User | Revision | Line number | New contents of line |
ykuroda |
0:13a5d365ba16
|
1
|
// This file is part of Eigen, a lightweight C++ template library
|
ykuroda |
0:13a5d365ba16
|
2
|
// for linear algebra.
|
ykuroda |
0:13a5d365ba16
|
3
|
//
|
ykuroda |
0:13a5d365ba16
|
4
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
ykuroda |
0:13a5d365ba16
|
5
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
ykuroda |
0:13a5d365ba16
|
6
|
//
|
ykuroda |
0:13a5d365ba16
|
7
|
// This Source Code Form is subject to the terms of the Mozilla
|
ykuroda |
0:13a5d365ba16
|
8
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
ykuroda |
0:13a5d365ba16
|
9
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
ykuroda |
0:13a5d365ba16
|
10
|
|
ykuroda |
0:13a5d365ba16
|
11
|
#ifndef EIGEN_REAL_SCHUR_H
|
ykuroda |
0:13a5d365ba16
|
12
|
#define EIGEN_REAL_SCHUR_H
|
ykuroda |
0:13a5d365ba16
|
13
|
|
ykuroda |
0:13a5d365ba16
|
14
|
#include "./HessenbergDecomposition.h"
|
ykuroda |
0:13a5d365ba16
|
15
|
|
ykuroda |
0:13a5d365ba16
|
16
|
namespace Eigen {
|
ykuroda |
0:13a5d365ba16
|
17
|
|
ykuroda |
0:13a5d365ba16
|
18
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
ykuroda |
0:13a5d365ba16
|
19
|
*
|
ykuroda |
0:13a5d365ba16
|
20
|
*
|
ykuroda |
0:13a5d365ba16
|
21
|
* \class RealSchur
|
ykuroda |
0:13a5d365ba16
|
22
|
*
|
ykuroda |
0:13a5d365ba16
|
23
|
* \brief Performs a real Schur decomposition of a square matrix
|
ykuroda |
0:13a5d365ba16
|
24
|
*
|
ykuroda |
0:13a5d365ba16
|
25
|
* \tparam _MatrixType the type of the matrix of which we are computing the
|
ykuroda |
0:13a5d365ba16
|
26
|
* real Schur decomposition; this is expected to be an instantiation of the
|
ykuroda |
0:13a5d365ba16
|
27
|
* Matrix class template.
|
ykuroda |
0:13a5d365ba16
|
28
|
*
|
ykuroda |
0:13a5d365ba16
|
29
|
* Given a real square matrix A, this class computes the real Schur
|
ykuroda |
0:13a5d365ba16
|
30
|
* decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
|
ykuroda |
0:13a5d365ba16
|
31
|
* T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
|
ykuroda |
0:13a5d365ba16
|
32
|
* inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
|
ykuroda |
0:13a5d365ba16
|
33
|
* matrix is a block-triangular matrix whose diagonal consists of 1-by-1
|
ykuroda |
0:13a5d365ba16
|
34
|
* blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
|
ykuroda |
0:13a5d365ba16
|
35
|
* blocks on the diagonal of T are the same as the eigenvalues of the matrix
|
ykuroda |
0:13a5d365ba16
|
36
|
* A, and thus the real Schur decomposition is used in EigenSolver to compute
|
ykuroda |
0:13a5d365ba16
|
37
|
* the eigendecomposition of a matrix.
|
ykuroda |
0:13a5d365ba16
|
38
|
*
|
ykuroda |
0:13a5d365ba16
|
39
|
* Call the function compute() to compute the real Schur decomposition of a
|
ykuroda |
0:13a5d365ba16
|
40
|
* given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
|
ykuroda |
0:13a5d365ba16
|
41
|
* constructor which computes the real Schur decomposition at construction
|
ykuroda |
0:13a5d365ba16
|
42
|
* time. Once the decomposition is computed, you can use the matrixU() and
|
ykuroda |
0:13a5d365ba16
|
43
|
* matrixT() functions to retrieve the matrices U and T in the decomposition.
|
ykuroda |
0:13a5d365ba16
|
44
|
*
|
ykuroda |
0:13a5d365ba16
|
45
|
* The documentation of RealSchur(const MatrixType&, bool) contains an example
|
ykuroda |
0:13a5d365ba16
|
46
|
* of the typical use of this class.
|
ykuroda |
0:13a5d365ba16
|
47
|
*
|
ykuroda |
0:13a5d365ba16
|
48
|
* \note The implementation is adapted from
|
ykuroda |
0:13a5d365ba16
|
49
|
* <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
|
ykuroda |
0:13a5d365ba16
|
50
|
* Their code is based on EISPACK.
|
ykuroda |
0:13a5d365ba16
|
51
|
*
|
ykuroda |
0:13a5d365ba16
|
52
|
* \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
|
ykuroda |
0:13a5d365ba16
|
53
|
*/
|
ykuroda |
0:13a5d365ba16
|
54
|
template<typename _MatrixType> class RealSchur
|
ykuroda |
0:13a5d365ba16
|
55
|
{
|
ykuroda |
0:13a5d365ba16
|
56
|
public:
|
ykuroda |
0:13a5d365ba16
|
57
|
typedef _MatrixType MatrixType;
|
ykuroda |
0:13a5d365ba16
|
58
|
enum {
|
ykuroda |
0:13a5d365ba16
|
59
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
60
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
61
|
Options = MatrixType::Options,
|
ykuroda |
0:13a5d365ba16
|
62
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
63
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
ykuroda |
0:13a5d365ba16
|
64
|
};
|
ykuroda |
0:13a5d365ba16
|
65
|
typedef typename MatrixType::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
66
|
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
|
ykuroda |
0:13a5d365ba16
|
67
|
typedef typename MatrixType::Index Index;
|
ykuroda |
0:13a5d365ba16
|
68
|
|
ykuroda |
0:13a5d365ba16
|
69
|
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
|
ykuroda |
0:13a5d365ba16
|
70
|
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
|
ykuroda |
0:13a5d365ba16
|
71
|
|
ykuroda |
0:13a5d365ba16
|
72
|
/** \brief Default constructor.
|
ykuroda |
0:13a5d365ba16
|
73
|
*
|
ykuroda |
0:13a5d365ba16
|
74
|
* \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
|
ykuroda |
0:13a5d365ba16
|
75
|
*
|
ykuroda |
0:13a5d365ba16
|
76
|
* The default constructor is useful in cases in which the user intends to
|
ykuroda |
0:13a5d365ba16
|
77
|
* perform decompositions via compute(). The \p size parameter is only
|
ykuroda |
0:13a5d365ba16
|
78
|
* used as a hint. It is not an error to give a wrong \p size, but it may
|
ykuroda |
0:13a5d365ba16
|
79
|
* impair performance.
|
ykuroda |
0:13a5d365ba16
|
80
|
*
|
ykuroda |
0:13a5d365ba16
|
81
|
* \sa compute() for an example.
|
ykuroda |
0:13a5d365ba16
|
82
|
*/
|
ykuroda |
0:13a5d365ba16
|
83
|
RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
|
ykuroda |
0:13a5d365ba16
|
84
|
: m_matT(size, size),
|
ykuroda |
0:13a5d365ba16
|
85
|
m_matU(size, size),
|
ykuroda |
0:13a5d365ba16
|
86
|
m_workspaceVector(size),
|
ykuroda |
0:13a5d365ba16
|
87
|
m_hess(size),
|
ykuroda |
0:13a5d365ba16
|
88
|
m_isInitialized(false),
|
ykuroda |
0:13a5d365ba16
|
89
|
m_matUisUptodate(false),
|
ykuroda |
0:13a5d365ba16
|
90
|
m_maxIters(-1)
|
ykuroda |
0:13a5d365ba16
|
91
|
{ }
|
ykuroda |
0:13a5d365ba16
|
92
|
|
ykuroda |
0:13a5d365ba16
|
93
|
/** \brief Constructor; computes real Schur decomposition of given matrix.
|
ykuroda |
0:13a5d365ba16
|
94
|
*
|
ykuroda |
0:13a5d365ba16
|
95
|
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
ykuroda |
0:13a5d365ba16
|
96
|
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
ykuroda |
0:13a5d365ba16
|
97
|
*
|
ykuroda |
0:13a5d365ba16
|
98
|
* This constructor calls compute() to compute the Schur decomposition.
|
ykuroda |
0:13a5d365ba16
|
99
|
*
|
ykuroda |
0:13a5d365ba16
|
100
|
* Example: \include RealSchur_RealSchur_MatrixType.cpp
|
ykuroda |
0:13a5d365ba16
|
101
|
* Output: \verbinclude RealSchur_RealSchur_MatrixType.out
|
ykuroda |
0:13a5d365ba16
|
102
|
*/
|
ykuroda |
0:13a5d365ba16
|
103
|
RealSchur(const MatrixType& matrix, bool computeU = true)
|
ykuroda |
0:13a5d365ba16
|
104
|
: m_matT(matrix.rows(),matrix.cols()),
|
ykuroda |
0:13a5d365ba16
|
105
|
m_matU(matrix.rows(),matrix.cols()),
|
ykuroda |
0:13a5d365ba16
|
106
|
m_workspaceVector(matrix.rows()),
|
ykuroda |
0:13a5d365ba16
|
107
|
m_hess(matrix.rows()),
|
ykuroda |
0:13a5d365ba16
|
108
|
m_isInitialized(false),
|
ykuroda |
0:13a5d365ba16
|
109
|
m_matUisUptodate(false),
|
ykuroda |
0:13a5d365ba16
|
110
|
m_maxIters(-1)
|
ykuroda |
0:13a5d365ba16
|
111
|
{
|
ykuroda |
0:13a5d365ba16
|
112
|
compute(matrix, computeU);
|
ykuroda |
0:13a5d365ba16
|
113
|
}
|
ykuroda |
0:13a5d365ba16
|
114
|
|
ykuroda |
0:13a5d365ba16
|
115
|
/** \brief Returns the orthogonal matrix in the Schur decomposition.
|
ykuroda |
0:13a5d365ba16
|
116
|
*
|
ykuroda |
0:13a5d365ba16
|
117
|
* \returns A const reference to the matrix U.
|
ykuroda |
0:13a5d365ba16
|
118
|
*
|
ykuroda |
0:13a5d365ba16
|
119
|
* \pre Either the constructor RealSchur(const MatrixType&, bool) or the
|
ykuroda |
0:13a5d365ba16
|
120
|
* member function compute(const MatrixType&, bool) has been called before
|
ykuroda |
0:13a5d365ba16
|
121
|
* to compute the Schur decomposition of a matrix, and \p computeU was set
|
ykuroda |
0:13a5d365ba16
|
122
|
* to true (the default value).
|
ykuroda |
0:13a5d365ba16
|
123
|
*
|
ykuroda |
0:13a5d365ba16
|
124
|
* \sa RealSchur(const MatrixType&, bool) for an example
|
ykuroda |
0:13a5d365ba16
|
125
|
*/
|
ykuroda |
0:13a5d365ba16
|
126
|
const MatrixType& matrixU() const
|
ykuroda |
0:13a5d365ba16
|
127
|
{
|
ykuroda |
0:13a5d365ba16
|
128
|
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
129
|
eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
|
ykuroda |
0:13a5d365ba16
|
130
|
return m_matU;
|
ykuroda |
0:13a5d365ba16
|
131
|
}
|
ykuroda |
0:13a5d365ba16
|
132
|
|
ykuroda |
0:13a5d365ba16
|
133
|
/** \brief Returns the quasi-triangular matrix in the Schur decomposition.
|
ykuroda |
0:13a5d365ba16
|
134
|
*
|
ykuroda |
0:13a5d365ba16
|
135
|
* \returns A const reference to the matrix T.
|
ykuroda |
0:13a5d365ba16
|
136
|
*
|
ykuroda |
0:13a5d365ba16
|
137
|
* \pre Either the constructor RealSchur(const MatrixType&, bool) or the
|
ykuroda |
0:13a5d365ba16
|
138
|
* member function compute(const MatrixType&, bool) has been called before
|
ykuroda |
0:13a5d365ba16
|
139
|
* to compute the Schur decomposition of a matrix.
|
ykuroda |
0:13a5d365ba16
|
140
|
*
|
ykuroda |
0:13a5d365ba16
|
141
|
* \sa RealSchur(const MatrixType&, bool) for an example
|
ykuroda |
0:13a5d365ba16
|
142
|
*/
|
ykuroda |
0:13a5d365ba16
|
143
|
const MatrixType& matrixT() const
|
ykuroda |
0:13a5d365ba16
|
144
|
{
|
ykuroda |
0:13a5d365ba16
|
145
|
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
146
|
return m_matT;
|
ykuroda |
0:13a5d365ba16
|
147
|
}
|
ykuroda |
0:13a5d365ba16
|
148
|
|
ykuroda |
0:13a5d365ba16
|
149
|
/** \brief Computes Schur decomposition of given matrix.
|
ykuroda |
0:13a5d365ba16
|
150
|
*
|
ykuroda |
0:13a5d365ba16
|
151
|
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
ykuroda |
0:13a5d365ba16
|
152
|
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
ykuroda |
0:13a5d365ba16
|
153
|
* \returns Reference to \c *this
|
ykuroda |
0:13a5d365ba16
|
154
|
*
|
ykuroda |
0:13a5d365ba16
|
155
|
* The Schur decomposition is computed by first reducing the matrix to
|
ykuroda |
0:13a5d365ba16
|
156
|
* Hessenberg form using the class HessenbergDecomposition. The Hessenberg
|
ykuroda |
0:13a5d365ba16
|
157
|
* matrix is then reduced to triangular form by performing Francis QR
|
ykuroda |
0:13a5d365ba16
|
158
|
* iterations with implicit double shift. The cost of computing the Schur
|
ykuroda |
0:13a5d365ba16
|
159
|
* decomposition depends on the number of iterations; as a rough guide, it
|
ykuroda |
0:13a5d365ba16
|
160
|
* may be taken to be \f$25n^3\f$ flops if \a computeU is true and
|
ykuroda |
0:13a5d365ba16
|
161
|
* \f$10n^3\f$ flops if \a computeU is false.
|
ykuroda |
0:13a5d365ba16
|
162
|
*
|
ykuroda |
0:13a5d365ba16
|
163
|
* Example: \include RealSchur_compute.cpp
|
ykuroda |
0:13a5d365ba16
|
164
|
* Output: \verbinclude RealSchur_compute.out
|
ykuroda |
0:13a5d365ba16
|
165
|
*
|
ykuroda |
0:13a5d365ba16
|
166
|
* \sa compute(const MatrixType&, bool, Index)
|
ykuroda |
0:13a5d365ba16
|
167
|
*/
|
ykuroda |
0:13a5d365ba16
|
168
|
RealSchur& compute(const MatrixType& matrix, bool computeU = true);
|
ykuroda |
0:13a5d365ba16
|
169
|
|
ykuroda |
0:13a5d365ba16
|
170
|
/** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
|
ykuroda |
0:13a5d365ba16
|
171
|
* \param[in] matrixH Matrix in Hessenberg form H
|
ykuroda |
0:13a5d365ba16
|
172
|
* \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
|
ykuroda |
0:13a5d365ba16
|
173
|
* \param computeU Computes the matriX U of the Schur vectors
|
ykuroda |
0:13a5d365ba16
|
174
|
* \return Reference to \c *this
|
ykuroda |
0:13a5d365ba16
|
175
|
*
|
ykuroda |
0:13a5d365ba16
|
176
|
* This routine assumes that the matrix is already reduced in Hessenberg form matrixH
|
ykuroda |
0:13a5d365ba16
|
177
|
* using either the class HessenbergDecomposition or another mean.
|
ykuroda |
0:13a5d365ba16
|
178
|
* It computes the upper quasi-triangular matrix T of the Schur decomposition of H
|
ykuroda |
0:13a5d365ba16
|
179
|
* When computeU is true, this routine computes the matrix U such that
|
ykuroda |
0:13a5d365ba16
|
180
|
* A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
|
ykuroda |
0:13a5d365ba16
|
181
|
*
|
ykuroda |
0:13a5d365ba16
|
182
|
* NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
|
ykuroda |
0:13a5d365ba16
|
183
|
* is not available, the user should give an identity matrix (Q.setIdentity())
|
ykuroda |
0:13a5d365ba16
|
184
|
*
|
ykuroda |
0:13a5d365ba16
|
185
|
* \sa compute(const MatrixType&, bool)
|
ykuroda |
0:13a5d365ba16
|
186
|
*/
|
ykuroda |
0:13a5d365ba16
|
187
|
template<typename HessMatrixType, typename OrthMatrixType>
|
ykuroda |
0:13a5d365ba16
|
188
|
RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
|
ykuroda |
0:13a5d365ba16
|
189
|
/** \brief Reports whether previous computation was successful.
|
ykuroda |
0:13a5d365ba16
|
190
|
*
|
ykuroda |
0:13a5d365ba16
|
191
|
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
ykuroda |
0:13a5d365ba16
|
192
|
*/
|
ykuroda |
0:13a5d365ba16
|
193
|
ComputationInfo info() const
|
ykuroda |
0:13a5d365ba16
|
194
|
{
|
ykuroda |
0:13a5d365ba16
|
195
|
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
196
|
return m_info;
|
ykuroda |
0:13a5d365ba16
|
197
|
}
|
ykuroda |
0:13a5d365ba16
|
198
|
|
ykuroda |
0:13a5d365ba16
|
199
|
/** \brief Sets the maximum number of iterations allowed.
|
ykuroda |
0:13a5d365ba16
|
200
|
*
|
ykuroda |
0:13a5d365ba16
|
201
|
* If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
|
ykuroda |
0:13a5d365ba16
|
202
|
* of the matrix.
|
ykuroda |
0:13a5d365ba16
|
203
|
*/
|
ykuroda |
0:13a5d365ba16
|
204
|
RealSchur& setMaxIterations(Index maxIters)
|
ykuroda |
0:13a5d365ba16
|
205
|
{
|
ykuroda |
0:13a5d365ba16
|
206
|
m_maxIters = maxIters;
|
ykuroda |
0:13a5d365ba16
|
207
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
208
|
}
|
ykuroda |
0:13a5d365ba16
|
209
|
|
ykuroda |
0:13a5d365ba16
|
210
|
/** \brief Returns the maximum number of iterations. */
|
ykuroda |
0:13a5d365ba16
|
211
|
Index getMaxIterations()
|
ykuroda |
0:13a5d365ba16
|
212
|
{
|
ykuroda |
0:13a5d365ba16
|
213
|
return m_maxIters;
|
ykuroda |
0:13a5d365ba16
|
214
|
}
|
ykuroda |
0:13a5d365ba16
|
215
|
|
ykuroda |
0:13a5d365ba16
|
216
|
/** \brief Maximum number of iterations per row.
|
ykuroda |
0:13a5d365ba16
|
217
|
*
|
ykuroda |
0:13a5d365ba16
|
218
|
* If not otherwise specified, the maximum number of iterations is this number times the size of the
|
ykuroda |
0:13a5d365ba16
|
219
|
* matrix. It is currently set to 40.
|
ykuroda |
0:13a5d365ba16
|
220
|
*/
|
ykuroda |
0:13a5d365ba16
|
221
|
static const int m_maxIterationsPerRow = 40;
|
ykuroda |
0:13a5d365ba16
|
222
|
|
ykuroda |
0:13a5d365ba16
|
223
|
private:
|
ykuroda |
0:13a5d365ba16
|
224
|
|
ykuroda |
0:13a5d365ba16
|
225
|
MatrixType m_matT;
|
ykuroda |
0:13a5d365ba16
|
226
|
MatrixType m_matU;
|
ykuroda |
0:13a5d365ba16
|
227
|
ColumnVectorType m_workspaceVector;
|
ykuroda |
0:13a5d365ba16
|
228
|
HessenbergDecomposition<MatrixType> m_hess;
|
ykuroda |
0:13a5d365ba16
|
229
|
ComputationInfo m_info;
|
ykuroda |
0:13a5d365ba16
|
230
|
bool m_isInitialized;
|
ykuroda |
0:13a5d365ba16
|
231
|
bool m_matUisUptodate;
|
ykuroda |
0:13a5d365ba16
|
232
|
Index m_maxIters;
|
ykuroda |
0:13a5d365ba16
|
233
|
|
ykuroda |
0:13a5d365ba16
|
234
|
typedef Matrix<Scalar,3,1> Vector3s;
|
ykuroda |
0:13a5d365ba16
|
235
|
|
ykuroda |
0:13a5d365ba16
|
236
|
Scalar computeNormOfT();
|
ykuroda |
0:13a5d365ba16
|
237
|
Index findSmallSubdiagEntry(Index iu);
|
ykuroda |
0:13a5d365ba16
|
238
|
void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
|
ykuroda |
0:13a5d365ba16
|
239
|
void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
|
ykuroda |
0:13a5d365ba16
|
240
|
void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
|
ykuroda |
0:13a5d365ba16
|
241
|
void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
|
ykuroda |
0:13a5d365ba16
|
242
|
};
|
ykuroda |
0:13a5d365ba16
|
243
|
|
ykuroda |
0:13a5d365ba16
|
244
|
|
ykuroda |
0:13a5d365ba16
|
245
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
246
|
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
|
ykuroda |
0:13a5d365ba16
|
247
|
{
|
ykuroda |
0:13a5d365ba16
|
248
|
eigen_assert(matrix.cols() == matrix.rows());
|
ykuroda |
0:13a5d365ba16
|
249
|
Index maxIters = m_maxIters;
|
ykuroda |
0:13a5d365ba16
|
250
|
if (maxIters == -1)
|
ykuroda |
0:13a5d365ba16
|
251
|
maxIters = m_maxIterationsPerRow * matrix.rows();
|
ykuroda |
0:13a5d365ba16
|
252
|
|
ykuroda |
0:13a5d365ba16
|
253
|
// Step 1. Reduce to Hessenberg form
|
ykuroda |
0:13a5d365ba16
|
254
|
m_hess.compute(matrix);
|
ykuroda |
0:13a5d365ba16
|
255
|
|
ykuroda |
0:13a5d365ba16
|
256
|
// Step 2. Reduce to real Schur form
|
ykuroda |
0:13a5d365ba16
|
257
|
computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
|
ykuroda |
0:13a5d365ba16
|
258
|
|
ykuroda |
0:13a5d365ba16
|
259
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
260
|
}
|
ykuroda |
0:13a5d365ba16
|
261
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
262
|
template<typename HessMatrixType, typename OrthMatrixType>
|
ykuroda |
0:13a5d365ba16
|
263
|
RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
|
ykuroda |
0:13a5d365ba16
|
264
|
{
|
ykuroda |
0:13a5d365ba16
|
265
|
m_matT = matrixH;
|
ykuroda |
0:13a5d365ba16
|
266
|
if(computeU)
|
ykuroda |
0:13a5d365ba16
|
267
|
m_matU = matrixQ;
|
ykuroda |
0:13a5d365ba16
|
268
|
|
ykuroda |
0:13a5d365ba16
|
269
|
Index maxIters = m_maxIters;
|
ykuroda |
0:13a5d365ba16
|
270
|
if (maxIters == -1)
|
ykuroda |
0:13a5d365ba16
|
271
|
maxIters = m_maxIterationsPerRow * matrixH.rows();
|
ykuroda |
0:13a5d365ba16
|
272
|
m_workspaceVector.resize(m_matT.cols());
|
ykuroda |
0:13a5d365ba16
|
273
|
Scalar* workspace = &m_workspaceVector.coeffRef(0);
|
ykuroda |
0:13a5d365ba16
|
274
|
|
ykuroda |
0:13a5d365ba16
|
275
|
// The matrix m_matT is divided in three parts.
|
ykuroda |
0:13a5d365ba16
|
276
|
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
|
ykuroda |
0:13a5d365ba16
|
277
|
// Rows il,...,iu is the part we are working on (the active window).
|
ykuroda |
0:13a5d365ba16
|
278
|
// Rows iu+1,...,end are already brought in triangular form.
|
ykuroda |
0:13a5d365ba16
|
279
|
Index iu = m_matT.cols() - 1;
|
ykuroda |
0:13a5d365ba16
|
280
|
Index iter = 0; // iteration count for current eigenvalue
|
ykuroda |
0:13a5d365ba16
|
281
|
Index totalIter = 0; // iteration count for whole matrix
|
ykuroda |
0:13a5d365ba16
|
282
|
Scalar exshift(0); // sum of exceptional shifts
|
ykuroda |
0:13a5d365ba16
|
283
|
Scalar norm = computeNormOfT();
|
ykuroda |
0:13a5d365ba16
|
284
|
|
ykuroda |
0:13a5d365ba16
|
285
|
if(norm!=0)
|
ykuroda |
0:13a5d365ba16
|
286
|
{
|
ykuroda |
0:13a5d365ba16
|
287
|
while (iu >= 0)
|
ykuroda |
0:13a5d365ba16
|
288
|
{
|
ykuroda |
0:13a5d365ba16
|
289
|
Index il = findSmallSubdiagEntry(iu);
|
ykuroda |
0:13a5d365ba16
|
290
|
|
ykuroda |
0:13a5d365ba16
|
291
|
// Check for convergence
|
ykuroda |
0:13a5d365ba16
|
292
|
if (il == iu) // One root found
|
ykuroda |
0:13a5d365ba16
|
293
|
{
|
ykuroda |
0:13a5d365ba16
|
294
|
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
|
ykuroda |
0:13a5d365ba16
|
295
|
if (iu > 0)
|
ykuroda |
0:13a5d365ba16
|
296
|
m_matT.coeffRef(iu, iu-1) = Scalar(0);
|
ykuroda |
0:13a5d365ba16
|
297
|
iu--;
|
ykuroda |
0:13a5d365ba16
|
298
|
iter = 0;
|
ykuroda |
0:13a5d365ba16
|
299
|
}
|
ykuroda |
0:13a5d365ba16
|
300
|
else if (il == iu-1) // Two roots found
|
ykuroda |
0:13a5d365ba16
|
301
|
{
|
ykuroda |
0:13a5d365ba16
|
302
|
splitOffTwoRows(iu, computeU, exshift);
|
ykuroda |
0:13a5d365ba16
|
303
|
iu -= 2;
|
ykuroda |
0:13a5d365ba16
|
304
|
iter = 0;
|
ykuroda |
0:13a5d365ba16
|
305
|
}
|
ykuroda |
0:13a5d365ba16
|
306
|
else // No convergence yet
|
ykuroda |
0:13a5d365ba16
|
307
|
{
|
ykuroda |
0:13a5d365ba16
|
308
|
// The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
|
ykuroda |
0:13a5d365ba16
|
309
|
Vector3s firstHouseholderVector(0,0,0), shiftInfo;
|
ykuroda |
0:13a5d365ba16
|
310
|
computeShift(iu, iter, exshift, shiftInfo);
|
ykuroda |
0:13a5d365ba16
|
311
|
iter = iter + 1;
|
ykuroda |
0:13a5d365ba16
|
312
|
totalIter = totalIter + 1;
|
ykuroda |
0:13a5d365ba16
|
313
|
if (totalIter > maxIters) break;
|
ykuroda |
0:13a5d365ba16
|
314
|
Index im;
|
ykuroda |
0:13a5d365ba16
|
315
|
initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
|
ykuroda |
0:13a5d365ba16
|
316
|
performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
|
ykuroda |
0:13a5d365ba16
|
317
|
}
|
ykuroda |
0:13a5d365ba16
|
318
|
}
|
ykuroda |
0:13a5d365ba16
|
319
|
}
|
ykuroda |
0:13a5d365ba16
|
320
|
if(totalIter <= maxIters)
|
ykuroda |
0:13a5d365ba16
|
321
|
m_info = Success;
|
ykuroda |
0:13a5d365ba16
|
322
|
else
|
ykuroda |
0:13a5d365ba16
|
323
|
m_info = NoConvergence;
|
ykuroda |
0:13a5d365ba16
|
324
|
|
ykuroda |
0:13a5d365ba16
|
325
|
m_isInitialized = true;
|
ykuroda |
0:13a5d365ba16
|
326
|
m_matUisUptodate = computeU;
|
ykuroda |
0:13a5d365ba16
|
327
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
328
|
}
|
ykuroda |
0:13a5d365ba16
|
329
|
|
ykuroda |
0:13a5d365ba16
|
330
|
/** \internal Computes and returns vector L1 norm of T */
|
ykuroda |
0:13a5d365ba16
|
331
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
332
|
inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
|
ykuroda |
0:13a5d365ba16
|
333
|
{
|
ykuroda |
0:13a5d365ba16
|
334
|
const Index size = m_matT.cols();
|
ykuroda |
0:13a5d365ba16
|
335
|
// FIXME to be efficient the following would requires a triangular reduxion code
|
ykuroda |
0:13a5d365ba16
|
336
|
// Scalar norm = m_matT.upper().cwiseAbs().sum()
|
ykuroda |
0:13a5d365ba16
|
337
|
// + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
|
ykuroda |
0:13a5d365ba16
|
338
|
Scalar norm(0);
|
ykuroda |
0:13a5d365ba16
|
339
|
for (Index j = 0; j < size; ++j)
|
ykuroda |
0:13a5d365ba16
|
340
|
norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
|
ykuroda |
0:13a5d365ba16
|
341
|
return norm;
|
ykuroda |
0:13a5d365ba16
|
342
|
}
|
ykuroda |
0:13a5d365ba16
|
343
|
|
ykuroda |
0:13a5d365ba16
|
344
|
/** \internal Look for single small sub-diagonal element and returns its index */
|
ykuroda |
0:13a5d365ba16
|
345
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
346
|
inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
|
ykuroda |
0:13a5d365ba16
|
347
|
{
|
ykuroda |
0:13a5d365ba16
|
348
|
using std::abs;
|
ykuroda |
0:13a5d365ba16
|
349
|
Index res = iu;
|
ykuroda |
0:13a5d365ba16
|
350
|
while (res > 0)
|
ykuroda |
0:13a5d365ba16
|
351
|
{
|
ykuroda |
0:13a5d365ba16
|
352
|
Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
|
ykuroda |
0:13a5d365ba16
|
353
|
if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
|
ykuroda |
0:13a5d365ba16
|
354
|
break;
|
ykuroda |
0:13a5d365ba16
|
355
|
res--;
|
ykuroda |
0:13a5d365ba16
|
356
|
}
|
ykuroda |
0:13a5d365ba16
|
357
|
return res;
|
ykuroda |
0:13a5d365ba16
|
358
|
}
|
ykuroda |
0:13a5d365ba16
|
359
|
|
ykuroda |
0:13a5d365ba16
|
360
|
/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
|
ykuroda |
0:13a5d365ba16
|
361
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
362
|
inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
|
ykuroda |
0:13a5d365ba16
|
363
|
{
|
ykuroda |
0:13a5d365ba16
|
364
|
using std::sqrt;
|
ykuroda |
0:13a5d365ba16
|
365
|
using std::abs;
|
ykuroda |
0:13a5d365ba16
|
366
|
const Index size = m_matT.cols();
|
ykuroda |
0:13a5d365ba16
|
367
|
|
ykuroda |
0:13a5d365ba16
|
368
|
// The eigenvalues of the 2x2 matrix [a b; c d] are
|
ykuroda |
0:13a5d365ba16
|
369
|
// trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
|
ykuroda |
0:13a5d365ba16
|
370
|
Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
|
ykuroda |
0:13a5d365ba16
|
371
|
Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
|
ykuroda |
0:13a5d365ba16
|
372
|
m_matT.coeffRef(iu,iu) += exshift;
|
ykuroda |
0:13a5d365ba16
|
373
|
m_matT.coeffRef(iu-1,iu-1) += exshift;
|
ykuroda |
0:13a5d365ba16
|
374
|
|
ykuroda |
0:13a5d365ba16
|
375
|
if (q >= Scalar(0)) // Two real eigenvalues
|
ykuroda |
0:13a5d365ba16
|
376
|
{
|
ykuroda |
0:13a5d365ba16
|
377
|
Scalar z = sqrt(abs(q));
|
ykuroda |
0:13a5d365ba16
|
378
|
JacobiRotation<Scalar> rot;
|
ykuroda |
0:13a5d365ba16
|
379
|
if (p >= Scalar(0))
|
ykuroda |
0:13a5d365ba16
|
380
|
rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
|
ykuroda |
0:13a5d365ba16
|
381
|
else
|
ykuroda |
0:13a5d365ba16
|
382
|
rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
|
ykuroda |
0:13a5d365ba16
|
383
|
|
ykuroda |
0:13a5d365ba16
|
384
|
m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
|
ykuroda |
0:13a5d365ba16
|
385
|
m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
|
ykuroda |
0:13a5d365ba16
|
386
|
m_matT.coeffRef(iu, iu-1) = Scalar(0);
|
ykuroda |
0:13a5d365ba16
|
387
|
if (computeU)
|
ykuroda |
0:13a5d365ba16
|
388
|
m_matU.applyOnTheRight(iu-1, iu, rot);
|
ykuroda |
0:13a5d365ba16
|
389
|
}
|
ykuroda |
0:13a5d365ba16
|
390
|
|
ykuroda |
0:13a5d365ba16
|
391
|
if (iu > 1)
|
ykuroda |
0:13a5d365ba16
|
392
|
m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
|
ykuroda |
0:13a5d365ba16
|
393
|
}
|
ykuroda |
0:13a5d365ba16
|
394
|
|
ykuroda |
0:13a5d365ba16
|
395
|
/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
|
ykuroda |
0:13a5d365ba16
|
396
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
397
|
inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
|
ykuroda |
0:13a5d365ba16
|
398
|
{
|
ykuroda |
0:13a5d365ba16
|
399
|
using std::sqrt;
|
ykuroda |
0:13a5d365ba16
|
400
|
using std::abs;
|
ykuroda |
0:13a5d365ba16
|
401
|
shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
|
ykuroda |
0:13a5d365ba16
|
402
|
shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
|
ykuroda |
0:13a5d365ba16
|
403
|
shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
|
ykuroda |
0:13a5d365ba16
|
404
|
|
ykuroda |
0:13a5d365ba16
|
405
|
// Wilkinson's original ad hoc shift
|
ykuroda |
0:13a5d365ba16
|
406
|
if (iter == 10)
|
ykuroda |
0:13a5d365ba16
|
407
|
{
|
ykuroda |
0:13a5d365ba16
|
408
|
exshift += shiftInfo.coeff(0);
|
ykuroda |
0:13a5d365ba16
|
409
|
for (Index i = 0; i <= iu; ++i)
|
ykuroda |
0:13a5d365ba16
|
410
|
m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
|
ykuroda |
0:13a5d365ba16
|
411
|
Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
|
ykuroda |
0:13a5d365ba16
|
412
|
shiftInfo.coeffRef(0) = Scalar(0.75) * s;
|
ykuroda |
0:13a5d365ba16
|
413
|
shiftInfo.coeffRef(1) = Scalar(0.75) * s;
|
ykuroda |
0:13a5d365ba16
|
414
|
shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
|
ykuroda |
0:13a5d365ba16
|
415
|
}
|
ykuroda |
0:13a5d365ba16
|
416
|
|
ykuroda |
0:13a5d365ba16
|
417
|
// MATLAB's new ad hoc shift
|
ykuroda |
0:13a5d365ba16
|
418
|
if (iter == 30)
|
ykuroda |
0:13a5d365ba16
|
419
|
{
|
ykuroda |
0:13a5d365ba16
|
420
|
Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
|
ykuroda |
0:13a5d365ba16
|
421
|
s = s * s + shiftInfo.coeff(2);
|
ykuroda |
0:13a5d365ba16
|
422
|
if (s > Scalar(0))
|
ykuroda |
0:13a5d365ba16
|
423
|
{
|
ykuroda |
0:13a5d365ba16
|
424
|
s = sqrt(s);
|
ykuroda |
0:13a5d365ba16
|
425
|
if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
|
ykuroda |
0:13a5d365ba16
|
426
|
s = -s;
|
ykuroda |
0:13a5d365ba16
|
427
|
s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
|
ykuroda |
0:13a5d365ba16
|
428
|
s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
|
ykuroda |
0:13a5d365ba16
|
429
|
exshift += s;
|
ykuroda |
0:13a5d365ba16
|
430
|
for (Index i = 0; i <= iu; ++i)
|
ykuroda |
0:13a5d365ba16
|
431
|
m_matT.coeffRef(i,i) -= s;
|
ykuroda |
0:13a5d365ba16
|
432
|
shiftInfo.setConstant(Scalar(0.964));
|
ykuroda |
0:13a5d365ba16
|
433
|
}
|
ykuroda |
0:13a5d365ba16
|
434
|
}
|
ykuroda |
0:13a5d365ba16
|
435
|
}
|
ykuroda |
0:13a5d365ba16
|
436
|
|
ykuroda |
0:13a5d365ba16
|
437
|
/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
|
ykuroda |
0:13a5d365ba16
|
438
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
439
|
inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
|
ykuroda |
0:13a5d365ba16
|
440
|
{
|
ykuroda |
0:13a5d365ba16
|
441
|
using std::abs;
|
ykuroda |
0:13a5d365ba16
|
442
|
Vector3s& v = firstHouseholderVector; // alias to save typing
|
ykuroda |
0:13a5d365ba16
|
443
|
|
ykuroda |
0:13a5d365ba16
|
444
|
for (im = iu-2; im >= il; --im)
|
ykuroda |
0:13a5d365ba16
|
445
|
{
|
ykuroda |
0:13a5d365ba16
|
446
|
const Scalar Tmm = m_matT.coeff(im,im);
|
ykuroda |
0:13a5d365ba16
|
447
|
const Scalar r = shiftInfo.coeff(0) - Tmm;
|
ykuroda |
0:13a5d365ba16
|
448
|
const Scalar s = shiftInfo.coeff(1) - Tmm;
|
ykuroda |
0:13a5d365ba16
|
449
|
v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
|
ykuroda |
0:13a5d365ba16
|
450
|
v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
|
ykuroda |
0:13a5d365ba16
|
451
|
v.coeffRef(2) = m_matT.coeff(im+2,im+1);
|
ykuroda |
0:13a5d365ba16
|
452
|
if (im == il) {
|
ykuroda |
0:13a5d365ba16
|
453
|
break;
|
ykuroda |
0:13a5d365ba16
|
454
|
}
|
ykuroda |
0:13a5d365ba16
|
455
|
const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
|
ykuroda |
0:13a5d365ba16
|
456
|
const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
|
ykuroda |
0:13a5d365ba16
|
457
|
if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
|
ykuroda |
0:13a5d365ba16
|
458
|
break;
|
ykuroda |
0:13a5d365ba16
|
459
|
}
|
ykuroda |
0:13a5d365ba16
|
460
|
}
|
ykuroda |
0:13a5d365ba16
|
461
|
|
ykuroda |
0:13a5d365ba16
|
462
|
/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
|
ykuroda |
0:13a5d365ba16
|
463
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
464
|
inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
|
ykuroda |
0:13a5d365ba16
|
465
|
{
|
ykuroda |
0:13a5d365ba16
|
466
|
eigen_assert(im >= il);
|
ykuroda |
0:13a5d365ba16
|
467
|
eigen_assert(im <= iu-2);
|
ykuroda |
0:13a5d365ba16
|
468
|
|
ykuroda |
0:13a5d365ba16
|
469
|
const Index size = m_matT.cols();
|
ykuroda |
0:13a5d365ba16
|
470
|
|
ykuroda |
0:13a5d365ba16
|
471
|
for (Index k = im; k <= iu-2; ++k)
|
ykuroda |
0:13a5d365ba16
|
472
|
{
|
ykuroda |
0:13a5d365ba16
|
473
|
bool firstIteration = (k == im);
|
ykuroda |
0:13a5d365ba16
|
474
|
|
ykuroda |
0:13a5d365ba16
|
475
|
Vector3s v;
|
ykuroda |
0:13a5d365ba16
|
476
|
if (firstIteration)
|
ykuroda |
0:13a5d365ba16
|
477
|
v = firstHouseholderVector;
|
ykuroda |
0:13a5d365ba16
|
478
|
else
|
ykuroda |
0:13a5d365ba16
|
479
|
v = m_matT.template block<3,1>(k,k-1);
|
ykuroda |
0:13a5d365ba16
|
480
|
|
ykuroda |
0:13a5d365ba16
|
481
|
Scalar tau, beta;
|
ykuroda |
0:13a5d365ba16
|
482
|
Matrix<Scalar, 2, 1> ess;
|
ykuroda |
0:13a5d365ba16
|
483
|
v.makeHouseholder(ess, tau, beta);
|
ykuroda |
0:13a5d365ba16
|
484
|
|
ykuroda |
0:13a5d365ba16
|
485
|
if (beta != Scalar(0)) // if v is not zero
|
ykuroda |
0:13a5d365ba16
|
486
|
{
|
ykuroda |
0:13a5d365ba16
|
487
|
if (firstIteration && k > il)
|
ykuroda |
0:13a5d365ba16
|
488
|
m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
|
ykuroda |
0:13a5d365ba16
|
489
|
else if (!firstIteration)
|
ykuroda |
0:13a5d365ba16
|
490
|
m_matT.coeffRef(k,k-1) = beta;
|
ykuroda |
0:13a5d365ba16
|
491
|
|
ykuroda |
0:13a5d365ba16
|
492
|
// These Householder transformations form the O(n^3) part of the algorithm
|
ykuroda |
0:13a5d365ba16
|
493
|
m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
|
ykuroda |
0:13a5d365ba16
|
494
|
m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
|
ykuroda |
0:13a5d365ba16
|
495
|
if (computeU)
|
ykuroda |
0:13a5d365ba16
|
496
|
m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
|
ykuroda |
0:13a5d365ba16
|
497
|
}
|
ykuroda |
0:13a5d365ba16
|
498
|
}
|
ykuroda |
0:13a5d365ba16
|
499
|
|
ykuroda |
0:13a5d365ba16
|
500
|
Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
|
ykuroda |
0:13a5d365ba16
|
501
|
Scalar tau, beta;
|
ykuroda |
0:13a5d365ba16
|
502
|
Matrix<Scalar, 1, 1> ess;
|
ykuroda |
0:13a5d365ba16
|
503
|
v.makeHouseholder(ess, tau, beta);
|
ykuroda |
0:13a5d365ba16
|
504
|
|
ykuroda |
0:13a5d365ba16
|
505
|
if (beta != Scalar(0)) // if v is not zero
|
ykuroda |
0:13a5d365ba16
|
506
|
{
|
ykuroda |
0:13a5d365ba16
|
507
|
m_matT.coeffRef(iu-1, iu-2) = beta;
|
ykuroda |
0:13a5d365ba16
|
508
|
m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
|
ykuroda |
0:13a5d365ba16
|
509
|
m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
|
ykuroda |
0:13a5d365ba16
|
510
|
if (computeU)
|
ykuroda |
0:13a5d365ba16
|
511
|
m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
|
ykuroda |
0:13a5d365ba16
|
512
|
}
|
ykuroda |
0:13a5d365ba16
|
513
|
|
ykuroda |
0:13a5d365ba16
|
514
|
// clean up pollution due to round-off errors
|
ykuroda |
0:13a5d365ba16
|
515
|
for (Index i = im+2; i <= iu; ++i)
|
ykuroda |
0:13a5d365ba16
|
516
|
{
|
ykuroda |
0:13a5d365ba16
|
517
|
m_matT.coeffRef(i,i-2) = Scalar(0);
|
ykuroda |
0:13a5d365ba16
|
518
|
if (i > im+2)
|
ykuroda |
0:13a5d365ba16
|
519
|
m_matT.coeffRef(i,i-3) = Scalar(0);
|
ykuroda |
0:13a5d365ba16
|
520
|
}
|
ykuroda |
0:13a5d365ba16
|
521
|
}
|
ykuroda |
0:13a5d365ba16
|
522
|
|
ykuroda |
0:13a5d365ba16
|
523
|
} // end namespace Eigen
|
ykuroda |
0:13a5d365ba16
|
524
|
|
ykuroda |
0:13a5d365ba16
|
525
|
#endif // EIGEN_REAL_SCHUR_H |