Eigen libary for mbed
src/LU/Inverse.h@0:13a5d365ba16, 2016-10-13 (annotated)
- Committer:
- ykuroda
- Date:
- Thu Oct 13 04:07:23 2016 +0000
- Revision:
- 0:13a5d365ba16
First commint, Eigne Matrix Class Library
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
ykuroda | 0:13a5d365ba16 | 1 | // This file is part of Eigen, a lightweight C++ template library |
ykuroda | 0:13a5d365ba16 | 2 | // for linear algebra. |
ykuroda | 0:13a5d365ba16 | 3 | // |
ykuroda | 0:13a5d365ba16 | 4 | // Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
ykuroda | 0:13a5d365ba16 | 5 | // |
ykuroda | 0:13a5d365ba16 | 6 | // This Source Code Form is subject to the terms of the Mozilla |
ykuroda | 0:13a5d365ba16 | 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
ykuroda | 0:13a5d365ba16 | 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
ykuroda | 0:13a5d365ba16 | 9 | |
ykuroda | 0:13a5d365ba16 | 10 | #ifndef EIGEN_INVERSE_H |
ykuroda | 0:13a5d365ba16 | 11 | #define EIGEN_INVERSE_H |
ykuroda | 0:13a5d365ba16 | 12 | |
ykuroda | 0:13a5d365ba16 | 13 | namespace Eigen { |
ykuroda | 0:13a5d365ba16 | 14 | |
ykuroda | 0:13a5d365ba16 | 15 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 16 | |
ykuroda | 0:13a5d365ba16 | 17 | /********************************** |
ykuroda | 0:13a5d365ba16 | 18 | *** General case implementation *** |
ykuroda | 0:13a5d365ba16 | 19 | **********************************/ |
ykuroda | 0:13a5d365ba16 | 20 | |
ykuroda | 0:13a5d365ba16 | 21 | template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> |
ykuroda | 0:13a5d365ba16 | 22 | struct compute_inverse |
ykuroda | 0:13a5d365ba16 | 23 | { |
ykuroda | 0:13a5d365ba16 | 24 | static inline void run(const MatrixType& matrix, ResultType& result) |
ykuroda | 0:13a5d365ba16 | 25 | { |
ykuroda | 0:13a5d365ba16 | 26 | result = matrix.partialPivLu().inverse(); |
ykuroda | 0:13a5d365ba16 | 27 | } |
ykuroda | 0:13a5d365ba16 | 28 | }; |
ykuroda | 0:13a5d365ba16 | 29 | |
ykuroda | 0:13a5d365ba16 | 30 | template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> |
ykuroda | 0:13a5d365ba16 | 31 | struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ }; |
ykuroda | 0:13a5d365ba16 | 32 | |
ykuroda | 0:13a5d365ba16 | 33 | /**************************** |
ykuroda | 0:13a5d365ba16 | 34 | *** Size 1 implementation *** |
ykuroda | 0:13a5d365ba16 | 35 | ****************************/ |
ykuroda | 0:13a5d365ba16 | 36 | |
ykuroda | 0:13a5d365ba16 | 37 | template<typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 38 | struct compute_inverse<MatrixType, ResultType, 1> |
ykuroda | 0:13a5d365ba16 | 39 | { |
ykuroda | 0:13a5d365ba16 | 40 | static inline void run(const MatrixType& matrix, ResultType& result) |
ykuroda | 0:13a5d365ba16 | 41 | { |
ykuroda | 0:13a5d365ba16 | 42 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 43 | result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0); |
ykuroda | 0:13a5d365ba16 | 44 | } |
ykuroda | 0:13a5d365ba16 | 45 | }; |
ykuroda | 0:13a5d365ba16 | 46 | |
ykuroda | 0:13a5d365ba16 | 47 | template<typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 48 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1> |
ykuroda | 0:13a5d365ba16 | 49 | { |
ykuroda | 0:13a5d365ba16 | 50 | static inline void run( |
ykuroda | 0:13a5d365ba16 | 51 | const MatrixType& matrix, |
ykuroda | 0:13a5d365ba16 | 52 | const typename MatrixType::RealScalar& absDeterminantThreshold, |
ykuroda | 0:13a5d365ba16 | 53 | ResultType& result, |
ykuroda | 0:13a5d365ba16 | 54 | typename ResultType::Scalar& determinant, |
ykuroda | 0:13a5d365ba16 | 55 | bool& invertible |
ykuroda | 0:13a5d365ba16 | 56 | ) |
ykuroda | 0:13a5d365ba16 | 57 | { |
ykuroda | 0:13a5d365ba16 | 58 | using std::abs; |
ykuroda | 0:13a5d365ba16 | 59 | determinant = matrix.coeff(0,0); |
ykuroda | 0:13a5d365ba16 | 60 | invertible = abs(determinant) > absDeterminantThreshold; |
ykuroda | 0:13a5d365ba16 | 61 | if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; |
ykuroda | 0:13a5d365ba16 | 62 | } |
ykuroda | 0:13a5d365ba16 | 63 | }; |
ykuroda | 0:13a5d365ba16 | 64 | |
ykuroda | 0:13a5d365ba16 | 65 | /**************************** |
ykuroda | 0:13a5d365ba16 | 66 | *** Size 2 implementation *** |
ykuroda | 0:13a5d365ba16 | 67 | ****************************/ |
ykuroda | 0:13a5d365ba16 | 68 | |
ykuroda | 0:13a5d365ba16 | 69 | template<typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 70 | inline void compute_inverse_size2_helper( |
ykuroda | 0:13a5d365ba16 | 71 | const MatrixType& matrix, const typename ResultType::Scalar& invdet, |
ykuroda | 0:13a5d365ba16 | 72 | ResultType& result) |
ykuroda | 0:13a5d365ba16 | 73 | { |
ykuroda | 0:13a5d365ba16 | 74 | result.coeffRef(0,0) = matrix.coeff(1,1) * invdet; |
ykuroda | 0:13a5d365ba16 | 75 | result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; |
ykuroda | 0:13a5d365ba16 | 76 | result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; |
ykuroda | 0:13a5d365ba16 | 77 | result.coeffRef(1,1) = matrix.coeff(0,0) * invdet; |
ykuroda | 0:13a5d365ba16 | 78 | } |
ykuroda | 0:13a5d365ba16 | 79 | |
ykuroda | 0:13a5d365ba16 | 80 | template<typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 81 | struct compute_inverse<MatrixType, ResultType, 2> |
ykuroda | 0:13a5d365ba16 | 82 | { |
ykuroda | 0:13a5d365ba16 | 83 | static inline void run(const MatrixType& matrix, ResultType& result) |
ykuroda | 0:13a5d365ba16 | 84 | { |
ykuroda | 0:13a5d365ba16 | 85 | typedef typename ResultType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 86 | const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); |
ykuroda | 0:13a5d365ba16 | 87 | compute_inverse_size2_helper(matrix, invdet, result); |
ykuroda | 0:13a5d365ba16 | 88 | } |
ykuroda | 0:13a5d365ba16 | 89 | }; |
ykuroda | 0:13a5d365ba16 | 90 | |
ykuroda | 0:13a5d365ba16 | 91 | template<typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 92 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2> |
ykuroda | 0:13a5d365ba16 | 93 | { |
ykuroda | 0:13a5d365ba16 | 94 | static inline void run( |
ykuroda | 0:13a5d365ba16 | 95 | const MatrixType& matrix, |
ykuroda | 0:13a5d365ba16 | 96 | const typename MatrixType::RealScalar& absDeterminantThreshold, |
ykuroda | 0:13a5d365ba16 | 97 | ResultType& inverse, |
ykuroda | 0:13a5d365ba16 | 98 | typename ResultType::Scalar& determinant, |
ykuroda | 0:13a5d365ba16 | 99 | bool& invertible |
ykuroda | 0:13a5d365ba16 | 100 | ) |
ykuroda | 0:13a5d365ba16 | 101 | { |
ykuroda | 0:13a5d365ba16 | 102 | using std::abs; |
ykuroda | 0:13a5d365ba16 | 103 | typedef typename ResultType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 104 | determinant = matrix.determinant(); |
ykuroda | 0:13a5d365ba16 | 105 | invertible = abs(determinant) > absDeterminantThreshold; |
ykuroda | 0:13a5d365ba16 | 106 | if(!invertible) return; |
ykuroda | 0:13a5d365ba16 | 107 | const Scalar invdet = Scalar(1) / determinant; |
ykuroda | 0:13a5d365ba16 | 108 | compute_inverse_size2_helper(matrix, invdet, inverse); |
ykuroda | 0:13a5d365ba16 | 109 | } |
ykuroda | 0:13a5d365ba16 | 110 | }; |
ykuroda | 0:13a5d365ba16 | 111 | |
ykuroda | 0:13a5d365ba16 | 112 | /**************************** |
ykuroda | 0:13a5d365ba16 | 113 | *** Size 3 implementation *** |
ykuroda | 0:13a5d365ba16 | 114 | ****************************/ |
ykuroda | 0:13a5d365ba16 | 115 | |
ykuroda | 0:13a5d365ba16 | 116 | template<typename MatrixType, int i, int j> |
ykuroda | 0:13a5d365ba16 | 117 | inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m) |
ykuroda | 0:13a5d365ba16 | 118 | { |
ykuroda | 0:13a5d365ba16 | 119 | enum { |
ykuroda | 0:13a5d365ba16 | 120 | i1 = (i+1) % 3, |
ykuroda | 0:13a5d365ba16 | 121 | i2 = (i+2) % 3, |
ykuroda | 0:13a5d365ba16 | 122 | j1 = (j+1) % 3, |
ykuroda | 0:13a5d365ba16 | 123 | j2 = (j+2) % 3 |
ykuroda | 0:13a5d365ba16 | 124 | }; |
ykuroda | 0:13a5d365ba16 | 125 | return m.coeff(i1, j1) * m.coeff(i2, j2) |
ykuroda | 0:13a5d365ba16 | 126 | - m.coeff(i1, j2) * m.coeff(i2, j1); |
ykuroda | 0:13a5d365ba16 | 127 | } |
ykuroda | 0:13a5d365ba16 | 128 | |
ykuroda | 0:13a5d365ba16 | 129 | template<typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 130 | inline void compute_inverse_size3_helper( |
ykuroda | 0:13a5d365ba16 | 131 | const MatrixType& matrix, |
ykuroda | 0:13a5d365ba16 | 132 | const typename ResultType::Scalar& invdet, |
ykuroda | 0:13a5d365ba16 | 133 | const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0, |
ykuroda | 0:13a5d365ba16 | 134 | ResultType& result) |
ykuroda | 0:13a5d365ba16 | 135 | { |
ykuroda | 0:13a5d365ba16 | 136 | result.row(0) = cofactors_col0 * invdet; |
ykuroda | 0:13a5d365ba16 | 137 | result.coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(matrix) * invdet; |
ykuroda | 0:13a5d365ba16 | 138 | result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(matrix) * invdet; |
ykuroda | 0:13a5d365ba16 | 139 | result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet; |
ykuroda | 0:13a5d365ba16 | 140 | result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(matrix) * invdet; |
ykuroda | 0:13a5d365ba16 | 141 | result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet; |
ykuroda | 0:13a5d365ba16 | 142 | result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet; |
ykuroda | 0:13a5d365ba16 | 143 | } |
ykuroda | 0:13a5d365ba16 | 144 | |
ykuroda | 0:13a5d365ba16 | 145 | template<typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 146 | struct compute_inverse<MatrixType, ResultType, 3> |
ykuroda | 0:13a5d365ba16 | 147 | { |
ykuroda | 0:13a5d365ba16 | 148 | static inline void run(const MatrixType& matrix, ResultType& result) |
ykuroda | 0:13a5d365ba16 | 149 | { |
ykuroda | 0:13a5d365ba16 | 150 | typedef typename ResultType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 151 | Matrix<typename MatrixType::Scalar,3,1> cofactors_col0; |
ykuroda | 0:13a5d365ba16 | 152 | cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix); |
ykuroda | 0:13a5d365ba16 | 153 | cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix); |
ykuroda | 0:13a5d365ba16 | 154 | cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix); |
ykuroda | 0:13a5d365ba16 | 155 | const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); |
ykuroda | 0:13a5d365ba16 | 156 | const Scalar invdet = Scalar(1) / det; |
ykuroda | 0:13a5d365ba16 | 157 | compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result); |
ykuroda | 0:13a5d365ba16 | 158 | } |
ykuroda | 0:13a5d365ba16 | 159 | }; |
ykuroda | 0:13a5d365ba16 | 160 | |
ykuroda | 0:13a5d365ba16 | 161 | template<typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 162 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3> |
ykuroda | 0:13a5d365ba16 | 163 | { |
ykuroda | 0:13a5d365ba16 | 164 | static inline void run( |
ykuroda | 0:13a5d365ba16 | 165 | const MatrixType& matrix, |
ykuroda | 0:13a5d365ba16 | 166 | const typename MatrixType::RealScalar& absDeterminantThreshold, |
ykuroda | 0:13a5d365ba16 | 167 | ResultType& inverse, |
ykuroda | 0:13a5d365ba16 | 168 | typename ResultType::Scalar& determinant, |
ykuroda | 0:13a5d365ba16 | 169 | bool& invertible |
ykuroda | 0:13a5d365ba16 | 170 | ) |
ykuroda | 0:13a5d365ba16 | 171 | { |
ykuroda | 0:13a5d365ba16 | 172 | using std::abs; |
ykuroda | 0:13a5d365ba16 | 173 | typedef typename ResultType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 174 | Matrix<Scalar,3,1> cofactors_col0; |
ykuroda | 0:13a5d365ba16 | 175 | cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix); |
ykuroda | 0:13a5d365ba16 | 176 | cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix); |
ykuroda | 0:13a5d365ba16 | 177 | cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix); |
ykuroda | 0:13a5d365ba16 | 178 | determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); |
ykuroda | 0:13a5d365ba16 | 179 | invertible = abs(determinant) > absDeterminantThreshold; |
ykuroda | 0:13a5d365ba16 | 180 | if(!invertible) return; |
ykuroda | 0:13a5d365ba16 | 181 | const Scalar invdet = Scalar(1) / determinant; |
ykuroda | 0:13a5d365ba16 | 182 | compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse); |
ykuroda | 0:13a5d365ba16 | 183 | } |
ykuroda | 0:13a5d365ba16 | 184 | }; |
ykuroda | 0:13a5d365ba16 | 185 | |
ykuroda | 0:13a5d365ba16 | 186 | /**************************** |
ykuroda | 0:13a5d365ba16 | 187 | *** Size 4 implementation *** |
ykuroda | 0:13a5d365ba16 | 188 | ****************************/ |
ykuroda | 0:13a5d365ba16 | 189 | |
ykuroda | 0:13a5d365ba16 | 190 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 191 | inline const typename Derived::Scalar general_det3_helper |
ykuroda | 0:13a5d365ba16 | 192 | (const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3) |
ykuroda | 0:13a5d365ba16 | 193 | { |
ykuroda | 0:13a5d365ba16 | 194 | return matrix.coeff(i1,j1) |
ykuroda | 0:13a5d365ba16 | 195 | * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2)); |
ykuroda | 0:13a5d365ba16 | 196 | } |
ykuroda | 0:13a5d365ba16 | 197 | |
ykuroda | 0:13a5d365ba16 | 198 | template<typename MatrixType, int i, int j> |
ykuroda | 0:13a5d365ba16 | 199 | inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 200 | { |
ykuroda | 0:13a5d365ba16 | 201 | enum { |
ykuroda | 0:13a5d365ba16 | 202 | i1 = (i+1) % 4, |
ykuroda | 0:13a5d365ba16 | 203 | i2 = (i+2) % 4, |
ykuroda | 0:13a5d365ba16 | 204 | i3 = (i+3) % 4, |
ykuroda | 0:13a5d365ba16 | 205 | j1 = (j+1) % 4, |
ykuroda | 0:13a5d365ba16 | 206 | j2 = (j+2) % 4, |
ykuroda | 0:13a5d365ba16 | 207 | j3 = (j+3) % 4 |
ykuroda | 0:13a5d365ba16 | 208 | }; |
ykuroda | 0:13a5d365ba16 | 209 | return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3) |
ykuroda | 0:13a5d365ba16 | 210 | + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3) |
ykuroda | 0:13a5d365ba16 | 211 | + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3); |
ykuroda | 0:13a5d365ba16 | 212 | } |
ykuroda | 0:13a5d365ba16 | 213 | |
ykuroda | 0:13a5d365ba16 | 214 | template<int Arch, typename Scalar, typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 215 | struct compute_inverse_size4 |
ykuroda | 0:13a5d365ba16 | 216 | { |
ykuroda | 0:13a5d365ba16 | 217 | static void run(const MatrixType& matrix, ResultType& result) |
ykuroda | 0:13a5d365ba16 | 218 | { |
ykuroda | 0:13a5d365ba16 | 219 | result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix); |
ykuroda | 0:13a5d365ba16 | 220 | result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix); |
ykuroda | 0:13a5d365ba16 | 221 | result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix); |
ykuroda | 0:13a5d365ba16 | 222 | result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix); |
ykuroda | 0:13a5d365ba16 | 223 | result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix); |
ykuroda | 0:13a5d365ba16 | 224 | result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix); |
ykuroda | 0:13a5d365ba16 | 225 | result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix); |
ykuroda | 0:13a5d365ba16 | 226 | result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix); |
ykuroda | 0:13a5d365ba16 | 227 | result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix); |
ykuroda | 0:13a5d365ba16 | 228 | result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix); |
ykuroda | 0:13a5d365ba16 | 229 | result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix); |
ykuroda | 0:13a5d365ba16 | 230 | result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix); |
ykuroda | 0:13a5d365ba16 | 231 | result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix); |
ykuroda | 0:13a5d365ba16 | 232 | result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix); |
ykuroda | 0:13a5d365ba16 | 233 | result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix); |
ykuroda | 0:13a5d365ba16 | 234 | result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix); |
ykuroda | 0:13a5d365ba16 | 235 | result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum(); |
ykuroda | 0:13a5d365ba16 | 236 | } |
ykuroda | 0:13a5d365ba16 | 237 | }; |
ykuroda | 0:13a5d365ba16 | 238 | |
ykuroda | 0:13a5d365ba16 | 239 | template<typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 240 | struct compute_inverse<MatrixType, ResultType, 4> |
ykuroda | 0:13a5d365ba16 | 241 | : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar, |
ykuroda | 0:13a5d365ba16 | 242 | MatrixType, ResultType> |
ykuroda | 0:13a5d365ba16 | 243 | { |
ykuroda | 0:13a5d365ba16 | 244 | }; |
ykuroda | 0:13a5d365ba16 | 245 | |
ykuroda | 0:13a5d365ba16 | 246 | template<typename MatrixType, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 247 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4> |
ykuroda | 0:13a5d365ba16 | 248 | { |
ykuroda | 0:13a5d365ba16 | 249 | static inline void run( |
ykuroda | 0:13a5d365ba16 | 250 | const MatrixType& matrix, |
ykuroda | 0:13a5d365ba16 | 251 | const typename MatrixType::RealScalar& absDeterminantThreshold, |
ykuroda | 0:13a5d365ba16 | 252 | ResultType& inverse, |
ykuroda | 0:13a5d365ba16 | 253 | typename ResultType::Scalar& determinant, |
ykuroda | 0:13a5d365ba16 | 254 | bool& invertible |
ykuroda | 0:13a5d365ba16 | 255 | ) |
ykuroda | 0:13a5d365ba16 | 256 | { |
ykuroda | 0:13a5d365ba16 | 257 | using std::abs; |
ykuroda | 0:13a5d365ba16 | 258 | determinant = matrix.determinant(); |
ykuroda | 0:13a5d365ba16 | 259 | invertible = abs(determinant) > absDeterminantThreshold; |
ykuroda | 0:13a5d365ba16 | 260 | if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse); |
ykuroda | 0:13a5d365ba16 | 261 | } |
ykuroda | 0:13a5d365ba16 | 262 | }; |
ykuroda | 0:13a5d365ba16 | 263 | |
ykuroda | 0:13a5d365ba16 | 264 | /************************* |
ykuroda | 0:13a5d365ba16 | 265 | *** MatrixBase methods *** |
ykuroda | 0:13a5d365ba16 | 266 | *************************/ |
ykuroda | 0:13a5d365ba16 | 267 | |
ykuroda | 0:13a5d365ba16 | 268 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 269 | struct traits<inverse_impl<MatrixType> > |
ykuroda | 0:13a5d365ba16 | 270 | { |
ykuroda | 0:13a5d365ba16 | 271 | typedef typename MatrixType::PlainObject ReturnType; |
ykuroda | 0:13a5d365ba16 | 272 | }; |
ykuroda | 0:13a5d365ba16 | 273 | |
ykuroda | 0:13a5d365ba16 | 274 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 275 | struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> > |
ykuroda | 0:13a5d365ba16 | 276 | { |
ykuroda | 0:13a5d365ba16 | 277 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 278 | typedef typename internal::eval<MatrixType>::type MatrixTypeNested; |
ykuroda | 0:13a5d365ba16 | 279 | typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned; |
ykuroda | 0:13a5d365ba16 | 280 | MatrixTypeNested m_matrix; |
ykuroda | 0:13a5d365ba16 | 281 | |
ykuroda | 0:13a5d365ba16 | 282 | inverse_impl(const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 283 | : m_matrix(matrix) |
ykuroda | 0:13a5d365ba16 | 284 | {} |
ykuroda | 0:13a5d365ba16 | 285 | |
ykuroda | 0:13a5d365ba16 | 286 | inline Index rows() const { return m_matrix.rows(); } |
ykuroda | 0:13a5d365ba16 | 287 | inline Index cols() const { return m_matrix.cols(); } |
ykuroda | 0:13a5d365ba16 | 288 | |
ykuroda | 0:13a5d365ba16 | 289 | template<typename Dest> inline void evalTo(Dest& dst) const |
ykuroda | 0:13a5d365ba16 | 290 | { |
ykuroda | 0:13a5d365ba16 | 291 | const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime); |
ykuroda | 0:13a5d365ba16 | 292 | EIGEN_ONLY_USED_FOR_DEBUG(Size); |
ykuroda | 0:13a5d365ba16 | 293 | eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst))) |
ykuroda | 0:13a5d365ba16 | 294 | && "Aliasing problem detected in inverse(), you need to do inverse().eval() here."); |
ykuroda | 0:13a5d365ba16 | 295 | |
ykuroda | 0:13a5d365ba16 | 296 | compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst); |
ykuroda | 0:13a5d365ba16 | 297 | } |
ykuroda | 0:13a5d365ba16 | 298 | }; |
ykuroda | 0:13a5d365ba16 | 299 | |
ykuroda | 0:13a5d365ba16 | 300 | } // end namespace internal |
ykuroda | 0:13a5d365ba16 | 301 | |
ykuroda | 0:13a5d365ba16 | 302 | /** \lu_module |
ykuroda | 0:13a5d365ba16 | 303 | * |
ykuroda | 0:13a5d365ba16 | 304 | * \returns the matrix inverse of this matrix. |
ykuroda | 0:13a5d365ba16 | 305 | * |
ykuroda | 0:13a5d365ba16 | 306 | * For small fixed sizes up to 4x4, this method uses cofactors. |
ykuroda | 0:13a5d365ba16 | 307 | * In the general case, this method uses class PartialPivLU. |
ykuroda | 0:13a5d365ba16 | 308 | * |
ykuroda | 0:13a5d365ba16 | 309 | * \note This matrix must be invertible, otherwise the result is undefined. If you need an |
ykuroda | 0:13a5d365ba16 | 310 | * invertibility check, do the following: |
ykuroda | 0:13a5d365ba16 | 311 | * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck(). |
ykuroda | 0:13a5d365ba16 | 312 | * \li for the general case, use class FullPivLU. |
ykuroda | 0:13a5d365ba16 | 313 | * |
ykuroda | 0:13a5d365ba16 | 314 | * Example: \include MatrixBase_inverse.cpp |
ykuroda | 0:13a5d365ba16 | 315 | * Output: \verbinclude MatrixBase_inverse.out |
ykuroda | 0:13a5d365ba16 | 316 | * |
ykuroda | 0:13a5d365ba16 | 317 | * \sa computeInverseAndDetWithCheck() |
ykuroda | 0:13a5d365ba16 | 318 | */ |
ykuroda | 0:13a5d365ba16 | 319 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 320 | inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const |
ykuroda | 0:13a5d365ba16 | 321 | { |
ykuroda | 0:13a5d365ba16 | 322 | EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) |
ykuroda | 0:13a5d365ba16 | 323 | eigen_assert(rows() == cols()); |
ykuroda | 0:13a5d365ba16 | 324 | return internal::inverse_impl<Derived>(derived()); |
ykuroda | 0:13a5d365ba16 | 325 | } |
ykuroda | 0:13a5d365ba16 | 326 | |
ykuroda | 0:13a5d365ba16 | 327 | /** \lu_module |
ykuroda | 0:13a5d365ba16 | 328 | * |
ykuroda | 0:13a5d365ba16 | 329 | * Computation of matrix inverse and determinant, with invertibility check. |
ykuroda | 0:13a5d365ba16 | 330 | * |
ykuroda | 0:13a5d365ba16 | 331 | * This is only for fixed-size square matrices of size up to 4x4. |
ykuroda | 0:13a5d365ba16 | 332 | * |
ykuroda | 0:13a5d365ba16 | 333 | * \param inverse Reference to the matrix in which to store the inverse. |
ykuroda | 0:13a5d365ba16 | 334 | * \param determinant Reference to the variable in which to store the determinant. |
ykuroda | 0:13a5d365ba16 | 335 | * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. |
ykuroda | 0:13a5d365ba16 | 336 | * \param absDeterminantThreshold Optional parameter controlling the invertibility check. |
ykuroda | 0:13a5d365ba16 | 337 | * The matrix will be declared invertible if the absolute value of its |
ykuroda | 0:13a5d365ba16 | 338 | * determinant is greater than this threshold. |
ykuroda | 0:13a5d365ba16 | 339 | * |
ykuroda | 0:13a5d365ba16 | 340 | * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp |
ykuroda | 0:13a5d365ba16 | 341 | * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out |
ykuroda | 0:13a5d365ba16 | 342 | * |
ykuroda | 0:13a5d365ba16 | 343 | * \sa inverse(), computeInverseWithCheck() |
ykuroda | 0:13a5d365ba16 | 344 | */ |
ykuroda | 0:13a5d365ba16 | 345 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 346 | template<typename ResultType> |
ykuroda | 0:13a5d365ba16 | 347 | inline void MatrixBase<Derived>::computeInverseAndDetWithCheck( |
ykuroda | 0:13a5d365ba16 | 348 | ResultType& inverse, |
ykuroda | 0:13a5d365ba16 | 349 | typename ResultType::Scalar& determinant, |
ykuroda | 0:13a5d365ba16 | 350 | bool& invertible, |
ykuroda | 0:13a5d365ba16 | 351 | const RealScalar& absDeterminantThreshold |
ykuroda | 0:13a5d365ba16 | 352 | ) const |
ykuroda | 0:13a5d365ba16 | 353 | { |
ykuroda | 0:13a5d365ba16 | 354 | // i'd love to put some static assertions there, but SFINAE means that they have no effect... |
ykuroda | 0:13a5d365ba16 | 355 | eigen_assert(rows() == cols()); |
ykuroda | 0:13a5d365ba16 | 356 | // for 2x2, it's worth giving a chance to avoid evaluating. |
ykuroda | 0:13a5d365ba16 | 357 | // for larger sizes, evaluating has negligible cost and limits code size. |
ykuroda | 0:13a5d365ba16 | 358 | typedef typename internal::conditional< |
ykuroda | 0:13a5d365ba16 | 359 | RowsAtCompileTime == 2, |
ykuroda | 0:13a5d365ba16 | 360 | typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type, |
ykuroda | 0:13a5d365ba16 | 361 | PlainObject |
ykuroda | 0:13a5d365ba16 | 362 | >::type MatrixType; |
ykuroda | 0:13a5d365ba16 | 363 | internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run |
ykuroda | 0:13a5d365ba16 | 364 | (derived(), absDeterminantThreshold, inverse, determinant, invertible); |
ykuroda | 0:13a5d365ba16 | 365 | } |
ykuroda | 0:13a5d365ba16 | 366 | |
ykuroda | 0:13a5d365ba16 | 367 | /** \lu_module |
ykuroda | 0:13a5d365ba16 | 368 | * |
ykuroda | 0:13a5d365ba16 | 369 | * Computation of matrix inverse, with invertibility check. |
ykuroda | 0:13a5d365ba16 | 370 | * |
ykuroda | 0:13a5d365ba16 | 371 | * This is only for fixed-size square matrices of size up to 4x4. |
ykuroda | 0:13a5d365ba16 | 372 | * |
ykuroda | 0:13a5d365ba16 | 373 | * \param inverse Reference to the matrix in which to store the inverse. |
ykuroda | 0:13a5d365ba16 | 374 | * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. |
ykuroda | 0:13a5d365ba16 | 375 | * \param absDeterminantThreshold Optional parameter controlling the invertibility check. |
ykuroda | 0:13a5d365ba16 | 376 | * The matrix will be declared invertible if the absolute value of its |
ykuroda | 0:13a5d365ba16 | 377 | * determinant is greater than this threshold. |
ykuroda | 0:13a5d365ba16 | 378 | * |
ykuroda | 0:13a5d365ba16 | 379 | * Example: \include MatrixBase_computeInverseWithCheck.cpp |
ykuroda | 0:13a5d365ba16 | 380 | * Output: \verbinclude MatrixBase_computeInverseWithCheck.out |
ykuroda | 0:13a5d365ba16 | 381 | * |
ykuroda | 0:13a5d365ba16 | 382 | * \sa inverse(), computeInverseAndDetWithCheck() |
ykuroda | 0:13a5d365ba16 | 383 | */ |
ykuroda | 0:13a5d365ba16 | 384 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 385 | template<typename ResultType> |
ykuroda | 0:13a5d365ba16 | 386 | inline void MatrixBase<Derived>::computeInverseWithCheck( |
ykuroda | 0:13a5d365ba16 | 387 | ResultType& inverse, |
ykuroda | 0:13a5d365ba16 | 388 | bool& invertible, |
ykuroda | 0:13a5d365ba16 | 389 | const RealScalar& absDeterminantThreshold |
ykuroda | 0:13a5d365ba16 | 390 | ) const |
ykuroda | 0:13a5d365ba16 | 391 | { |
ykuroda | 0:13a5d365ba16 | 392 | RealScalar determinant; |
ykuroda | 0:13a5d365ba16 | 393 | // i'd love to put some static assertions there, but SFINAE means that they have no effect... |
ykuroda | 0:13a5d365ba16 | 394 | eigen_assert(rows() == cols()); |
ykuroda | 0:13a5d365ba16 | 395 | computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold); |
ykuroda | 0:13a5d365ba16 | 396 | } |
ykuroda | 0:13a5d365ba16 | 397 | |
ykuroda | 0:13a5d365ba16 | 398 | } // end namespace Eigen |
ykuroda | 0:13a5d365ba16 | 399 | |
ykuroda | 0:13a5d365ba16 | 400 | #endif // EIGEN_INVERSE_H |