Eigen libary for mbed

Committer:
jsoh91
Date:
Tue Sep 24 00:18:23 2019 +0000
Revision:
1:3b8049da21b8
Parent:
0:13a5d365ba16
ignore and revise some of error parts

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ykuroda 0:13a5d365ba16 1 // This file is part of Eigen, a lightweight C++ template library
ykuroda 0:13a5d365ba16 2 // for linear algebra.
ykuroda 0:13a5d365ba16 3 //
ykuroda 0:13a5d365ba16 4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
ykuroda 0:13a5d365ba16 5 //
ykuroda 0:13a5d365ba16 6 // This Source Code Form is subject to the terms of the Mozilla
ykuroda 0:13a5d365ba16 7 // Public License v. 2.0. If a copy of the MPL was not distributed
ykuroda 0:13a5d365ba16 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
ykuroda 0:13a5d365ba16 9
ykuroda 0:13a5d365ba16 10 #ifndef EIGEN_STABLENORM_H
ykuroda 0:13a5d365ba16 11 #define EIGEN_STABLENORM_H
ykuroda 0:13a5d365ba16 12
ykuroda 0:13a5d365ba16 13 namespace Eigen {
ykuroda 0:13a5d365ba16 14
ykuroda 0:13a5d365ba16 15 namespace internal {
ykuroda 0:13a5d365ba16 16
ykuroda 0:13a5d365ba16 17 template<typename ExpressionType, typename Scalar>
ykuroda 0:13a5d365ba16 18 inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
ykuroda 0:13a5d365ba16 19 {
ykuroda 0:13a5d365ba16 20 using std::max;
ykuroda 0:13a5d365ba16 21 Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
ykuroda 0:13a5d365ba16 22
ykuroda 0:13a5d365ba16 23 if (maxCoeff>scale)
ykuroda 0:13a5d365ba16 24 {
ykuroda 0:13a5d365ba16 25 ssq = ssq * numext::abs2(scale/maxCoeff);
ykuroda 0:13a5d365ba16 26 Scalar tmp = Scalar(1)/maxCoeff;
ykuroda 0:13a5d365ba16 27 if(tmp > NumTraits<Scalar>::highest())
ykuroda 0:13a5d365ba16 28 {
ykuroda 0:13a5d365ba16 29 invScale = NumTraits<Scalar>::highest();
ykuroda 0:13a5d365ba16 30 scale = Scalar(1)/invScale;
ykuroda 0:13a5d365ba16 31 }
ykuroda 0:13a5d365ba16 32 else
ykuroda 0:13a5d365ba16 33 {
ykuroda 0:13a5d365ba16 34 scale = maxCoeff;
ykuroda 0:13a5d365ba16 35 invScale = tmp;
ykuroda 0:13a5d365ba16 36 }
ykuroda 0:13a5d365ba16 37 }
ykuroda 0:13a5d365ba16 38
ykuroda 0:13a5d365ba16 39 // TODO if the maxCoeff is much much smaller than the current scale,
ykuroda 0:13a5d365ba16 40 // then we can neglect this sub vector
ykuroda 0:13a5d365ba16 41 if(scale>Scalar(0)) // if scale==0, then bl is 0
ykuroda 0:13a5d365ba16 42 ssq += (bl*invScale).squaredNorm();
ykuroda 0:13a5d365ba16 43 }
ykuroda 0:13a5d365ba16 44
ykuroda 0:13a5d365ba16 45 template<typename Derived>
ykuroda 0:13a5d365ba16 46 inline typename NumTraits<typename traits<Derived>::Scalar>::Real
ykuroda 0:13a5d365ba16 47 blueNorm_impl(const EigenBase<Derived>& _vec)
ykuroda 0:13a5d365ba16 48 {
ykuroda 0:13a5d365ba16 49 typedef typename Derived::RealScalar RealScalar;
ykuroda 0:13a5d365ba16 50 typedef typename Derived::Index Index;
ykuroda 0:13a5d365ba16 51 using std::pow;
ykuroda 0:13a5d365ba16 52 using std::min;
ykuroda 0:13a5d365ba16 53 using std::max;
ykuroda 0:13a5d365ba16 54 using std::sqrt;
ykuroda 0:13a5d365ba16 55 using std::abs;
ykuroda 0:13a5d365ba16 56 const Derived& vec(_vec.derived());
ykuroda 0:13a5d365ba16 57 static bool initialized = false;
ykuroda 0:13a5d365ba16 58 static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
ykuroda 0:13a5d365ba16 59 if(!initialized)
ykuroda 0:13a5d365ba16 60 {
ykuroda 0:13a5d365ba16 61 int ibeta, it, iemin, iemax, iexp;
ykuroda 0:13a5d365ba16 62 RealScalar eps;
ykuroda 0:13a5d365ba16 63 // This program calculates the machine-dependent constants
ykuroda 0:13a5d365ba16 64 // bl, b2, slm, s2m, relerr overfl
ykuroda 0:13a5d365ba16 65 // from the "basic" machine-dependent numbers
ykuroda 0:13a5d365ba16 66 // nbig, ibeta, it, iemin, iemax, rbig.
ykuroda 0:13a5d365ba16 67 // The following define the basic machine-dependent constants.
ykuroda 0:13a5d365ba16 68 // For portability, the PORT subprograms "ilmaeh" and "rlmach"
ykuroda 0:13a5d365ba16 69 // are used. For any specific computer, each of the assignment
ykuroda 0:13a5d365ba16 70 // statements can be replaced
ykuroda 0:13a5d365ba16 71 ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
ykuroda 0:13a5d365ba16 72 it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
ykuroda 0:13a5d365ba16 73 iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
ykuroda 0:13a5d365ba16 74 iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
ykuroda 0:13a5d365ba16 75 rbig = (std::numeric_limits<RealScalar>::max)(); // largest floating-point number
ykuroda 0:13a5d365ba16 76
ykuroda 0:13a5d365ba16 77 iexp = -((1-iemin)/2);
ykuroda 0:13a5d365ba16 78 b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange
ykuroda 0:13a5d365ba16 79 iexp = (iemax + 1 - it)/2;
ykuroda 0:13a5d365ba16 80 b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange
ykuroda 0:13a5d365ba16 81
ykuroda 0:13a5d365ba16 82 iexp = (2-iemin)/2;
ykuroda 0:13a5d365ba16 83 s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range
ykuroda 0:13a5d365ba16 84 iexp = - ((iemax+it)/2);
ykuroda 0:13a5d365ba16 85 s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range
ykuroda 0:13a5d365ba16 86
ykuroda 0:13a5d365ba16 87 overfl = rbig*s2m; // overflow boundary for abig
ykuroda 0:13a5d365ba16 88 eps = RealScalar(pow(double(ibeta), 1-it));
ykuroda 0:13a5d365ba16 89 relerr = sqrt(eps); // tolerance for neglecting asml
ykuroda 0:13a5d365ba16 90 initialized = true;
ykuroda 0:13a5d365ba16 91 }
ykuroda 0:13a5d365ba16 92 Index n = vec.size();
ykuroda 0:13a5d365ba16 93 RealScalar ab2 = b2 / RealScalar(n);
ykuroda 0:13a5d365ba16 94 RealScalar asml = RealScalar(0);
ykuroda 0:13a5d365ba16 95 RealScalar amed = RealScalar(0);
ykuroda 0:13a5d365ba16 96 RealScalar abig = RealScalar(0);
ykuroda 0:13a5d365ba16 97 for(typename Derived::InnerIterator it(vec, 0); it; ++it)
ykuroda 0:13a5d365ba16 98 {
ykuroda 0:13a5d365ba16 99 RealScalar ax = abs(it.value());
ykuroda 0:13a5d365ba16 100 if(ax > ab2) abig += numext::abs2(ax*s2m);
ykuroda 0:13a5d365ba16 101 else if(ax < b1) asml += numext::abs2(ax*s1m);
ykuroda 0:13a5d365ba16 102 else amed += numext::abs2(ax);
ykuroda 0:13a5d365ba16 103 }
ykuroda 0:13a5d365ba16 104 if(abig > RealScalar(0))
ykuroda 0:13a5d365ba16 105 {
ykuroda 0:13a5d365ba16 106 abig = sqrt(abig);
ykuroda 0:13a5d365ba16 107 if(abig > overfl)
ykuroda 0:13a5d365ba16 108 {
ykuroda 0:13a5d365ba16 109 return rbig;
ykuroda 0:13a5d365ba16 110 }
ykuroda 0:13a5d365ba16 111 if(amed > RealScalar(0))
ykuroda 0:13a5d365ba16 112 {
ykuroda 0:13a5d365ba16 113 abig = abig/s2m;
ykuroda 0:13a5d365ba16 114 amed = sqrt(amed);
ykuroda 0:13a5d365ba16 115 }
ykuroda 0:13a5d365ba16 116 else
ykuroda 0:13a5d365ba16 117 return abig/s2m;
ykuroda 0:13a5d365ba16 118 }
ykuroda 0:13a5d365ba16 119 else if(asml > RealScalar(0))
ykuroda 0:13a5d365ba16 120 {
ykuroda 0:13a5d365ba16 121 if (amed > RealScalar(0))
ykuroda 0:13a5d365ba16 122 {
ykuroda 0:13a5d365ba16 123 abig = sqrt(amed);
ykuroda 0:13a5d365ba16 124 amed = sqrt(asml) / s1m;
ykuroda 0:13a5d365ba16 125 }
ykuroda 0:13a5d365ba16 126 else
ykuroda 0:13a5d365ba16 127 return sqrt(asml)/s1m;
ykuroda 0:13a5d365ba16 128 }
ykuroda 0:13a5d365ba16 129 else
ykuroda 0:13a5d365ba16 130 return sqrt(amed);
ykuroda 0:13a5d365ba16 131 asml = (min)(abig, amed);
ykuroda 0:13a5d365ba16 132 abig = (max)(abig, amed);
ykuroda 0:13a5d365ba16 133 if(asml <= abig*relerr)
ykuroda 0:13a5d365ba16 134 return abig;
ykuroda 0:13a5d365ba16 135 else
ykuroda 0:13a5d365ba16 136 return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
ykuroda 0:13a5d365ba16 137 }
ykuroda 0:13a5d365ba16 138
ykuroda 0:13a5d365ba16 139 } // end namespace internal
ykuroda 0:13a5d365ba16 140
ykuroda 0:13a5d365ba16 141 /** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
ykuroda 0:13a5d365ba16 142 * This version use a blockwise two passes algorithm:
ykuroda 0:13a5d365ba16 143 * 1 - find the absolute largest coefficient \c s
ykuroda 0:13a5d365ba16 144 * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
ykuroda 0:13a5d365ba16 145 *
ykuroda 0:13a5d365ba16 146 * For architecture/scalar types supporting vectorization, this version
ykuroda 0:13a5d365ba16 147 * is faster than blueNorm(). Otherwise the blueNorm() is much faster.
ykuroda 0:13a5d365ba16 148 *
ykuroda 0:13a5d365ba16 149 * \sa norm(), blueNorm(), hypotNorm()
ykuroda 0:13a5d365ba16 150 */
ykuroda 0:13a5d365ba16 151 template<typename Derived>
ykuroda 0:13a5d365ba16 152 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
ykuroda 0:13a5d365ba16 153 MatrixBase<Derived>::stableNorm() const
ykuroda 0:13a5d365ba16 154 {
ykuroda 0:13a5d365ba16 155 using std::min;
ykuroda 0:13a5d365ba16 156 using std::sqrt;
ykuroda 0:13a5d365ba16 157 const Index blockSize = 4096;
ykuroda 0:13a5d365ba16 158 RealScalar scale(0);
ykuroda 0:13a5d365ba16 159 RealScalar invScale(1);
ykuroda 0:13a5d365ba16 160 RealScalar ssq(0); // sum of square
ykuroda 0:13a5d365ba16 161 enum {
ykuroda 0:13a5d365ba16 162 Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
ykuroda 0:13a5d365ba16 163 };
ykuroda 0:13a5d365ba16 164 Index n = size();
ykuroda 0:13a5d365ba16 165 Index bi = internal::first_aligned(derived());
ykuroda 0:13a5d365ba16 166 if (bi>0)
ykuroda 0:13a5d365ba16 167 internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
ykuroda 0:13a5d365ba16 168 for (; bi<n; bi+=blockSize)
ykuroda 0:13a5d365ba16 169 internal::stable_norm_kernel(this->segment(bi,(min)(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
ykuroda 0:13a5d365ba16 170 return scale * sqrt(ssq);
ykuroda 0:13a5d365ba16 171 }
ykuroda 0:13a5d365ba16 172
ykuroda 0:13a5d365ba16 173 /** \returns the \em l2 norm of \c *this using the Blue's algorithm.
ykuroda 0:13a5d365ba16 174 * A Portable Fortran Program to Find the Euclidean Norm of a Vector,
ykuroda 0:13a5d365ba16 175 * ACM TOMS, Vol 4, Issue 1, 1978.
ykuroda 0:13a5d365ba16 176 *
ykuroda 0:13a5d365ba16 177 * For architecture/scalar types without vectorization, this version
ykuroda 0:13a5d365ba16 178 * is much faster than stableNorm(). Otherwise the stableNorm() is faster.
ykuroda 0:13a5d365ba16 179 *
ykuroda 0:13a5d365ba16 180 * \sa norm(), stableNorm(), hypotNorm()
ykuroda 0:13a5d365ba16 181 */
ykuroda 0:13a5d365ba16 182 template<typename Derived>
ykuroda 0:13a5d365ba16 183 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
ykuroda 0:13a5d365ba16 184 MatrixBase<Derived>::blueNorm() const
ykuroda 0:13a5d365ba16 185 {
ykuroda 0:13a5d365ba16 186 return internal::blueNorm_impl(*this);
ykuroda 0:13a5d365ba16 187 }
ykuroda 0:13a5d365ba16 188
ykuroda 0:13a5d365ba16 189 /** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
ykuroda 0:13a5d365ba16 190 * This version use a concatenation of hypot() calls, and it is very slow.
ykuroda 0:13a5d365ba16 191 *
ykuroda 0:13a5d365ba16 192 * \sa norm(), stableNorm()
ykuroda 0:13a5d365ba16 193 */
ykuroda 0:13a5d365ba16 194 template<typename Derived>
ykuroda 0:13a5d365ba16 195 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
ykuroda 0:13a5d365ba16 196 MatrixBase<Derived>::hypotNorm() const
ykuroda 0:13a5d365ba16 197 {
ykuroda 0:13a5d365ba16 198 return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
ykuroda 0:13a5d365ba16 199 }
ykuroda 0:13a5d365ba16 200
ykuroda 0:13a5d365ba16 201 } // end namespace Eigen
ykuroda 0:13a5d365ba16 202
ykuroda 0:13a5d365ba16 203 #endif // EIGEN_STABLENORM_H