
+      */
+
+    EIGEN_STRONG_INLINE CoeffReturnType
+    operator[](Index index) const
+    {
+      #ifndef EIGEN2_SUPPORT
+      EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
+                          THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
+      #endif
+      eigen_assert(index >= 0 && index < size());
+      return derived().coeff(index);
+    }
+
+    /** \returns the coefficient at given index.
+      *
+      * This is synonymous to operator[](Index) const.
+      *
+      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
+      *
+      * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
+      * z() const, w() const
+      */
+
+    EIGEN_STRONG_INLINE CoeffReturnType
+    operator()(Index index) const
+    {
+      eigen_assert(index >= 0 && index < size());
+      return derived().coeff(index);
+    }
+
+    /** equivalent to operator[](0).  */
+
+    EIGEN_STRONG_INLINE CoeffReturnType
+    x() const { return (*this)[0]; }
+
+    /** equivalent to operator[](1).  */
+
+    EIGEN_STRONG_INLINE CoeffReturnType
+    y() const { return (*this)[1]; }
+
+    /** equivalent to operator[](2).  */
+
+    EIGEN_STRONG_INLINE CoeffReturnType
+    z() const { return (*this)[2]; }
+
+    /** equivalent to operator[](3).  */
+
+    EIGEN_STRONG_INLINE CoeffReturnType
+    w() const { return (*this)[3]; }
+
+    /** \internal
+      * \returns the packet of coefficients starting at the given row and column. It is your responsibility
+      * to ensure that a packet really starts there. This method is only available on expressions having the
+      * PacketAccessBit.
+      *
+      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
+      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
+      * starting at an address which is a multiple of the packet size.
+      */
+
+    template<int LoadMode>
+    EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
+    {
+      eigen_internal_assert(row >= 0 && row < rows()
+                      && col >= 0 && col < cols());
+      return derived().template packet<LoadMode>(row,col);
+    }
+
+
+    /** \internal */
+    template<int LoadMode>
+    EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
+    {
+      return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
+                              colIndexByOuterInner(outer, inner));
+    }
+
+    /** \internal
+      * \returns the packet of coefficients starting at the given index. It is your responsibility
+      * to ensure that a packet really starts there. This method is only available on expressions having the
+      * PacketAccessBit and the LinearAccessBit.
+      *
+      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
+      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
+      * starting at an address which is a multiple of the packet size.
+      */
+
+    template<int LoadMode>
+    EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+    {
+      eigen_internal_assert(index >= 0 && index < size());
+      return derived().template packet<LoadMode>(index);
+    }
+
+  protected:
+    // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
+    // But some methods are only available in the DirectAccess case.
+    // So we add dummy methods here with these names, so that "using... " doesn't fail.
+    // It's not private so that the child class DenseBase can access them, and it's not public
+    // either since it's an implementation detail, so has to be protected.
+    void coeffRef();
+    void coeffRefByOuterInner();
+    void writePacket();
+    void writePacketByOuterInner();
+    void copyCoeff();
+    void copyCoeffByOuterInner();
+    void copyPacket();
+    void copyPacketByOuterInner();
+    void stride();
+    void innerStride();
+    void outerStride();
+    void rowStride();
+    void colStride();
+};
+
+/** \brief Base class providing read/write coefficient access to matrices and arrays.
+  * \ingroup Core_Module
+  * \tparam Derived Type of the derived class
+  * \tparam #WriteAccessors Constant indicating read/write access
+  *
+  * This class defines the non-const \c operator() function and friends, which can be used to write specific
+  * entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
+  * defines the const variant for reading specific entries.
+  * 
+  * \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
+  */
+template<typename Derived>
+class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
+{
+  public:
+
+    typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
+
+    typedef typename internal::traits<Derived>::StorageKind StorageKind;
+    typedef typename internal::traits<Derived>::Index Index;
+    typedef typename internal::traits<Derived>::Scalar Scalar;
+    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+
+    using Base::coeff;
+    using Base::rows;
+    using Base::cols;
+    using Base::size;
+    using Base::derived;
+    using Base::rowIndexByOuterInner;
+    using Base::colIndexByOuterInner;
+    using Base::operator[];
+    using Base::operator();
+    using Base::x;
+    using Base::y;
+    using Base::z;
+    using Base::w;
+
+    /** Short version: don't use this function, use
+      * \link operator()(Index,Index) \endlink instead.
+      *
+      * Long version: this function is similar to
+      * \link operator()(Index,Index) \endlink, but without the assertion.
+      * Use this for limiting the performance cost of debugging code when doing
+      * repeated coefficient access. Only use this when it is guaranteed that the
+      * parameters \a row and \a col are in range.
+      *
+      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
+      * function equivalent to \link operator()(Index,Index) \endlink.
+      *
+      * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
+      */
+    EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
+    {
+      eigen_internal_assert(row >= 0 && row < rows()
+                        && col >= 0 && col < cols());
+      return derived().coeffRef(row, col);
+    }
+
+    EIGEN_STRONG_INLINE Scalar&
+    coeffRefByOuterInner(Index outer, Index inner)
+    {
+      return coeffRef(rowIndexByOuterInner(outer, inner),
+                      colIndexByOuterInner(outer, inner));
+    }
+
+    /** \returns a reference to the coefficient at given the given row and column.
+      *
+      * \sa operator[](Index)
+      */
+
+    EIGEN_STRONG_INLINE Scalar&
+    operator()(Index row, Index col)
+    {
+      eigen_assert(row >= 0 && row < rows()
+          && col >= 0 && col < cols());
+      return derived().coeffRef(row, col);
+    }
+
+
+    /** Short version: don't use this function, use
+      * \link operator[](Index) \endlink instead.
+      *
+      * Long version: this function is similar to
+      * \link operator[](Index) \endlink, but without the assertion.
+      * Use this for limiting the performance cost of debugging code when doing
+      * repeated coefficient access. Only use this when it is guaranteed that the
+      * parameters \a row and \a col are in range.
+      *
+      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
+      * function equivalent to \link operator[](Index) \endlink.
+      *
+      * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
+      */
+
+    EIGEN_STRONG_INLINE Scalar&
+    coeffRef(Index index)
+    {
+      eigen_internal_assert(index >= 0 && index < size());
+      return derived().coeffRef(index);
+    }
+
+    /** \returns a reference to the coefficient at given index.
+      *
+      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
+      *
+      * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
+      */
+
+    EIGEN_STRONG_INLINE Scalar&
+    operator[](Index index)
+    {
+      #ifndef EIGEN2_SUPPORT
+      EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
+                          THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
+      #endif
+      eigen_assert(index >= 0 && index < size());
+      return derived().coeffRef(index);
+    }
+
+    /** \returns a reference to the coefficient at given index.
+      *
+      * This is synonymous to operator[](Index).
+      *
+      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
+      *
+      * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
+      */
+
+    EIGEN_STRONG_INLINE Scalar&
+    operator()(Index index)
+    {
+      eigen_assert(index >= 0 && index < size());
+      return derived().coeffRef(index);
+    }
+
+    /** equivalent to operator[](0).  */
+
+    EIGEN_STRONG_INLINE Scalar&
+    x() { return (*this)[0]; }
+
+    /** equivalent to operator[](1).  */
+
+    EIGEN_STRONG_INLINE Scalar&
+    y() { return (*this)[1]; }
+
+    /** equivalent to operator[](2).  */
+
+    EIGEN_STRONG_INLINE Scalar&
+    z() { return (*this)[2]; }
+
+    /** equivalent to operator[](3).  */
+
+    EIGEN_STRONG_INLINE Scalar&
+    w() { return (*this)[3]; }
+
+    /** \internal
+      * Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility
+      * to ensure that a packet really starts there. This method is only available on expressions having the
+      * PacketAccessBit.
+      *
+      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
+      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
+      * starting at an address which is a multiple of the packet size.
+      */
+
+    template<int StoreMode>
+    EIGEN_STRONG_INLINE void writePacket
+    (Index row, Index col, const typename internal::packet_traits<Scalar>::type& val)
+    {
+      eigen_internal_assert(row >= 0 && row < rows()
+                        && col >= 0 && col < cols());
+      derived().template writePacket<StoreMode>(row,col,val);
+    }
+
+
+    /** \internal */
+    template<int StoreMode>
+    EIGEN_STRONG_INLINE void writePacketByOuterInner
+    (Index outer, Index inner, const typename internal::packet_traits<Scalar>::type& val)
+    {
+      writePacket<StoreMode>(rowIndexByOuterInner(outer, inner),
+                            colIndexByOuterInner(outer, inner),
+                            val);
+    }
+
+    /** \internal
+      * Stores the given packet of coefficients, at the given index in this expression. It is your responsibility
+      * to ensure that a packet really starts there. This method is only available on expressions having the
+      * PacketAccessBit and the LinearAccessBit.
+      *
+      * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
+      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
+      * starting at an address which is a multiple of the packet size.
+      */
+    template<int StoreMode>
+    EIGEN_STRONG_INLINE void writePacket
+    (Index index, const typename internal::packet_traits<Scalar>::type& val)
+    {
+      eigen_internal_assert(index >= 0 && index < size());
+      derived().template writePacket<StoreMode>(index,val);
+    }
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+
+    /** \internal Copies the coefficient at position (row,col) of other into *this.
+      *
+      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
+      * with usual assignments.
+      *
+      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
+      */
+
+    template<typename OtherDerived>
+    EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
+    {
+      eigen_internal_assert(row >= 0 && row < rows()
+                        && col >= 0 && col < cols());
+      derived().coeffRef(row, col) = other.derived().coeff(row, col);
+    }
+
+    /** \internal Copies the coefficient at the given index of other into *this.
+      *
+      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
+      * with usual assignments.
+      *
+      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
+      */
+
+    template<typename OtherDerived>
+    EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
+    {
+      eigen_internal_assert(index >= 0 && index < size());
+      derived().coeffRef(index) = other.derived().coeff(index);
+    }
+
+
+    template<typename OtherDerived>
+    EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
+    {
+      const Index row = rowIndexByOuterInner(outer,inner);
+      const Index col = colIndexByOuterInner(outer,inner);
+      // derived() is important here: copyCoeff() may be reimplemented in Derived!
+      derived().copyCoeff(row, col, other);
+    }
+
+    /** \internal Copies the packet at position (row,col) of other into *this.
+      *
+      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
+      * with usual assignments.
+      *
+      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
+      */
+
+    template<typename OtherDerived, int StoreMode, int LoadMode>
+    EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
+    {
+      eigen_internal_assert(row >= 0 && row < rows()
+                        && col >= 0 && col < cols());
+      derived().template writePacket<StoreMode>(row, col,
+        other.derived().template packet<LoadMode>(row, col));
+    }
+
+    /** \internal Copies the packet at the given index of other into *this.
+      *
+      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
+      * with usual assignments.
+      *
+      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
+      */
+
+    template<typename OtherDerived, int StoreMode, int LoadMode>
+    EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase<OtherDerived>& other)
+    {
+      eigen_internal_assert(index >= 0 && index < size());
+      derived().template writePacket<StoreMode>(index,
+        other.derived().template packet<LoadMode>(index));
+    }
+
+    /** \internal */
+    template<typename OtherDerived, int StoreMode, int LoadMode>
+    EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
+    {
+      const Index row = rowIndexByOuterInner(outer,inner);
+      const Index col = colIndexByOuterInner(outer,inner);
+      // derived() is important here: copyCoeff() may be reimplemented in Derived!
+      derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other);
+    }
+#endif
+
+};
+
+/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
+  * \ingroup Core_Module
+  * \tparam Derived Type of the derived class
+  * \tparam #DirectAccessors Constant indicating direct access
+  *
+  * This class defines functions to work with strides which can be used to access entries directly. This class
+  * inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
+  * \c operator() .
+  *
+  * \sa \ref TopicClassHierarchy
+  */
+template<typename Derived>
+class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
+{
+  public:
+
+    typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
+    typedef typename internal::traits<Derived>::Index Index;
+    typedef typename internal::traits<Derived>::Scalar Scalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+
+    using Base::rows;
+    using Base::cols;
+    using Base::size;
+    using Base::derived;
+
+    /** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
+      *
+      * \sa outerStride(), rowStride(), colStride()
+      */
+    inline Index innerStride() const
+    {
+      return derived().innerStride();
+    }
+
+    /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
+      *          in a column-major matrix).
+      *
+      * \sa innerStride(), rowStride(), colStride()
+      */
+    inline Index outerStride() const
+    {
+      return derived().outerStride();
+    }
+
+    // FIXME shall we remove it ?
+    inline Index stride() const
+    {
+      return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
+    }
+
+    /** \returns the pointer increment between two consecutive rows.
+      *
+      * \sa innerStride(), outerStride(), colStride()
+      */
+    inline Index rowStride() const
+    {
+      return Derived::IsRowMajor ? outerStride() : innerStride();
+    }
+
+    /** \returns the pointer increment between two consecutive columns.
+      *
+      * \sa innerStride(), outerStride(), rowStride()
+      */
+    inline Index colStride() const
+    {
+      return Derived::IsRowMajor ? innerStride() : outerStride();
+    }
+};
+
+/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
+  * \ingroup Core_Module
+  * \tparam Derived Type of the derived class
+  * \tparam #DirectWriteAccessors Constant indicating direct access
+  *
+  * This class defines functions to work with strides which can be used to access entries directly. This class
+  * inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
+  * \c operator().
+  *
+  * \sa \ref TopicClassHierarchy
+  */
+template<typename Derived>
+class DenseCoeffsBase<Derived, DirectWriteAccessors>
+  : public DenseCoeffsBase<Derived, WriteAccessors>
+{
+  public:
+
+    typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
+    typedef typename internal::traits<Derived>::Index Index;
+    typedef typename internal::traits<Derived>::Scalar Scalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+
+    using Base::rows;
+    using Base::cols;
+    using Base::size;
+    using Base::derived;
+
+    /** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
+      *
+      * \sa outerStride(), rowStride(), colStride()
+      */
+    inline Index innerStride() const
+    {
+      return derived().innerStride();
+    }
+
+    /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
+      *          in a column-major matrix).
+      *
+      * \sa innerStride(), rowStride(), colStride()
+      */
+    inline Index outerStride() const
+    {
+      return derived().outerStride();
+    }
+
+    // FIXME shall we remove it ?
+    inline Index stride() const
+    {
+      return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
+    }
+
+    /** \returns the pointer increment between two consecutive rows.
+      *
+      * \sa innerStride(), outerStride(), colStride()
+      */
+    inline Index rowStride() const
+    {
+      return Derived::IsRowMajor ? outerStride() : innerStride();
+    }
+
+    /** \returns the pointer increment between two consecutive columns.
+      *
+      * \sa innerStride(), outerStride(), rowStride()
+      */
+    inline Index colStride() const
+    {
+      return Derived::IsRowMajor ? innerStride() : outerStride();
+    }
+};
+
+namespace internal {
+
+template<typename Derived, bool JustReturnZero>
+struct first_aligned_impl
+{
+  static inline typename Derived::Index run(const Derived&)
+  { return 0; }
+};
+
+template<typename Derived>
+struct first_aligned_impl<Derived, false>
+{
+  static inline typename Derived::Index run(const Derived& m)
+  {
+    return internal::first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size());
+  }
+};
+
+/** \internal \returns the index of the first element of the array that is well aligned for vectorization.
+  *
+  * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
+  * documentation.
+  */
+template<typename Derived>
+static inline typename Derived::Index first_aligned(const Derived& m)
+{
+  return first_aligned_impl
+          <Derived, (Derived::Flags & AlignedBit) || !(Derived::Flags & DirectAccessBit)>
+          ::run(m);
+}
+
+template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
+struct inner_stride_at_compile_time
+{
+  enum { ret = traits<Derived>::InnerStrideAtCompileTime };
+};
+
+template<typename Derived>
+struct inner_stride_at_compile_time<Derived, false>
+{
+  enum { ret = 0 };
+};
+
+template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
+struct outer_stride_at_compile_time
+{
+  enum { ret = traits<Derived>::OuterStrideAtCompileTime };
+};
+
+template<typename Derived>
+struct outer_stride_at_compile_time<Derived, false>
+{
+  enum { ret = 0 };
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_DENSECOEFFSBASE_H
\ No newline at end of file