User | Revision | Line number | New contents of line |
ykuroda |
0:13a5d365ba16
|
1
|
// This file is part of Eigen, a lightweight C++ template library
|
ykuroda |
0:13a5d365ba16
|
2
|
// for linear algebra.
|
ykuroda |
0:13a5d365ba16
|
3
|
//
|
ykuroda |
0:13a5d365ba16
|
4
|
// Copyright (C) 2009 Claire Maurice
|
ykuroda |
0:13a5d365ba16
|
5
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
ykuroda |
0:13a5d365ba16
|
6
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
ykuroda |
0:13a5d365ba16
|
7
|
//
|
ykuroda |
0:13a5d365ba16
|
8
|
// This Source Code Form is subject to the terms of the Mozilla
|
ykuroda |
0:13a5d365ba16
|
9
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
ykuroda |
0:13a5d365ba16
|
10
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
ykuroda |
0:13a5d365ba16
|
11
|
|
ykuroda |
0:13a5d365ba16
|
12
|
#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
|
ykuroda |
0:13a5d365ba16
|
13
|
#define EIGEN_COMPLEX_EIGEN_SOLVER_H
|
ykuroda |
0:13a5d365ba16
|
14
|
|
ykuroda |
0:13a5d365ba16
|
15
|
#include "./ComplexSchur.h"
|
ykuroda |
0:13a5d365ba16
|
16
|
|
ykuroda |
0:13a5d365ba16
|
17
|
namespace Eigen {
|
ykuroda |
0:13a5d365ba16
|
18
|
|
ykuroda |
0:13a5d365ba16
|
19
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
ykuroda |
0:13a5d365ba16
|
20
|
*
|
ykuroda |
0:13a5d365ba16
|
21
|
*
|
ykuroda |
0:13a5d365ba16
|
22
|
* \class ComplexEigenSolver
|
ykuroda |
0:13a5d365ba16
|
23
|
*
|
ykuroda |
0:13a5d365ba16
|
24
|
* \brief Computes eigenvalues and eigenvectors of general complex matrices
|
ykuroda |
0:13a5d365ba16
|
25
|
*
|
ykuroda |
0:13a5d365ba16
|
26
|
* \tparam _MatrixType the type of the matrix of which we are
|
ykuroda |
0:13a5d365ba16
|
27
|
* computing the eigendecomposition; this is expected to be an
|
ykuroda |
0:13a5d365ba16
|
28
|
* instantiation of the Matrix class template.
|
ykuroda |
0:13a5d365ba16
|
29
|
*
|
ykuroda |
0:13a5d365ba16
|
30
|
* The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
|
ykuroda |
0:13a5d365ba16
|
31
|
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
|
ykuroda |
0:13a5d365ba16
|
32
|
* \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on
|
ykuroda |
0:13a5d365ba16
|
33
|
* the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
|
ykuroda |
0:13a5d365ba16
|
34
|
* its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
|
ykuroda |
0:13a5d365ba16
|
35
|
* almost always invertible, in which case we have \f$ A = V D V^{-1}
|
ykuroda |
0:13a5d365ba16
|
36
|
* \f$. This is called the eigendecomposition.
|
ykuroda |
0:13a5d365ba16
|
37
|
*
|
ykuroda |
0:13a5d365ba16
|
38
|
* The main function in this class is compute(), which computes the
|
ykuroda |
0:13a5d365ba16
|
39
|
* eigenvalues and eigenvectors of a given function. The
|
ykuroda |
0:13a5d365ba16
|
40
|
* documentation for that function contains an example showing the
|
ykuroda |
0:13a5d365ba16
|
41
|
* main features of the class.
|
ykuroda |
0:13a5d365ba16
|
42
|
*
|
ykuroda |
0:13a5d365ba16
|
43
|
* \sa class EigenSolver, class SelfAdjointEigenSolver
|
ykuroda |
0:13a5d365ba16
|
44
|
*/
|
ykuroda |
0:13a5d365ba16
|
45
|
template<typename _MatrixType> class ComplexEigenSolver
|
ykuroda |
0:13a5d365ba16
|
46
|
{
|
ykuroda |
0:13a5d365ba16
|
47
|
public:
|
ykuroda |
0:13a5d365ba16
|
48
|
|
ykuroda |
0:13a5d365ba16
|
49
|
/** \brief Synonym for the template parameter \p _MatrixType. */
|
ykuroda |
0:13a5d365ba16
|
50
|
typedef _MatrixType MatrixType;
|
ykuroda |
0:13a5d365ba16
|
51
|
|
ykuroda |
0:13a5d365ba16
|
52
|
enum {
|
ykuroda |
0:13a5d365ba16
|
53
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
54
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
55
|
Options = MatrixType::Options,
|
ykuroda |
0:13a5d365ba16
|
56
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
ykuroda |
0:13a5d365ba16
|
57
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
ykuroda |
0:13a5d365ba16
|
58
|
};
|
ykuroda |
0:13a5d365ba16
|
59
|
|
ykuroda |
0:13a5d365ba16
|
60
|
/** \brief Scalar type for matrices of type #MatrixType. */
|
ykuroda |
0:13a5d365ba16
|
61
|
typedef typename MatrixType::Scalar Scalar;
|
ykuroda |
0:13a5d365ba16
|
62
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
ykuroda |
0:13a5d365ba16
|
63
|
typedef typename MatrixType::Index Index;
|
ykuroda |
0:13a5d365ba16
|
64
|
|
ykuroda |
0:13a5d365ba16
|
65
|
/** \brief Complex scalar type for #MatrixType.
|
ykuroda |
0:13a5d365ba16
|
66
|
*
|
ykuroda |
0:13a5d365ba16
|
67
|
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
ykuroda |
0:13a5d365ba16
|
68
|
* \c float or \c double) and just \c Scalar if #Scalar is
|
ykuroda |
0:13a5d365ba16
|
69
|
* complex.
|
ykuroda |
0:13a5d365ba16
|
70
|
*/
|
ykuroda |
0:13a5d365ba16
|
71
|
typedef std::complex<RealScalar> ComplexScalar;
|
ykuroda |
0:13a5d365ba16
|
72
|
|
ykuroda |
0:13a5d365ba16
|
73
|
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
ykuroda |
0:13a5d365ba16
|
74
|
*
|
ykuroda |
0:13a5d365ba16
|
75
|
* This is a column vector with entries of type #ComplexScalar.
|
ykuroda |
0:13a5d365ba16
|
76
|
* The length of the vector is the size of #MatrixType.
|
ykuroda |
0:13a5d365ba16
|
77
|
*/
|
ykuroda |
0:13a5d365ba16
|
78
|
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
|
ykuroda |
0:13a5d365ba16
|
79
|
|
ykuroda |
0:13a5d365ba16
|
80
|
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
ykuroda |
0:13a5d365ba16
|
81
|
*
|
ykuroda |
0:13a5d365ba16
|
82
|
* This is a square matrix with entries of type #ComplexScalar.
|
ykuroda |
0:13a5d365ba16
|
83
|
* The size is the same as the size of #MatrixType.
|
ykuroda |
0:13a5d365ba16
|
84
|
*/
|
ykuroda |
0:13a5d365ba16
|
85
|
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
|
ykuroda |
0:13a5d365ba16
|
86
|
|
ykuroda |
0:13a5d365ba16
|
87
|
/** \brief Default constructor.
|
ykuroda |
0:13a5d365ba16
|
88
|
*
|
ykuroda |
0:13a5d365ba16
|
89
|
* The default constructor is useful in cases in which the user intends to
|
ykuroda |
0:13a5d365ba16
|
90
|
* perform decompositions via compute().
|
ykuroda |
0:13a5d365ba16
|
91
|
*/
|
ykuroda |
0:13a5d365ba16
|
92
|
ComplexEigenSolver()
|
ykuroda |
0:13a5d365ba16
|
93
|
: m_eivec(),
|
ykuroda |
0:13a5d365ba16
|
94
|
m_eivalues(),
|
ykuroda |
0:13a5d365ba16
|
95
|
m_schur(),
|
ykuroda |
0:13a5d365ba16
|
96
|
m_isInitialized(false),
|
ykuroda |
0:13a5d365ba16
|
97
|
m_eigenvectorsOk(false),
|
ykuroda |
0:13a5d365ba16
|
98
|
m_matX()
|
ykuroda |
0:13a5d365ba16
|
99
|
{}
|
ykuroda |
0:13a5d365ba16
|
100
|
|
ykuroda |
0:13a5d365ba16
|
101
|
/** \brief Default Constructor with memory preallocation
|
ykuroda |
0:13a5d365ba16
|
102
|
*
|
ykuroda |
0:13a5d365ba16
|
103
|
* Like the default constructor but with preallocation of the internal data
|
ykuroda |
0:13a5d365ba16
|
104
|
* according to the specified problem \a size.
|
ykuroda |
0:13a5d365ba16
|
105
|
* \sa ComplexEigenSolver()
|
ykuroda |
0:13a5d365ba16
|
106
|
*/
|
ykuroda |
0:13a5d365ba16
|
107
|
ComplexEigenSolver(Index size)
|
ykuroda |
0:13a5d365ba16
|
108
|
: m_eivec(size, size),
|
ykuroda |
0:13a5d365ba16
|
109
|
m_eivalues(size),
|
ykuroda |
0:13a5d365ba16
|
110
|
m_schur(size),
|
ykuroda |
0:13a5d365ba16
|
111
|
m_isInitialized(false),
|
ykuroda |
0:13a5d365ba16
|
112
|
m_eigenvectorsOk(false),
|
ykuroda |
0:13a5d365ba16
|
113
|
m_matX(size, size)
|
ykuroda |
0:13a5d365ba16
|
114
|
{}
|
ykuroda |
0:13a5d365ba16
|
115
|
|
ykuroda |
0:13a5d365ba16
|
116
|
/** \brief Constructor; computes eigendecomposition of given matrix.
|
ykuroda |
0:13a5d365ba16
|
117
|
*
|
ykuroda |
0:13a5d365ba16
|
118
|
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
ykuroda |
0:13a5d365ba16
|
119
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
ykuroda |
0:13a5d365ba16
|
120
|
* eigenvalues are computed; if false, only the eigenvalues are
|
ykuroda |
0:13a5d365ba16
|
121
|
* computed.
|
ykuroda |
0:13a5d365ba16
|
122
|
*
|
ykuroda |
0:13a5d365ba16
|
123
|
* This constructor calls compute() to compute the eigendecomposition.
|
ykuroda |
0:13a5d365ba16
|
124
|
*/
|
ykuroda |
0:13a5d365ba16
|
125
|
ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
|
ykuroda |
0:13a5d365ba16
|
126
|
: m_eivec(matrix.rows(),matrix.cols()),
|
ykuroda |
0:13a5d365ba16
|
127
|
m_eivalues(matrix.cols()),
|
ykuroda |
0:13a5d365ba16
|
128
|
m_schur(matrix.rows()),
|
ykuroda |
0:13a5d365ba16
|
129
|
m_isInitialized(false),
|
ykuroda |
0:13a5d365ba16
|
130
|
m_eigenvectorsOk(false),
|
ykuroda |
0:13a5d365ba16
|
131
|
m_matX(matrix.rows(),matrix.cols())
|
ykuroda |
0:13a5d365ba16
|
132
|
{
|
ykuroda |
0:13a5d365ba16
|
133
|
compute(matrix, computeEigenvectors);
|
ykuroda |
0:13a5d365ba16
|
134
|
}
|
ykuroda |
0:13a5d365ba16
|
135
|
|
ykuroda |
0:13a5d365ba16
|
136
|
/** \brief Returns the eigenvectors of given matrix.
|
ykuroda |
0:13a5d365ba16
|
137
|
*
|
ykuroda |
0:13a5d365ba16
|
138
|
* \returns A const reference to the matrix whose columns are the eigenvectors.
|
ykuroda |
0:13a5d365ba16
|
139
|
*
|
ykuroda |
0:13a5d365ba16
|
140
|
* \pre Either the constructor
|
ykuroda |
0:13a5d365ba16
|
141
|
* ComplexEigenSolver(const MatrixType& matrix, bool) or the member
|
ykuroda |
0:13a5d365ba16
|
142
|
* function compute(const MatrixType& matrix, bool) has been called before
|
ykuroda |
0:13a5d365ba16
|
143
|
* to compute the eigendecomposition of a matrix, and
|
ykuroda |
0:13a5d365ba16
|
144
|
* \p computeEigenvectors was set to true (the default).
|
ykuroda |
0:13a5d365ba16
|
145
|
*
|
ykuroda |
0:13a5d365ba16
|
146
|
* This function returns a matrix whose columns are the eigenvectors. Column
|
ykuroda |
0:13a5d365ba16
|
147
|
* \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k
|
ykuroda |
0:13a5d365ba16
|
148
|
* \f$ as returned by eigenvalues(). The eigenvectors are normalized to
|
ykuroda |
0:13a5d365ba16
|
149
|
* have (Euclidean) norm equal to one. The matrix returned by this
|
ykuroda |
0:13a5d365ba16
|
150
|
* function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D
|
ykuroda |
0:13a5d365ba16
|
151
|
* V^{-1} \f$, if it exists.
|
ykuroda |
0:13a5d365ba16
|
152
|
*
|
ykuroda |
0:13a5d365ba16
|
153
|
* Example: \include ComplexEigenSolver_eigenvectors.cpp
|
ykuroda |
0:13a5d365ba16
|
154
|
* Output: \verbinclude ComplexEigenSolver_eigenvectors.out
|
ykuroda |
0:13a5d365ba16
|
155
|
*/
|
ykuroda |
0:13a5d365ba16
|
156
|
const EigenvectorType& eigenvectors() const
|
ykuroda |
0:13a5d365ba16
|
157
|
{
|
ykuroda |
0:13a5d365ba16
|
158
|
eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
159
|
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
ykuroda |
0:13a5d365ba16
|
160
|
return m_eivec;
|
ykuroda |
0:13a5d365ba16
|
161
|
}
|
ykuroda |
0:13a5d365ba16
|
162
|
|
ykuroda |
0:13a5d365ba16
|
163
|
/** \brief Returns the eigenvalues of given matrix.
|
ykuroda |
0:13a5d365ba16
|
164
|
*
|
ykuroda |
0:13a5d365ba16
|
165
|
* \returns A const reference to the column vector containing the eigenvalues.
|
ykuroda |
0:13a5d365ba16
|
166
|
*
|
ykuroda |
0:13a5d365ba16
|
167
|
* \pre Either the constructor
|
ykuroda |
0:13a5d365ba16
|
168
|
* ComplexEigenSolver(const MatrixType& matrix, bool) or the member
|
ykuroda |
0:13a5d365ba16
|
169
|
* function compute(const MatrixType& matrix, bool) has been called before
|
ykuroda |
0:13a5d365ba16
|
170
|
* to compute the eigendecomposition of a matrix.
|
ykuroda |
0:13a5d365ba16
|
171
|
*
|
ykuroda |
0:13a5d365ba16
|
172
|
* This function returns a column vector containing the
|
ykuroda |
0:13a5d365ba16
|
173
|
* eigenvalues. Eigenvalues are repeated according to their
|
ykuroda |
0:13a5d365ba16
|
174
|
* algebraic multiplicity, so there are as many eigenvalues as
|
ykuroda |
0:13a5d365ba16
|
175
|
* rows in the matrix. The eigenvalues are not sorted in any particular
|
ykuroda |
0:13a5d365ba16
|
176
|
* order.
|
ykuroda |
0:13a5d365ba16
|
177
|
*
|
ykuroda |
0:13a5d365ba16
|
178
|
* Example: \include ComplexEigenSolver_eigenvalues.cpp
|
ykuroda |
0:13a5d365ba16
|
179
|
* Output: \verbinclude ComplexEigenSolver_eigenvalues.out
|
ykuroda |
0:13a5d365ba16
|
180
|
*/
|
ykuroda |
0:13a5d365ba16
|
181
|
const EigenvalueType& eigenvalues() const
|
ykuroda |
0:13a5d365ba16
|
182
|
{
|
ykuroda |
0:13a5d365ba16
|
183
|
eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
184
|
return m_eivalues;
|
ykuroda |
0:13a5d365ba16
|
185
|
}
|
ykuroda |
0:13a5d365ba16
|
186
|
|
ykuroda |
0:13a5d365ba16
|
187
|
/** \brief Computes eigendecomposition of given matrix.
|
ykuroda |
0:13a5d365ba16
|
188
|
*
|
ykuroda |
0:13a5d365ba16
|
189
|
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
ykuroda |
0:13a5d365ba16
|
190
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
ykuroda |
0:13a5d365ba16
|
191
|
* eigenvalues are computed; if false, only the eigenvalues are
|
ykuroda |
0:13a5d365ba16
|
192
|
* computed.
|
ykuroda |
0:13a5d365ba16
|
193
|
* \returns Reference to \c *this
|
ykuroda |
0:13a5d365ba16
|
194
|
*
|
ykuroda |
0:13a5d365ba16
|
195
|
* This function computes the eigenvalues of the complex matrix \p matrix.
|
ykuroda |
0:13a5d365ba16
|
196
|
* The eigenvalues() function can be used to retrieve them. If
|
ykuroda |
0:13a5d365ba16
|
197
|
* \p computeEigenvectors is true, then the eigenvectors are also computed
|
ykuroda |
0:13a5d365ba16
|
198
|
* and can be retrieved by calling eigenvectors().
|
ykuroda |
0:13a5d365ba16
|
199
|
*
|
ykuroda |
0:13a5d365ba16
|
200
|
* The matrix is first reduced to Schur form using the
|
ykuroda |
0:13a5d365ba16
|
201
|
* ComplexSchur class. The Schur decomposition is then used to
|
ykuroda |
0:13a5d365ba16
|
202
|
* compute the eigenvalues and eigenvectors.
|
ykuroda |
0:13a5d365ba16
|
203
|
*
|
ykuroda |
0:13a5d365ba16
|
204
|
* The cost of the computation is dominated by the cost of the
|
ykuroda |
0:13a5d365ba16
|
205
|
* Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
|
ykuroda |
0:13a5d365ba16
|
206
|
* is the size of the matrix.
|
ykuroda |
0:13a5d365ba16
|
207
|
*
|
ykuroda |
0:13a5d365ba16
|
208
|
* Example: \include ComplexEigenSolver_compute.cpp
|
ykuroda |
0:13a5d365ba16
|
209
|
* Output: \verbinclude ComplexEigenSolver_compute.out
|
ykuroda |
0:13a5d365ba16
|
210
|
*/
|
ykuroda |
0:13a5d365ba16
|
211
|
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
|
ykuroda |
0:13a5d365ba16
|
212
|
|
ykuroda |
0:13a5d365ba16
|
213
|
/** \brief Reports whether previous computation was successful.
|
ykuroda |
0:13a5d365ba16
|
214
|
*
|
ykuroda |
0:13a5d365ba16
|
215
|
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
ykuroda |
0:13a5d365ba16
|
216
|
*/
|
ykuroda |
0:13a5d365ba16
|
217
|
ComputationInfo info() const
|
ykuroda |
0:13a5d365ba16
|
218
|
{
|
ykuroda |
0:13a5d365ba16
|
219
|
eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
ykuroda |
0:13a5d365ba16
|
220
|
return m_schur.info();
|
ykuroda |
0:13a5d365ba16
|
221
|
}
|
ykuroda |
0:13a5d365ba16
|
222
|
|
ykuroda |
0:13a5d365ba16
|
223
|
/** \brief Sets the maximum number of iterations allowed. */
|
ykuroda |
0:13a5d365ba16
|
224
|
ComplexEigenSolver& setMaxIterations(Index maxIters)
|
ykuroda |
0:13a5d365ba16
|
225
|
{
|
ykuroda |
0:13a5d365ba16
|
226
|
m_schur.setMaxIterations(maxIters);
|
ykuroda |
0:13a5d365ba16
|
227
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
228
|
}
|
ykuroda |
0:13a5d365ba16
|
229
|
|
ykuroda |
0:13a5d365ba16
|
230
|
/** \brief Returns the maximum number of iterations. */
|
ykuroda |
0:13a5d365ba16
|
231
|
Index getMaxIterations()
|
ykuroda |
0:13a5d365ba16
|
232
|
{
|
ykuroda |
0:13a5d365ba16
|
233
|
return m_schur.getMaxIterations();
|
ykuroda |
0:13a5d365ba16
|
234
|
}
|
ykuroda |
0:13a5d365ba16
|
235
|
|
ykuroda |
0:13a5d365ba16
|
236
|
protected:
|
ykuroda |
0:13a5d365ba16
|
237
|
|
ykuroda |
0:13a5d365ba16
|
238
|
static void check_template_parameters()
|
ykuroda |
0:13a5d365ba16
|
239
|
{
|
ykuroda |
0:13a5d365ba16
|
240
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
ykuroda |
0:13a5d365ba16
|
241
|
}
|
ykuroda |
0:13a5d365ba16
|
242
|
|
ykuroda |
0:13a5d365ba16
|
243
|
EigenvectorType m_eivec;
|
ykuroda |
0:13a5d365ba16
|
244
|
EigenvalueType m_eivalues;
|
ykuroda |
0:13a5d365ba16
|
245
|
ComplexSchur<MatrixType> m_schur;
|
ykuroda |
0:13a5d365ba16
|
246
|
bool m_isInitialized;
|
ykuroda |
0:13a5d365ba16
|
247
|
bool m_eigenvectorsOk;
|
ykuroda |
0:13a5d365ba16
|
248
|
EigenvectorType m_matX;
|
ykuroda |
0:13a5d365ba16
|
249
|
|
ykuroda |
0:13a5d365ba16
|
250
|
private:
|
ykuroda |
0:13a5d365ba16
|
251
|
void doComputeEigenvectors(const RealScalar& matrixnorm);
|
ykuroda |
0:13a5d365ba16
|
252
|
void sortEigenvalues(bool computeEigenvectors);
|
ykuroda |
0:13a5d365ba16
|
253
|
};
|
ykuroda |
0:13a5d365ba16
|
254
|
|
ykuroda |
0:13a5d365ba16
|
255
|
|
ykuroda |
0:13a5d365ba16
|
256
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
257
|
ComplexEigenSolver<MatrixType>&
|
ykuroda |
0:13a5d365ba16
|
258
|
ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
ykuroda |
0:13a5d365ba16
|
259
|
{
|
ykuroda |
0:13a5d365ba16
|
260
|
check_template_parameters();
|
ykuroda |
0:13a5d365ba16
|
261
|
|
ykuroda |
0:13a5d365ba16
|
262
|
// this code is inspired from Jampack
|
ykuroda |
0:13a5d365ba16
|
263
|
eigen_assert(matrix.cols() == matrix.rows());
|
ykuroda |
0:13a5d365ba16
|
264
|
|
ykuroda |
0:13a5d365ba16
|
265
|
// Do a complex Schur decomposition, A = U T U^*
|
ykuroda |
0:13a5d365ba16
|
266
|
// The eigenvalues are on the diagonal of T.
|
ykuroda |
0:13a5d365ba16
|
267
|
m_schur.compute(matrix, computeEigenvectors);
|
ykuroda |
0:13a5d365ba16
|
268
|
|
ykuroda |
0:13a5d365ba16
|
269
|
if(m_schur.info() == Success)
|
ykuroda |
0:13a5d365ba16
|
270
|
{
|
ykuroda |
0:13a5d365ba16
|
271
|
m_eivalues = m_schur.matrixT().diagonal();
|
ykuroda |
0:13a5d365ba16
|
272
|
if(computeEigenvectors)
|
ykuroda |
0:13a5d365ba16
|
273
|
doComputeEigenvectors(matrix.norm());
|
ykuroda |
0:13a5d365ba16
|
274
|
sortEigenvalues(computeEigenvectors);
|
ykuroda |
0:13a5d365ba16
|
275
|
}
|
ykuroda |
0:13a5d365ba16
|
276
|
|
ykuroda |
0:13a5d365ba16
|
277
|
m_isInitialized = true;
|
ykuroda |
0:13a5d365ba16
|
278
|
m_eigenvectorsOk = computeEigenvectors;
|
ykuroda |
0:13a5d365ba16
|
279
|
return *this;
|
ykuroda |
0:13a5d365ba16
|
280
|
}
|
ykuroda |
0:13a5d365ba16
|
281
|
|
ykuroda |
0:13a5d365ba16
|
282
|
|
ykuroda |
0:13a5d365ba16
|
283
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
284
|
void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(const RealScalar& matrixnorm)
|
ykuroda |
0:13a5d365ba16
|
285
|
{
|
ykuroda |
0:13a5d365ba16
|
286
|
const Index n = m_eivalues.size();
|
ykuroda |
0:13a5d365ba16
|
287
|
|
ykuroda |
0:13a5d365ba16
|
288
|
// Compute X such that T = X D X^(-1), where D is the diagonal of T.
|
ykuroda |
0:13a5d365ba16
|
289
|
// The matrix X is unit triangular.
|
ykuroda |
0:13a5d365ba16
|
290
|
m_matX = EigenvectorType::Zero(n, n);
|
ykuroda |
0:13a5d365ba16
|
291
|
for(Index k=n-1 ; k>=0 ; k--)
|
ykuroda |
0:13a5d365ba16
|
292
|
{
|
ykuroda |
0:13a5d365ba16
|
293
|
m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
|
ykuroda |
0:13a5d365ba16
|
294
|
// Compute X(i,k) using the (i,k) entry of the equation X T = D X
|
ykuroda |
0:13a5d365ba16
|
295
|
for(Index i=k-1 ; i>=0 ; i--)
|
ykuroda |
0:13a5d365ba16
|
296
|
{
|
ykuroda |
0:13a5d365ba16
|
297
|
m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
|
ykuroda |
0:13a5d365ba16
|
298
|
if(k-i-1>0)
|
ykuroda |
0:13a5d365ba16
|
299
|
m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
|
ykuroda |
0:13a5d365ba16
|
300
|
ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
|
ykuroda |
0:13a5d365ba16
|
301
|
if(z==ComplexScalar(0))
|
ykuroda |
0:13a5d365ba16
|
302
|
{
|
ykuroda |
0:13a5d365ba16
|
303
|
// If the i-th and k-th eigenvalue are equal, then z equals 0.
|
ykuroda |
0:13a5d365ba16
|
304
|
// Use a small value instead, to prevent division by zero.
|
ykuroda |
0:13a5d365ba16
|
305
|
numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
|
ykuroda |
0:13a5d365ba16
|
306
|
}
|
ykuroda |
0:13a5d365ba16
|
307
|
m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
|
ykuroda |
0:13a5d365ba16
|
308
|
}
|
ykuroda |
0:13a5d365ba16
|
309
|
}
|
ykuroda |
0:13a5d365ba16
|
310
|
|
ykuroda |
0:13a5d365ba16
|
311
|
// Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
|
ykuroda |
0:13a5d365ba16
|
312
|
m_eivec.noalias() = m_schur.matrixU() * m_matX;
|
ykuroda |
0:13a5d365ba16
|
313
|
// .. and normalize the eigenvectors
|
ykuroda |
0:13a5d365ba16
|
314
|
for(Index k=0 ; k<n ; k++)
|
ykuroda |
0:13a5d365ba16
|
315
|
{
|
ykuroda |
0:13a5d365ba16
|
316
|
m_eivec.col(k).normalize();
|
ykuroda |
0:13a5d365ba16
|
317
|
}
|
ykuroda |
0:13a5d365ba16
|
318
|
}
|
ykuroda |
0:13a5d365ba16
|
319
|
|
ykuroda |
0:13a5d365ba16
|
320
|
|
ykuroda |
0:13a5d365ba16
|
321
|
template<typename MatrixType>
|
ykuroda |
0:13a5d365ba16
|
322
|
void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
|
ykuroda |
0:13a5d365ba16
|
323
|
{
|
ykuroda |
0:13a5d365ba16
|
324
|
const Index n = m_eivalues.size();
|
ykuroda |
0:13a5d365ba16
|
325
|
for (Index i=0; i<n; i++)
|
ykuroda |
0:13a5d365ba16
|
326
|
{
|
ykuroda |
0:13a5d365ba16
|
327
|
Index k;
|
ykuroda |
0:13a5d365ba16
|
328
|
m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
|
ykuroda |
0:13a5d365ba16
|
329
|
if (k != 0)
|
ykuroda |
0:13a5d365ba16
|
330
|
{
|
ykuroda |
0:13a5d365ba16
|
331
|
k += i;
|
ykuroda |
0:13a5d365ba16
|
332
|
std::swap(m_eivalues[k],m_eivalues[i]);
|
ykuroda |
0:13a5d365ba16
|
333
|
if(computeEigenvectors)
|
ykuroda |
0:13a5d365ba16
|
334
|
m_eivec.col(i).swap(m_eivec.col(k));
|
ykuroda |
0:13a5d365ba16
|
335
|
}
|
ykuroda |
0:13a5d365ba16
|
336
|
}
|
ykuroda |
0:13a5d365ba16
|
337
|
}
|
ykuroda |
0:13a5d365ba16
|
338
|
|
ykuroda |
0:13a5d365ba16
|
339
|
} // end namespace Eigen
|
ykuroda |
0:13a5d365ba16
|
340
|
|
ykuroda |
0:13a5d365ba16
|
341
|
#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H |