Eigen libary for mbed
src/Eigenvalues/Tridiagonalization.h@1:3b8049da21b8, 2019-09-24 (annotated)
- Committer:
- jsoh91
- Date:
- Tue Sep 24 00:18:23 2019 +0000
- Revision:
- 1:3b8049da21b8
- Parent:
- 0:13a5d365ba16
ignore and revise some of error parts
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
ykuroda | 0:13a5d365ba16 | 1 | // This file is part of Eigen, a lightweight C++ template library |
ykuroda | 0:13a5d365ba16 | 2 | // for linear algebra. |
ykuroda | 0:13a5d365ba16 | 3 | // |
ykuroda | 0:13a5d365ba16 | 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
ykuroda | 0:13a5d365ba16 | 5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
ykuroda | 0:13a5d365ba16 | 6 | // |
ykuroda | 0:13a5d365ba16 | 7 | // This Source Code Form is subject to the terms of the Mozilla |
ykuroda | 0:13a5d365ba16 | 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
ykuroda | 0:13a5d365ba16 | 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
ykuroda | 0:13a5d365ba16 | 10 | |
ykuroda | 0:13a5d365ba16 | 11 | #ifndef EIGEN_TRIDIAGONALIZATION_H |
ykuroda | 0:13a5d365ba16 | 12 | #define EIGEN_TRIDIAGONALIZATION_H |
ykuroda | 0:13a5d365ba16 | 13 | |
ykuroda | 0:13a5d365ba16 | 14 | namespace Eigen { |
ykuroda | 0:13a5d365ba16 | 15 | |
ykuroda | 0:13a5d365ba16 | 16 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 17 | |
ykuroda | 0:13a5d365ba16 | 18 | template<typename MatrixType> struct TridiagonalizationMatrixTReturnType; |
ykuroda | 0:13a5d365ba16 | 19 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 20 | struct traits<TridiagonalizationMatrixTReturnType<MatrixType> > |
ykuroda | 0:13a5d365ba16 | 21 | { |
ykuroda | 0:13a5d365ba16 | 22 | typedef typename MatrixType::PlainObject ReturnType; |
ykuroda | 0:13a5d365ba16 | 23 | }; |
ykuroda | 0:13a5d365ba16 | 24 | |
ykuroda | 0:13a5d365ba16 | 25 | template<typename MatrixType, typename CoeffVectorType> |
ykuroda | 0:13a5d365ba16 | 26 | void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); |
ykuroda | 0:13a5d365ba16 | 27 | } |
ykuroda | 0:13a5d365ba16 | 28 | |
ykuroda | 0:13a5d365ba16 | 29 | /** \eigenvalues_module \ingroup Eigenvalues_Module |
ykuroda | 0:13a5d365ba16 | 30 | * |
ykuroda | 0:13a5d365ba16 | 31 | * |
ykuroda | 0:13a5d365ba16 | 32 | * \class Tridiagonalization |
ykuroda | 0:13a5d365ba16 | 33 | * |
ykuroda | 0:13a5d365ba16 | 34 | * \brief Tridiagonal decomposition of a selfadjoint matrix |
ykuroda | 0:13a5d365ba16 | 35 | * |
ykuroda | 0:13a5d365ba16 | 36 | * \tparam _MatrixType the type of the matrix of which we are computing the |
ykuroda | 0:13a5d365ba16 | 37 | * tridiagonal decomposition; this is expected to be an instantiation of the |
ykuroda | 0:13a5d365ba16 | 38 | * Matrix class template. |
ykuroda | 0:13a5d365ba16 | 39 | * |
ykuroda | 0:13a5d365ba16 | 40 | * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: |
ykuroda | 0:13a5d365ba16 | 41 | * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. |
ykuroda | 0:13a5d365ba16 | 42 | * |
ykuroda | 0:13a5d365ba16 | 43 | * A tridiagonal matrix is a matrix which has nonzero elements only on the |
ykuroda | 0:13a5d365ba16 | 44 | * main diagonal and the first diagonal below and above it. The Hessenberg |
ykuroda | 0:13a5d365ba16 | 45 | * decomposition of a selfadjoint matrix is in fact a tridiagonal |
ykuroda | 0:13a5d365ba16 | 46 | * decomposition. This class is used in SelfAdjointEigenSolver to compute the |
ykuroda | 0:13a5d365ba16 | 47 | * eigenvalues and eigenvectors of a selfadjoint matrix. |
ykuroda | 0:13a5d365ba16 | 48 | * |
ykuroda | 0:13a5d365ba16 | 49 | * Call the function compute() to compute the tridiagonal decomposition of a |
ykuroda | 0:13a5d365ba16 | 50 | * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) |
ykuroda | 0:13a5d365ba16 | 51 | * constructor which computes the tridiagonal Schur decomposition at |
ykuroda | 0:13a5d365ba16 | 52 | * construction time. Once the decomposition is computed, you can use the |
ykuroda | 0:13a5d365ba16 | 53 | * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the |
ykuroda | 0:13a5d365ba16 | 54 | * decomposition. |
ykuroda | 0:13a5d365ba16 | 55 | * |
ykuroda | 0:13a5d365ba16 | 56 | * The documentation of Tridiagonalization(const MatrixType&) contains an |
ykuroda | 0:13a5d365ba16 | 57 | * example of the typical use of this class. |
ykuroda | 0:13a5d365ba16 | 58 | * |
ykuroda | 0:13a5d365ba16 | 59 | * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver |
ykuroda | 0:13a5d365ba16 | 60 | */ |
ykuroda | 0:13a5d365ba16 | 61 | template<typename _MatrixType> class Tridiagonalization |
ykuroda | 0:13a5d365ba16 | 62 | { |
ykuroda | 0:13a5d365ba16 | 63 | public: |
ykuroda | 0:13a5d365ba16 | 64 | |
ykuroda | 0:13a5d365ba16 | 65 | /** \brief Synonym for the template parameter \p _MatrixType. */ |
ykuroda | 0:13a5d365ba16 | 66 | typedef _MatrixType MatrixType; |
ykuroda | 0:13a5d365ba16 | 67 | |
ykuroda | 0:13a5d365ba16 | 68 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 69 | typedef typename NumTraits<Scalar>::Real RealScalar; |
ykuroda | 0:13a5d365ba16 | 70 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 71 | |
ykuroda | 0:13a5d365ba16 | 72 | enum { |
ykuroda | 0:13a5d365ba16 | 73 | Size = MatrixType::RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 74 | SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), |
ykuroda | 0:13a5d365ba16 | 75 | Options = MatrixType::Options, |
ykuroda | 0:13a5d365ba16 | 76 | MaxSize = MatrixType::MaxRowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 77 | MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) |
ykuroda | 0:13a5d365ba16 | 78 | }; |
ykuroda | 0:13a5d365ba16 | 79 | |
ykuroda | 0:13a5d365ba16 | 80 | typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; |
ykuroda | 0:13a5d365ba16 | 81 | typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType; |
ykuroda | 0:13a5d365ba16 | 82 | typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType; |
ykuroda | 0:13a5d365ba16 | 83 | typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView; |
ykuroda | 0:13a5d365ba16 | 84 | typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType; |
ykuroda | 0:13a5d365ba16 | 85 | |
ykuroda | 0:13a5d365ba16 | 86 | typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, |
ykuroda | 0:13a5d365ba16 | 87 | typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type, |
ykuroda | 0:13a5d365ba16 | 88 | const Diagonal<const MatrixType> |
ykuroda | 0:13a5d365ba16 | 89 | >::type DiagonalReturnType; |
ykuroda | 0:13a5d365ba16 | 90 | |
ykuroda | 0:13a5d365ba16 | 91 | typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, |
ykuroda | 0:13a5d365ba16 | 92 | typename internal::add_const_on_value_type<typename Diagonal< |
ykuroda | 0:13a5d365ba16 | 93 | Block<const MatrixType,SizeMinusOne,SizeMinusOne> >::RealReturnType>::type, |
ykuroda | 0:13a5d365ba16 | 94 | const Diagonal< |
ykuroda | 0:13a5d365ba16 | 95 | Block<const MatrixType,SizeMinusOne,SizeMinusOne> > |
ykuroda | 0:13a5d365ba16 | 96 | >::type SubDiagonalReturnType; |
ykuroda | 0:13a5d365ba16 | 97 | |
ykuroda | 0:13a5d365ba16 | 98 | /** \brief Return type of matrixQ() */ |
ykuroda | 0:13a5d365ba16 | 99 | typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType; |
ykuroda | 0:13a5d365ba16 | 100 | |
ykuroda | 0:13a5d365ba16 | 101 | /** \brief Default constructor. |
ykuroda | 0:13a5d365ba16 | 102 | * |
ykuroda | 0:13a5d365ba16 | 103 | * \param [in] size Positive integer, size of the matrix whose tridiagonal |
ykuroda | 0:13a5d365ba16 | 104 | * decomposition will be computed. |
ykuroda | 0:13a5d365ba16 | 105 | * |
ykuroda | 0:13a5d365ba16 | 106 | * The default constructor is useful in cases in which the user intends to |
ykuroda | 0:13a5d365ba16 | 107 | * perform decompositions via compute(). The \p size parameter is only |
ykuroda | 0:13a5d365ba16 | 108 | * used as a hint. It is not an error to give a wrong \p size, but it may |
ykuroda | 0:13a5d365ba16 | 109 | * impair performance. |
ykuroda | 0:13a5d365ba16 | 110 | * |
ykuroda | 0:13a5d365ba16 | 111 | * \sa compute() for an example. |
ykuroda | 0:13a5d365ba16 | 112 | */ |
ykuroda | 0:13a5d365ba16 | 113 | Tridiagonalization(Index size = Size==Dynamic ? 2 : Size) |
ykuroda | 0:13a5d365ba16 | 114 | : m_matrix(size,size), |
ykuroda | 0:13a5d365ba16 | 115 | m_hCoeffs(size > 1 ? size-1 : 1), |
ykuroda | 0:13a5d365ba16 | 116 | m_isInitialized(false) |
ykuroda | 0:13a5d365ba16 | 117 | {} |
ykuroda | 0:13a5d365ba16 | 118 | |
ykuroda | 0:13a5d365ba16 | 119 | /** \brief Constructor; computes tridiagonal decomposition of given matrix. |
ykuroda | 0:13a5d365ba16 | 120 | * |
ykuroda | 0:13a5d365ba16 | 121 | * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition |
ykuroda | 0:13a5d365ba16 | 122 | * is to be computed. |
ykuroda | 0:13a5d365ba16 | 123 | * |
ykuroda | 0:13a5d365ba16 | 124 | * This constructor calls compute() to compute the tridiagonal decomposition. |
ykuroda | 0:13a5d365ba16 | 125 | * |
ykuroda | 0:13a5d365ba16 | 126 | * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp |
ykuroda | 0:13a5d365ba16 | 127 | * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out |
ykuroda | 0:13a5d365ba16 | 128 | */ |
ykuroda | 0:13a5d365ba16 | 129 | Tridiagonalization(const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 130 | : m_matrix(matrix), |
ykuroda | 0:13a5d365ba16 | 131 | m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1), |
ykuroda | 0:13a5d365ba16 | 132 | m_isInitialized(false) |
ykuroda | 0:13a5d365ba16 | 133 | { |
ykuroda | 0:13a5d365ba16 | 134 | internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); |
ykuroda | 0:13a5d365ba16 | 135 | m_isInitialized = true; |
ykuroda | 0:13a5d365ba16 | 136 | } |
ykuroda | 0:13a5d365ba16 | 137 | |
ykuroda | 0:13a5d365ba16 | 138 | /** \brief Computes tridiagonal decomposition of given matrix. |
ykuroda | 0:13a5d365ba16 | 139 | * |
ykuroda | 0:13a5d365ba16 | 140 | * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition |
ykuroda | 0:13a5d365ba16 | 141 | * is to be computed. |
ykuroda | 0:13a5d365ba16 | 142 | * \returns Reference to \c *this |
ykuroda | 0:13a5d365ba16 | 143 | * |
ykuroda | 0:13a5d365ba16 | 144 | * The tridiagonal decomposition is computed by bringing the columns of |
ykuroda | 0:13a5d365ba16 | 145 | * the matrix successively in the required form using Householder |
ykuroda | 0:13a5d365ba16 | 146 | * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes |
ykuroda | 0:13a5d365ba16 | 147 | * the size of the given matrix. |
ykuroda | 0:13a5d365ba16 | 148 | * |
ykuroda | 0:13a5d365ba16 | 149 | * This method reuses of the allocated data in the Tridiagonalization |
ykuroda | 0:13a5d365ba16 | 150 | * object, if the size of the matrix does not change. |
ykuroda | 0:13a5d365ba16 | 151 | * |
ykuroda | 0:13a5d365ba16 | 152 | * Example: \include Tridiagonalization_compute.cpp |
ykuroda | 0:13a5d365ba16 | 153 | * Output: \verbinclude Tridiagonalization_compute.out |
ykuroda | 0:13a5d365ba16 | 154 | */ |
ykuroda | 0:13a5d365ba16 | 155 | Tridiagonalization& compute(const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 156 | { |
ykuroda | 0:13a5d365ba16 | 157 | m_matrix = matrix; |
ykuroda | 0:13a5d365ba16 | 158 | m_hCoeffs.resize(matrix.rows()-1, 1); |
ykuroda | 0:13a5d365ba16 | 159 | internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); |
ykuroda | 0:13a5d365ba16 | 160 | m_isInitialized = true; |
ykuroda | 0:13a5d365ba16 | 161 | return *this; |
ykuroda | 0:13a5d365ba16 | 162 | } |
ykuroda | 0:13a5d365ba16 | 163 | |
ykuroda | 0:13a5d365ba16 | 164 | /** \brief Returns the Householder coefficients. |
ykuroda | 0:13a5d365ba16 | 165 | * |
ykuroda | 0:13a5d365ba16 | 166 | * \returns a const reference to the vector of Householder coefficients |
ykuroda | 0:13a5d365ba16 | 167 | * |
ykuroda | 0:13a5d365ba16 | 168 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
ykuroda | 0:13a5d365ba16 | 169 | * the member function compute(const MatrixType&) has been called before |
ykuroda | 0:13a5d365ba16 | 170 | * to compute the tridiagonal decomposition of a matrix. |
ykuroda | 0:13a5d365ba16 | 171 | * |
ykuroda | 0:13a5d365ba16 | 172 | * The Householder coefficients allow the reconstruction of the matrix |
ykuroda | 0:13a5d365ba16 | 173 | * \f$ Q \f$ in the tridiagonal decomposition from the packed data. |
ykuroda | 0:13a5d365ba16 | 174 | * |
ykuroda | 0:13a5d365ba16 | 175 | * Example: \include Tridiagonalization_householderCoefficients.cpp |
ykuroda | 0:13a5d365ba16 | 176 | * Output: \verbinclude Tridiagonalization_householderCoefficients.out |
ykuroda | 0:13a5d365ba16 | 177 | * |
ykuroda | 0:13a5d365ba16 | 178 | * \sa packedMatrix(), \ref Householder_Module "Householder module" |
ykuroda | 0:13a5d365ba16 | 179 | */ |
ykuroda | 0:13a5d365ba16 | 180 | inline CoeffVectorType householderCoefficients() const |
ykuroda | 0:13a5d365ba16 | 181 | { |
ykuroda | 0:13a5d365ba16 | 182 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
ykuroda | 0:13a5d365ba16 | 183 | return m_hCoeffs; |
ykuroda | 0:13a5d365ba16 | 184 | } |
ykuroda | 0:13a5d365ba16 | 185 | |
ykuroda | 0:13a5d365ba16 | 186 | /** \brief Returns the internal representation of the decomposition |
ykuroda | 0:13a5d365ba16 | 187 | * |
ykuroda | 0:13a5d365ba16 | 188 | * \returns a const reference to a matrix with the internal representation |
ykuroda | 0:13a5d365ba16 | 189 | * of the decomposition. |
ykuroda | 0:13a5d365ba16 | 190 | * |
ykuroda | 0:13a5d365ba16 | 191 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
ykuroda | 0:13a5d365ba16 | 192 | * the member function compute(const MatrixType&) has been called before |
ykuroda | 0:13a5d365ba16 | 193 | * to compute the tridiagonal decomposition of a matrix. |
ykuroda | 0:13a5d365ba16 | 194 | * |
ykuroda | 0:13a5d365ba16 | 195 | * The returned matrix contains the following information: |
ykuroda | 0:13a5d365ba16 | 196 | * - the strict upper triangular part is equal to the input matrix A. |
ykuroda | 0:13a5d365ba16 | 197 | * - the diagonal and lower sub-diagonal represent the real tridiagonal |
ykuroda | 0:13a5d365ba16 | 198 | * symmetric matrix T. |
ykuroda | 0:13a5d365ba16 | 199 | * - the rest of the lower part contains the Householder vectors that, |
ykuroda | 0:13a5d365ba16 | 200 | * combined with Householder coefficients returned by |
ykuroda | 0:13a5d365ba16 | 201 | * householderCoefficients(), allows to reconstruct the matrix Q as |
ykuroda | 0:13a5d365ba16 | 202 | * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. |
ykuroda | 0:13a5d365ba16 | 203 | * Here, the matrices \f$ H_i \f$ are the Householder transformations |
ykuroda | 0:13a5d365ba16 | 204 | * \f$ H_i = (I - h_i v_i v_i^T) \f$ |
ykuroda | 0:13a5d365ba16 | 205 | * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and |
ykuroda | 0:13a5d365ba16 | 206 | * \f$ v_i \f$ is the Householder vector defined by |
ykuroda | 0:13a5d365ba16 | 207 | * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ |
ykuroda | 0:13a5d365ba16 | 208 | * with M the matrix returned by this function. |
ykuroda | 0:13a5d365ba16 | 209 | * |
ykuroda | 0:13a5d365ba16 | 210 | * See LAPACK for further details on this packed storage. |
ykuroda | 0:13a5d365ba16 | 211 | * |
ykuroda | 0:13a5d365ba16 | 212 | * Example: \include Tridiagonalization_packedMatrix.cpp |
ykuroda | 0:13a5d365ba16 | 213 | * Output: \verbinclude Tridiagonalization_packedMatrix.out |
ykuroda | 0:13a5d365ba16 | 214 | * |
ykuroda | 0:13a5d365ba16 | 215 | * \sa householderCoefficients() |
ykuroda | 0:13a5d365ba16 | 216 | */ |
ykuroda | 0:13a5d365ba16 | 217 | inline const MatrixType& packedMatrix() const |
ykuroda | 0:13a5d365ba16 | 218 | { |
ykuroda | 0:13a5d365ba16 | 219 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
ykuroda | 0:13a5d365ba16 | 220 | return m_matrix; |
ykuroda | 0:13a5d365ba16 | 221 | } |
ykuroda | 0:13a5d365ba16 | 222 | |
ykuroda | 0:13a5d365ba16 | 223 | /** \brief Returns the unitary matrix Q in the decomposition |
ykuroda | 0:13a5d365ba16 | 224 | * |
ykuroda | 0:13a5d365ba16 | 225 | * \returns object representing the matrix Q |
ykuroda | 0:13a5d365ba16 | 226 | * |
ykuroda | 0:13a5d365ba16 | 227 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
ykuroda | 0:13a5d365ba16 | 228 | * the member function compute(const MatrixType&) has been called before |
ykuroda | 0:13a5d365ba16 | 229 | * to compute the tridiagonal decomposition of a matrix. |
ykuroda | 0:13a5d365ba16 | 230 | * |
ykuroda | 0:13a5d365ba16 | 231 | * This function returns a light-weight object of template class |
ykuroda | 0:13a5d365ba16 | 232 | * HouseholderSequence. You can either apply it directly to a matrix or |
ykuroda | 0:13a5d365ba16 | 233 | * you can convert it to a matrix of type #MatrixType. |
ykuroda | 0:13a5d365ba16 | 234 | * |
ykuroda | 0:13a5d365ba16 | 235 | * \sa Tridiagonalization(const MatrixType&) for an example, |
ykuroda | 0:13a5d365ba16 | 236 | * matrixT(), class HouseholderSequence |
ykuroda | 0:13a5d365ba16 | 237 | */ |
ykuroda | 0:13a5d365ba16 | 238 | HouseholderSequenceType matrixQ() const |
ykuroda | 0:13a5d365ba16 | 239 | { |
ykuroda | 0:13a5d365ba16 | 240 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
ykuroda | 0:13a5d365ba16 | 241 | return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) |
ykuroda | 0:13a5d365ba16 | 242 | .setLength(m_matrix.rows() - 1) |
ykuroda | 0:13a5d365ba16 | 243 | .setShift(1); |
ykuroda | 0:13a5d365ba16 | 244 | } |
ykuroda | 0:13a5d365ba16 | 245 | |
ykuroda | 0:13a5d365ba16 | 246 | /** \brief Returns an expression of the tridiagonal matrix T in the decomposition |
ykuroda | 0:13a5d365ba16 | 247 | * |
ykuroda | 0:13a5d365ba16 | 248 | * \returns expression object representing the matrix T |
ykuroda | 0:13a5d365ba16 | 249 | * |
ykuroda | 0:13a5d365ba16 | 250 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
ykuroda | 0:13a5d365ba16 | 251 | * the member function compute(const MatrixType&) has been called before |
ykuroda | 0:13a5d365ba16 | 252 | * to compute the tridiagonal decomposition of a matrix. |
ykuroda | 0:13a5d365ba16 | 253 | * |
ykuroda | 0:13a5d365ba16 | 254 | * Currently, this function can be used to extract the matrix T from internal |
ykuroda | 0:13a5d365ba16 | 255 | * data and copy it to a dense matrix object. In most cases, it may be |
ykuroda | 0:13a5d365ba16 | 256 | * sufficient to directly use the packed matrix or the vector expressions |
ykuroda | 0:13a5d365ba16 | 257 | * returned by diagonal() and subDiagonal() instead of creating a new |
ykuroda | 0:13a5d365ba16 | 258 | * dense copy matrix with this function. |
ykuroda | 0:13a5d365ba16 | 259 | * |
ykuroda | 0:13a5d365ba16 | 260 | * \sa Tridiagonalization(const MatrixType&) for an example, |
ykuroda | 0:13a5d365ba16 | 261 | * matrixQ(), packedMatrix(), diagonal(), subDiagonal() |
ykuroda | 0:13a5d365ba16 | 262 | */ |
ykuroda | 0:13a5d365ba16 | 263 | MatrixTReturnType matrixT() const |
ykuroda | 0:13a5d365ba16 | 264 | { |
ykuroda | 0:13a5d365ba16 | 265 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
ykuroda | 0:13a5d365ba16 | 266 | return MatrixTReturnType(m_matrix.real()); |
ykuroda | 0:13a5d365ba16 | 267 | } |
ykuroda | 0:13a5d365ba16 | 268 | |
ykuroda | 0:13a5d365ba16 | 269 | /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. |
ykuroda | 0:13a5d365ba16 | 270 | * |
ykuroda | 0:13a5d365ba16 | 271 | * \returns expression representing the diagonal of T |
ykuroda | 0:13a5d365ba16 | 272 | * |
ykuroda | 0:13a5d365ba16 | 273 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
ykuroda | 0:13a5d365ba16 | 274 | * the member function compute(const MatrixType&) has been called before |
ykuroda | 0:13a5d365ba16 | 275 | * to compute the tridiagonal decomposition of a matrix. |
ykuroda | 0:13a5d365ba16 | 276 | * |
ykuroda | 0:13a5d365ba16 | 277 | * Example: \include Tridiagonalization_diagonal.cpp |
ykuroda | 0:13a5d365ba16 | 278 | * Output: \verbinclude Tridiagonalization_diagonal.out |
ykuroda | 0:13a5d365ba16 | 279 | * |
ykuroda | 0:13a5d365ba16 | 280 | * \sa matrixT(), subDiagonal() |
ykuroda | 0:13a5d365ba16 | 281 | */ |
ykuroda | 0:13a5d365ba16 | 282 | DiagonalReturnType diagonal() const; |
ykuroda | 0:13a5d365ba16 | 283 | |
ykuroda | 0:13a5d365ba16 | 284 | /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. |
ykuroda | 0:13a5d365ba16 | 285 | * |
ykuroda | 0:13a5d365ba16 | 286 | * \returns expression representing the subdiagonal of T |
ykuroda | 0:13a5d365ba16 | 287 | * |
ykuroda | 0:13a5d365ba16 | 288 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
ykuroda | 0:13a5d365ba16 | 289 | * the member function compute(const MatrixType&) has been called before |
ykuroda | 0:13a5d365ba16 | 290 | * to compute the tridiagonal decomposition of a matrix. |
ykuroda | 0:13a5d365ba16 | 291 | * |
ykuroda | 0:13a5d365ba16 | 292 | * \sa diagonal() for an example, matrixT() |
ykuroda | 0:13a5d365ba16 | 293 | */ |
ykuroda | 0:13a5d365ba16 | 294 | SubDiagonalReturnType subDiagonal() const; |
ykuroda | 0:13a5d365ba16 | 295 | |
ykuroda | 0:13a5d365ba16 | 296 | protected: |
ykuroda | 0:13a5d365ba16 | 297 | |
ykuroda | 0:13a5d365ba16 | 298 | MatrixType m_matrix; |
ykuroda | 0:13a5d365ba16 | 299 | CoeffVectorType m_hCoeffs; |
ykuroda | 0:13a5d365ba16 | 300 | bool m_isInitialized; |
ykuroda | 0:13a5d365ba16 | 301 | }; |
ykuroda | 0:13a5d365ba16 | 302 | |
ykuroda | 0:13a5d365ba16 | 303 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 304 | typename Tridiagonalization<MatrixType>::DiagonalReturnType |
ykuroda | 0:13a5d365ba16 | 305 | Tridiagonalization<MatrixType>::diagonal() const |
ykuroda | 0:13a5d365ba16 | 306 | { |
ykuroda | 0:13a5d365ba16 | 307 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
ykuroda | 0:13a5d365ba16 | 308 | return m_matrix.diagonal(); |
ykuroda | 0:13a5d365ba16 | 309 | } |
ykuroda | 0:13a5d365ba16 | 310 | |
ykuroda | 0:13a5d365ba16 | 311 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 312 | typename Tridiagonalization<MatrixType>::SubDiagonalReturnType |
ykuroda | 0:13a5d365ba16 | 313 | Tridiagonalization<MatrixType>::subDiagonal() const |
ykuroda | 0:13a5d365ba16 | 314 | { |
ykuroda | 0:13a5d365ba16 | 315 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
ykuroda | 0:13a5d365ba16 | 316 | Index n = m_matrix.rows(); |
ykuroda | 0:13a5d365ba16 | 317 | return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal(); |
ykuroda | 0:13a5d365ba16 | 318 | } |
ykuroda | 0:13a5d365ba16 | 319 | |
ykuroda | 0:13a5d365ba16 | 320 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 321 | |
ykuroda | 0:13a5d365ba16 | 322 | /** \internal |
ykuroda | 0:13a5d365ba16 | 323 | * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. |
ykuroda | 0:13a5d365ba16 | 324 | * |
ykuroda | 0:13a5d365ba16 | 325 | * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. |
ykuroda | 0:13a5d365ba16 | 326 | * On output, the strict upper part is left unchanged, and the lower triangular part |
ykuroda | 0:13a5d365ba16 | 327 | * represents the T and Q matrices in packed format has detailed below. |
ykuroda | 0:13a5d365ba16 | 328 | * \param[out] hCoeffs returned Householder coefficients (see below) |
ykuroda | 0:13a5d365ba16 | 329 | * |
ykuroda | 0:13a5d365ba16 | 330 | * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal |
ykuroda | 0:13a5d365ba16 | 331 | * and lower sub-diagonal of the matrix \a matA. |
ykuroda | 0:13a5d365ba16 | 332 | * The unitary matrix Q is represented in a compact way as a product of |
ykuroda | 0:13a5d365ba16 | 333 | * Householder reflectors \f$ H_i \f$ such that: |
ykuroda | 0:13a5d365ba16 | 334 | * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. |
ykuroda | 0:13a5d365ba16 | 335 | * The Householder reflectors are defined as |
ykuroda | 0:13a5d365ba16 | 336 | * \f$ H_i = (I - h_i v_i v_i^T) \f$ |
ykuroda | 0:13a5d365ba16 | 337 | * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and |
ykuroda | 0:13a5d365ba16 | 338 | * \f$ v_i \f$ is the Householder vector defined by |
ykuroda | 0:13a5d365ba16 | 339 | * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. |
ykuroda | 0:13a5d365ba16 | 340 | * |
ykuroda | 0:13a5d365ba16 | 341 | * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. |
ykuroda | 0:13a5d365ba16 | 342 | * |
ykuroda | 0:13a5d365ba16 | 343 | * \sa Tridiagonalization::packedMatrix() |
ykuroda | 0:13a5d365ba16 | 344 | */ |
ykuroda | 0:13a5d365ba16 | 345 | template<typename MatrixType, typename CoeffVectorType> |
ykuroda | 0:13a5d365ba16 | 346 | void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) |
ykuroda | 0:13a5d365ba16 | 347 | { |
ykuroda | 0:13a5d365ba16 | 348 | using numext::conj; |
ykuroda | 0:13a5d365ba16 | 349 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 350 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 351 | typedef typename MatrixType::RealScalar RealScalar; |
ykuroda | 0:13a5d365ba16 | 352 | Index n = matA.rows(); |
ykuroda | 0:13a5d365ba16 | 353 | eigen_assert(n==matA.cols()); |
ykuroda | 0:13a5d365ba16 | 354 | eigen_assert(n==hCoeffs.size()+1 || n==1); |
ykuroda | 0:13a5d365ba16 | 355 | |
ykuroda | 0:13a5d365ba16 | 356 | for (Index i = 0; i<n-1; ++i) |
ykuroda | 0:13a5d365ba16 | 357 | { |
ykuroda | 0:13a5d365ba16 | 358 | Index remainingSize = n-i-1; |
ykuroda | 0:13a5d365ba16 | 359 | RealScalar beta; |
ykuroda | 0:13a5d365ba16 | 360 | Scalar h; |
ykuroda | 0:13a5d365ba16 | 361 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); |
ykuroda | 0:13a5d365ba16 | 362 | |
ykuroda | 0:13a5d365ba16 | 363 | // Apply similarity transformation to remaining columns, |
ykuroda | 0:13a5d365ba16 | 364 | // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1) |
ykuroda | 0:13a5d365ba16 | 365 | matA.col(i).coeffRef(i+1) = 1; |
ykuroda | 0:13a5d365ba16 | 366 | |
ykuroda | 0:13a5d365ba16 | 367 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>() |
ykuroda | 0:13a5d365ba16 | 368 | * (conj(h) * matA.col(i).tail(remainingSize))); |
ykuroda | 0:13a5d365ba16 | 369 | |
ykuroda | 0:13a5d365ba16 | 370 | hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); |
ykuroda | 0:13a5d365ba16 | 371 | |
ykuroda | 0:13a5d365ba16 | 372 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>() |
ykuroda | 0:13a5d365ba16 | 373 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1); |
ykuroda | 0:13a5d365ba16 | 374 | |
ykuroda | 0:13a5d365ba16 | 375 | matA.col(i).coeffRef(i+1) = beta; |
ykuroda | 0:13a5d365ba16 | 376 | hCoeffs.coeffRef(i) = h; |
ykuroda | 0:13a5d365ba16 | 377 | } |
ykuroda | 0:13a5d365ba16 | 378 | } |
ykuroda | 0:13a5d365ba16 | 379 | |
ykuroda | 0:13a5d365ba16 | 380 | // forward declaration, implementation at the end of this file |
ykuroda | 0:13a5d365ba16 | 381 | template<typename MatrixType, |
ykuroda | 0:13a5d365ba16 | 382 | int Size=MatrixType::ColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 383 | bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex> |
ykuroda | 0:13a5d365ba16 | 384 | struct tridiagonalization_inplace_selector; |
ykuroda | 0:13a5d365ba16 | 385 | |
ykuroda | 0:13a5d365ba16 | 386 | /** \brief Performs a full tridiagonalization in place |
ykuroda | 0:13a5d365ba16 | 387 | * |
ykuroda | 0:13a5d365ba16 | 388 | * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal |
ykuroda | 0:13a5d365ba16 | 389 | * decomposition is to be computed. Only the lower triangular part referenced. |
ykuroda | 0:13a5d365ba16 | 390 | * The rest is left unchanged. On output, the orthogonal matrix Q |
ykuroda | 0:13a5d365ba16 | 391 | * in the decomposition if \p extractQ is true. |
ykuroda | 0:13a5d365ba16 | 392 | * \param[out] diag The diagonal of the tridiagonal matrix T in the |
ykuroda | 0:13a5d365ba16 | 393 | * decomposition. |
ykuroda | 0:13a5d365ba16 | 394 | * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in |
ykuroda | 0:13a5d365ba16 | 395 | * the decomposition. |
ykuroda | 0:13a5d365ba16 | 396 | * \param[in] extractQ If true, the orthogonal matrix Q in the |
ykuroda | 0:13a5d365ba16 | 397 | * decomposition is computed and stored in \p mat. |
ykuroda | 0:13a5d365ba16 | 398 | * |
ykuroda | 0:13a5d365ba16 | 399 | * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place |
ykuroda | 0:13a5d365ba16 | 400 | * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real |
ykuroda | 0:13a5d365ba16 | 401 | * symmetric tridiagonal matrix. |
ykuroda | 0:13a5d365ba16 | 402 | * |
ykuroda | 0:13a5d365ba16 | 403 | * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If |
ykuroda | 0:13a5d365ba16 | 404 | * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower |
ykuroda | 0:13a5d365ba16 | 405 | * part of the matrix \p mat is destroyed. |
ykuroda | 0:13a5d365ba16 | 406 | * |
ykuroda | 0:13a5d365ba16 | 407 | * The vectors \p diag and \p subdiag are not resized. The function |
ykuroda | 0:13a5d365ba16 | 408 | * assumes that they are already of the correct size. The length of the |
ykuroda | 0:13a5d365ba16 | 409 | * vector \p diag should equal the number of rows in \p mat, and the |
ykuroda | 0:13a5d365ba16 | 410 | * length of the vector \p subdiag should be one left. |
ykuroda | 0:13a5d365ba16 | 411 | * |
ykuroda | 0:13a5d365ba16 | 412 | * This implementation contains an optimized path for 3-by-3 matrices |
ykuroda | 0:13a5d365ba16 | 413 | * which is especially useful for plane fitting. |
ykuroda | 0:13a5d365ba16 | 414 | * |
ykuroda | 0:13a5d365ba16 | 415 | * \note Currently, it requires two temporary vectors to hold the intermediate |
ykuroda | 0:13a5d365ba16 | 416 | * Householder coefficients, and to reconstruct the matrix Q from the Householder |
ykuroda | 0:13a5d365ba16 | 417 | * reflectors. |
ykuroda | 0:13a5d365ba16 | 418 | * |
ykuroda | 0:13a5d365ba16 | 419 | * Example (this uses the same matrix as the example in |
ykuroda | 0:13a5d365ba16 | 420 | * Tridiagonalization::Tridiagonalization(const MatrixType&)): |
ykuroda | 0:13a5d365ba16 | 421 | * \include Tridiagonalization_decomposeInPlace.cpp |
ykuroda | 0:13a5d365ba16 | 422 | * Output: \verbinclude Tridiagonalization_decomposeInPlace.out |
ykuroda | 0:13a5d365ba16 | 423 | * |
ykuroda | 0:13a5d365ba16 | 424 | * \sa class Tridiagonalization |
ykuroda | 0:13a5d365ba16 | 425 | */ |
ykuroda | 0:13a5d365ba16 | 426 | template<typename MatrixType, typename DiagonalType, typename SubDiagonalType> |
ykuroda | 0:13a5d365ba16 | 427 | void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
ykuroda | 0:13a5d365ba16 | 428 | { |
ykuroda | 0:13a5d365ba16 | 429 | eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1); |
ykuroda | 0:13a5d365ba16 | 430 | tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ); |
ykuroda | 0:13a5d365ba16 | 431 | } |
ykuroda | 0:13a5d365ba16 | 432 | |
ykuroda | 0:13a5d365ba16 | 433 | /** \internal |
ykuroda | 0:13a5d365ba16 | 434 | * General full tridiagonalization |
ykuroda | 0:13a5d365ba16 | 435 | */ |
ykuroda | 0:13a5d365ba16 | 436 | template<typename MatrixType, int Size, bool IsComplex> |
ykuroda | 0:13a5d365ba16 | 437 | struct tridiagonalization_inplace_selector |
ykuroda | 0:13a5d365ba16 | 438 | { |
ykuroda | 0:13a5d365ba16 | 439 | typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType; |
ykuroda | 0:13a5d365ba16 | 440 | typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType; |
ykuroda | 0:13a5d365ba16 | 441 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 442 | template<typename DiagonalType, typename SubDiagonalType> |
ykuroda | 0:13a5d365ba16 | 443 | static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
ykuroda | 0:13a5d365ba16 | 444 | { |
ykuroda | 0:13a5d365ba16 | 445 | CoeffVectorType hCoeffs(mat.cols()-1); |
ykuroda | 0:13a5d365ba16 | 446 | tridiagonalization_inplace(mat,hCoeffs); |
ykuroda | 0:13a5d365ba16 | 447 | diag = mat.diagonal().real(); |
ykuroda | 0:13a5d365ba16 | 448 | subdiag = mat.template diagonal<-1>().real(); |
ykuroda | 0:13a5d365ba16 | 449 | if(extractQ) |
ykuroda | 0:13a5d365ba16 | 450 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) |
ykuroda | 0:13a5d365ba16 | 451 | .setLength(mat.rows() - 1) |
ykuroda | 0:13a5d365ba16 | 452 | .setShift(1); |
ykuroda | 0:13a5d365ba16 | 453 | } |
ykuroda | 0:13a5d365ba16 | 454 | }; |
ykuroda | 0:13a5d365ba16 | 455 | |
ykuroda | 0:13a5d365ba16 | 456 | /** \internal |
ykuroda | 0:13a5d365ba16 | 457 | * Specialization for 3x3 real matrices. |
ykuroda | 0:13a5d365ba16 | 458 | * Especially useful for plane fitting. |
ykuroda | 0:13a5d365ba16 | 459 | */ |
ykuroda | 0:13a5d365ba16 | 460 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 461 | struct tridiagonalization_inplace_selector<MatrixType,3,false> |
ykuroda | 0:13a5d365ba16 | 462 | { |
ykuroda | 0:13a5d365ba16 | 463 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 464 | typedef typename MatrixType::RealScalar RealScalar; |
ykuroda | 0:13a5d365ba16 | 465 | |
ykuroda | 0:13a5d365ba16 | 466 | template<typename DiagonalType, typename SubDiagonalType> |
ykuroda | 0:13a5d365ba16 | 467 | static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
ykuroda | 0:13a5d365ba16 | 468 | { |
ykuroda | 0:13a5d365ba16 | 469 | using std::sqrt; |
ykuroda | 0:13a5d365ba16 | 470 | diag[0] = mat(0,0); |
ykuroda | 0:13a5d365ba16 | 471 | RealScalar v1norm2 = numext::abs2(mat(2,0)); |
ykuroda | 0:13a5d365ba16 | 472 | if(v1norm2 == RealScalar(0)) |
ykuroda | 0:13a5d365ba16 | 473 | { |
ykuroda | 0:13a5d365ba16 | 474 | diag[1] = mat(1,1); |
ykuroda | 0:13a5d365ba16 | 475 | diag[2] = mat(2,2); |
ykuroda | 0:13a5d365ba16 | 476 | subdiag[0] = mat(1,0); |
ykuroda | 0:13a5d365ba16 | 477 | subdiag[1] = mat(2,1); |
ykuroda | 0:13a5d365ba16 | 478 | if (extractQ) |
ykuroda | 0:13a5d365ba16 | 479 | mat.setIdentity(); |
ykuroda | 0:13a5d365ba16 | 480 | } |
ykuroda | 0:13a5d365ba16 | 481 | else |
ykuroda | 0:13a5d365ba16 | 482 | { |
ykuroda | 0:13a5d365ba16 | 483 | RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2); |
ykuroda | 0:13a5d365ba16 | 484 | RealScalar invBeta = RealScalar(1)/beta; |
ykuroda | 0:13a5d365ba16 | 485 | Scalar m01 = mat(1,0) * invBeta; |
ykuroda | 0:13a5d365ba16 | 486 | Scalar m02 = mat(2,0) * invBeta; |
ykuroda | 0:13a5d365ba16 | 487 | Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1)); |
ykuroda | 0:13a5d365ba16 | 488 | diag[1] = mat(1,1) + m02*q; |
ykuroda | 0:13a5d365ba16 | 489 | diag[2] = mat(2,2) - m02*q; |
ykuroda | 0:13a5d365ba16 | 490 | subdiag[0] = beta; |
ykuroda | 0:13a5d365ba16 | 491 | subdiag[1] = mat(2,1) - m01 * q; |
ykuroda | 0:13a5d365ba16 | 492 | if (extractQ) |
ykuroda | 0:13a5d365ba16 | 493 | { |
ykuroda | 0:13a5d365ba16 | 494 | mat << 1, 0, 0, |
ykuroda | 0:13a5d365ba16 | 495 | 0, m01, m02, |
ykuroda | 0:13a5d365ba16 | 496 | 0, m02, -m01; |
ykuroda | 0:13a5d365ba16 | 497 | } |
ykuroda | 0:13a5d365ba16 | 498 | } |
ykuroda | 0:13a5d365ba16 | 499 | } |
ykuroda | 0:13a5d365ba16 | 500 | }; |
ykuroda | 0:13a5d365ba16 | 501 | |
ykuroda | 0:13a5d365ba16 | 502 | /** \internal |
ykuroda | 0:13a5d365ba16 | 503 | * Trivial specialization for 1x1 matrices |
ykuroda | 0:13a5d365ba16 | 504 | */ |
ykuroda | 0:13a5d365ba16 | 505 | template<typename MatrixType, bool IsComplex> |
ykuroda | 0:13a5d365ba16 | 506 | struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex> |
ykuroda | 0:13a5d365ba16 | 507 | { |
ykuroda | 0:13a5d365ba16 | 508 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 509 | |
ykuroda | 0:13a5d365ba16 | 510 | template<typename DiagonalType, typename SubDiagonalType> |
ykuroda | 0:13a5d365ba16 | 511 | static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ) |
ykuroda | 0:13a5d365ba16 | 512 | { |
ykuroda | 0:13a5d365ba16 | 513 | diag(0,0) = numext::real(mat(0,0)); |
ykuroda | 0:13a5d365ba16 | 514 | if(extractQ) |
ykuroda | 0:13a5d365ba16 | 515 | mat(0,0) = Scalar(1); |
ykuroda | 0:13a5d365ba16 | 516 | } |
ykuroda | 0:13a5d365ba16 | 517 | }; |
ykuroda | 0:13a5d365ba16 | 518 | |
ykuroda | 0:13a5d365ba16 | 519 | /** \internal |
ykuroda | 0:13a5d365ba16 | 520 | * \eigenvalues_module \ingroup Eigenvalues_Module |
ykuroda | 0:13a5d365ba16 | 521 | * |
ykuroda | 0:13a5d365ba16 | 522 | * \brief Expression type for return value of Tridiagonalization::matrixT() |
ykuroda | 0:13a5d365ba16 | 523 | * |
ykuroda | 0:13a5d365ba16 | 524 | * \tparam MatrixType type of underlying dense matrix |
ykuroda | 0:13a5d365ba16 | 525 | */ |
ykuroda | 0:13a5d365ba16 | 526 | template<typename MatrixType> struct TridiagonalizationMatrixTReturnType |
ykuroda | 0:13a5d365ba16 | 527 | : public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> > |
ykuroda | 0:13a5d365ba16 | 528 | { |
ykuroda | 0:13a5d365ba16 | 529 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 530 | public: |
ykuroda | 0:13a5d365ba16 | 531 | /** \brief Constructor. |
ykuroda | 0:13a5d365ba16 | 532 | * |
ykuroda | 0:13a5d365ba16 | 533 | * \param[in] mat The underlying dense matrix |
ykuroda | 0:13a5d365ba16 | 534 | */ |
ykuroda | 0:13a5d365ba16 | 535 | TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { } |
ykuroda | 0:13a5d365ba16 | 536 | |
ykuroda | 0:13a5d365ba16 | 537 | template <typename ResultType> |
ykuroda | 0:13a5d365ba16 | 538 | inline void evalTo(ResultType& result) const |
ykuroda | 0:13a5d365ba16 | 539 | { |
ykuroda | 0:13a5d365ba16 | 540 | result.setZero(); |
ykuroda | 0:13a5d365ba16 | 541 | result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); |
ykuroda | 0:13a5d365ba16 | 542 | result.diagonal() = m_matrix.diagonal(); |
ykuroda | 0:13a5d365ba16 | 543 | result.template diagonal<-1>() = m_matrix.template diagonal<-1>(); |
ykuroda | 0:13a5d365ba16 | 544 | } |
ykuroda | 0:13a5d365ba16 | 545 | |
ykuroda | 0:13a5d365ba16 | 546 | Index rows() const { return m_matrix.rows(); } |
ykuroda | 0:13a5d365ba16 | 547 | Index cols() const { return m_matrix.cols(); } |
ykuroda | 0:13a5d365ba16 | 548 | |
ykuroda | 0:13a5d365ba16 | 549 | protected: |
ykuroda | 0:13a5d365ba16 | 550 | typename MatrixType::Nested m_matrix; |
ykuroda | 0:13a5d365ba16 | 551 | }; |
ykuroda | 0:13a5d365ba16 | 552 | |
ykuroda | 0:13a5d365ba16 | 553 | } // end namespace internal |
ykuroda | 0:13a5d365ba16 | 554 | |
ykuroda | 0:13a5d365ba16 | 555 | } // end namespace Eigen |
ykuroda | 0:13a5d365ba16 | 556 | |
ykuroda | 0:13a5d365ba16 | 557 | #endif // EIGEN_TRIDIAGONALIZATION_H |