User | Revision | Line number | New contents of line |
ykuroda |
0:13a5d365ba16
|
1
|
// This file is part of Eigen, a lightweight C++ template library
|
ykuroda |
0:13a5d365ba16
|
2
|
// for linear algebra.
|
ykuroda |
0:13a5d365ba16
|
3
|
//
|
ykuroda |
0:13a5d365ba16
|
4
|
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
ykuroda |
0:13a5d365ba16
|
5
|
//
|
ykuroda |
0:13a5d365ba16
|
6
|
// This Source Code Form is subject to the terms of the Mozilla
|
ykuroda |
0:13a5d365ba16
|
7
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
ykuroda |
0:13a5d365ba16
|
8
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
ykuroda |
0:13a5d365ba16
|
9
|
|
ykuroda |
0:13a5d365ba16
|
10
|
#ifndef EIGEN_DOT_H
|
ykuroda |
0:13a5d365ba16
|
11
|
#define EIGEN_DOT_H
|
ykuroda |
0:13a5d365ba16
|
12
|
|
ykuroda |
0:13a5d365ba16
|
13
|
namespace Eigen {
|
ykuroda |
0:13a5d365ba16
|
14
|
|
ykuroda |
0:13a5d365ba16
|
15
|
namespace internal {
|
ykuroda |
0:13a5d365ba16
|
16
|
|
ykuroda |
0:13a5d365ba16
|
17
|
// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
|
ykuroda |
0:13a5d365ba16
|
18
|
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
|
ykuroda |
0:13a5d365ba16
|
19
|
// looking at the static assertions. Thus this is a trick to get better compile errors.
|
ykuroda |
0:13a5d365ba16
|
20
|
template<typename T, typename U,
|
ykuroda |
0:13a5d365ba16
|
21
|
// the NeedToTranspose condition here is taken straight from Assign.h
|
ykuroda |
0:13a5d365ba16
|
22
|
bool NeedToTranspose = T::IsVectorAtCompileTime
|
ykuroda |
0:13a5d365ba16
|
23
|
&& U::IsVectorAtCompileTime
|
ykuroda |
0:13a5d365ba16
|
24
|
&& ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
|
ykuroda |
0:13a5d365ba16
|
25
|
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
|
ykuroda |
0:13a5d365ba16
|
26
|
// revert to || as soon as not needed anymore.
|
ykuroda |
0:13a5d365ba16
|
27
|
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
|
ykuroda |
0:13a5d365ba16
|
28
|
>
|
ykuroda |
0:13a5d365ba16
|
29
|
struct dot_nocheck
|
ykuroda |
0:13a5d365ba16
|
30
|
{
|
ykuroda |
0:13a5d365ba16
|
31
|
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
|
ykuroda |
0:13a5d365ba16
|
32
|
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
ykuroda |
0:13a5d365ba16
|
33
|
{
|
ykuroda |
0:13a5d365ba16
|
34
|
return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
|
ykuroda |
0:13a5d365ba16
|
35
|
}
|
ykuroda |
0:13a5d365ba16
|
36
|
};
|
ykuroda |
0:13a5d365ba16
|
37
|
|
ykuroda |
0:13a5d365ba16
|
38
|
template<typename T, typename U>
|
ykuroda |
0:13a5d365ba16
|
39
|
struct dot_nocheck<T, U, true>
|
ykuroda |
0:13a5d365ba16
|
40
|
{
|
ykuroda |
0:13a5d365ba16
|
41
|
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
|
ykuroda |
0:13a5d365ba16
|
42
|
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
ykuroda |
0:13a5d365ba16
|
43
|
{
|
ykuroda |
0:13a5d365ba16
|
44
|
return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
|
ykuroda |
0:13a5d365ba16
|
45
|
}
|
ykuroda |
0:13a5d365ba16
|
46
|
};
|
ykuroda |
0:13a5d365ba16
|
47
|
|
ykuroda |
0:13a5d365ba16
|
48
|
} // end namespace internal
|
ykuroda |
0:13a5d365ba16
|
49
|
|
ykuroda |
0:13a5d365ba16
|
50
|
/** \returns the dot product of *this with other.
|
ykuroda |
0:13a5d365ba16
|
51
|
*
|
ykuroda |
0:13a5d365ba16
|
52
|
* \only_for_vectors
|
ykuroda |
0:13a5d365ba16
|
53
|
*
|
ykuroda |
0:13a5d365ba16
|
54
|
* \note If the scalar type is complex numbers, then this function returns the hermitian
|
ykuroda |
0:13a5d365ba16
|
55
|
* (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
|
ykuroda |
0:13a5d365ba16
|
56
|
* second variable.
|
ykuroda |
0:13a5d365ba16
|
57
|
*
|
ykuroda |
0:13a5d365ba16
|
58
|
* \sa squaredNorm(), norm()
|
ykuroda |
0:13a5d365ba16
|
59
|
*/
|
ykuroda |
0:13a5d365ba16
|
60
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
61
|
template<typename OtherDerived>
|
ykuroda |
0:13a5d365ba16
|
62
|
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
|
ykuroda |
0:13a5d365ba16
|
63
|
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
|
ykuroda |
0:13a5d365ba16
|
64
|
{
|
ykuroda |
0:13a5d365ba16
|
65
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
ykuroda |
0:13a5d365ba16
|
66
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
ykuroda |
0:13a5d365ba16
|
67
|
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
ykuroda |
0:13a5d365ba16
|
68
|
typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
|
ykuroda |
0:13a5d365ba16
|
69
|
EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
|
ykuroda |
0:13a5d365ba16
|
70
|
|
ykuroda |
0:13a5d365ba16
|
71
|
eigen_assert(size() == other.size());
|
ykuroda |
0:13a5d365ba16
|
72
|
|
ykuroda |
0:13a5d365ba16
|
73
|
return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
|
ykuroda |
0:13a5d365ba16
|
74
|
}
|
ykuroda |
0:13a5d365ba16
|
75
|
|
ykuroda |
0:13a5d365ba16
|
76
|
#ifdef EIGEN2_SUPPORT
|
ykuroda |
0:13a5d365ba16
|
77
|
/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
|
ykuroda |
0:13a5d365ba16
|
78
|
* (conjugating the second variable). Of course this only makes a difference in the complex case.
|
ykuroda |
0:13a5d365ba16
|
79
|
*
|
ykuroda |
0:13a5d365ba16
|
80
|
* This method is only available in EIGEN2_SUPPORT mode.
|
ykuroda |
0:13a5d365ba16
|
81
|
*
|
ykuroda |
0:13a5d365ba16
|
82
|
* \only_for_vectors
|
ykuroda |
0:13a5d365ba16
|
83
|
*
|
ykuroda |
0:13a5d365ba16
|
84
|
* \sa dot()
|
ykuroda |
0:13a5d365ba16
|
85
|
*/
|
ykuroda |
0:13a5d365ba16
|
86
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
87
|
template<typename OtherDerived>
|
ykuroda |
0:13a5d365ba16
|
88
|
typename internal::traits<Derived>::Scalar
|
ykuroda |
0:13a5d365ba16
|
89
|
MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
|
ykuroda |
0:13a5d365ba16
|
90
|
{
|
ykuroda |
0:13a5d365ba16
|
91
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
ykuroda |
0:13a5d365ba16
|
92
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
ykuroda |
0:13a5d365ba16
|
93
|
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
ykuroda |
0:13a5d365ba16
|
94
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
|
ykuroda |
0:13a5d365ba16
|
95
|
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
ykuroda |
0:13a5d365ba16
|
96
|
|
ykuroda |
0:13a5d365ba16
|
97
|
eigen_assert(size() == other.size());
|
ykuroda |
0:13a5d365ba16
|
98
|
|
ykuroda |
0:13a5d365ba16
|
99
|
return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
|
ykuroda |
0:13a5d365ba16
|
100
|
}
|
ykuroda |
0:13a5d365ba16
|
101
|
#endif
|
ykuroda |
0:13a5d365ba16
|
102
|
|
ykuroda |
0:13a5d365ba16
|
103
|
|
ykuroda |
0:13a5d365ba16
|
104
|
//---------- implementation of L2 norm and related functions ----------
|
ykuroda |
0:13a5d365ba16
|
105
|
|
ykuroda |
0:13a5d365ba16
|
106
|
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
|
ykuroda |
0:13a5d365ba16
|
107
|
* In both cases, it consists in the sum of the square of all the matrix entries.
|
ykuroda |
0:13a5d365ba16
|
108
|
* For vectors, this is also equals to the dot product of \c *this with itself.
|
ykuroda |
0:13a5d365ba16
|
109
|
*
|
ykuroda |
0:13a5d365ba16
|
110
|
* \sa dot(), norm()
|
ykuroda |
0:13a5d365ba16
|
111
|
*/
|
ykuroda |
0:13a5d365ba16
|
112
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
113
|
EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
|
ykuroda |
0:13a5d365ba16
|
114
|
{
|
ykuroda |
0:13a5d365ba16
|
115
|
return numext::real((*this).cwiseAbs2().sum());
|
ykuroda |
0:13a5d365ba16
|
116
|
}
|
ykuroda |
0:13a5d365ba16
|
117
|
|
ykuroda |
0:13a5d365ba16
|
118
|
/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
|
ykuroda |
0:13a5d365ba16
|
119
|
* In both cases, it consists in the square root of the sum of the square of all the matrix entries.
|
ykuroda |
0:13a5d365ba16
|
120
|
* For vectors, this is also equals to the square root of the dot product of \c *this with itself.
|
ykuroda |
0:13a5d365ba16
|
121
|
*
|
ykuroda |
0:13a5d365ba16
|
122
|
* \sa dot(), squaredNorm()
|
ykuroda |
0:13a5d365ba16
|
123
|
*/
|
ykuroda |
0:13a5d365ba16
|
124
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
125
|
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
|
ykuroda |
0:13a5d365ba16
|
126
|
{
|
ykuroda |
0:13a5d365ba16
|
127
|
using std::sqrt;
|
ykuroda |
0:13a5d365ba16
|
128
|
return sqrt(squaredNorm());
|
ykuroda |
0:13a5d365ba16
|
129
|
}
|
ykuroda |
0:13a5d365ba16
|
130
|
|
ykuroda |
0:13a5d365ba16
|
131
|
/** \returns an expression of the quotient of *this by its own norm.
|
ykuroda |
0:13a5d365ba16
|
132
|
*
|
ykuroda |
0:13a5d365ba16
|
133
|
* \only_for_vectors
|
ykuroda |
0:13a5d365ba16
|
134
|
*
|
ykuroda |
0:13a5d365ba16
|
135
|
* \sa norm(), normalize()
|
ykuroda |
0:13a5d365ba16
|
136
|
*/
|
ykuroda |
0:13a5d365ba16
|
137
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
138
|
inline const typename MatrixBase<Derived>::PlainObject
|
ykuroda |
0:13a5d365ba16
|
139
|
MatrixBase<Derived>::normalized() const
|
ykuroda |
0:13a5d365ba16
|
140
|
{
|
ykuroda |
0:13a5d365ba16
|
141
|
typedef typename internal::nested<Derived>::type Nested;
|
ykuroda |
0:13a5d365ba16
|
142
|
typedef typename internal::remove_reference<Nested>::type _Nested;
|
ykuroda |
0:13a5d365ba16
|
143
|
_Nested n(derived());
|
ykuroda |
0:13a5d365ba16
|
144
|
return n / n.norm();
|
ykuroda |
0:13a5d365ba16
|
145
|
}
|
ykuroda |
0:13a5d365ba16
|
146
|
|
ykuroda |
0:13a5d365ba16
|
147
|
/** Normalizes the vector, i.e. divides it by its own norm.
|
ykuroda |
0:13a5d365ba16
|
148
|
*
|
ykuroda |
0:13a5d365ba16
|
149
|
* \only_for_vectors
|
ykuroda |
0:13a5d365ba16
|
150
|
*
|
ykuroda |
0:13a5d365ba16
|
151
|
* \sa norm(), normalized()
|
ykuroda |
0:13a5d365ba16
|
152
|
*/
|
ykuroda |
0:13a5d365ba16
|
153
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
154
|
inline void MatrixBase<Derived>::normalize()
|
ykuroda |
0:13a5d365ba16
|
155
|
{
|
ykuroda |
0:13a5d365ba16
|
156
|
*this /= norm();
|
ykuroda |
0:13a5d365ba16
|
157
|
}
|
ykuroda |
0:13a5d365ba16
|
158
|
|
ykuroda |
0:13a5d365ba16
|
159
|
//---------- implementation of other norms ----------
|
ykuroda |
0:13a5d365ba16
|
160
|
|
ykuroda |
0:13a5d365ba16
|
161
|
namespace internal {
|
ykuroda |
0:13a5d365ba16
|
162
|
|
ykuroda |
0:13a5d365ba16
|
163
|
template<typename Derived, int p>
|
ykuroda |
0:13a5d365ba16
|
164
|
struct lpNorm_selector
|
ykuroda |
0:13a5d365ba16
|
165
|
{
|
ykuroda |
0:13a5d365ba16
|
166
|
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
|
ykuroda |
0:13a5d365ba16
|
167
|
static inline RealScalar run(const MatrixBase<Derived>& m)
|
ykuroda |
0:13a5d365ba16
|
168
|
{
|
ykuroda |
0:13a5d365ba16
|
169
|
using std::pow;
|
ykuroda |
0:13a5d365ba16
|
170
|
return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
|
ykuroda |
0:13a5d365ba16
|
171
|
}
|
ykuroda |
0:13a5d365ba16
|
172
|
};
|
ykuroda |
0:13a5d365ba16
|
173
|
|
ykuroda |
0:13a5d365ba16
|
174
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
175
|
struct lpNorm_selector<Derived, 1>
|
ykuroda |
0:13a5d365ba16
|
176
|
{
|
ykuroda |
0:13a5d365ba16
|
177
|
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
ykuroda |
0:13a5d365ba16
|
178
|
{
|
ykuroda |
0:13a5d365ba16
|
179
|
return m.cwiseAbs().sum();
|
ykuroda |
0:13a5d365ba16
|
180
|
}
|
ykuroda |
0:13a5d365ba16
|
181
|
};
|
ykuroda |
0:13a5d365ba16
|
182
|
|
ykuroda |
0:13a5d365ba16
|
183
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
184
|
struct lpNorm_selector<Derived, 2>
|
ykuroda |
0:13a5d365ba16
|
185
|
{
|
ykuroda |
0:13a5d365ba16
|
186
|
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
ykuroda |
0:13a5d365ba16
|
187
|
{
|
ykuroda |
0:13a5d365ba16
|
188
|
return m.norm();
|
ykuroda |
0:13a5d365ba16
|
189
|
}
|
ykuroda |
0:13a5d365ba16
|
190
|
};
|
ykuroda |
0:13a5d365ba16
|
191
|
|
ykuroda |
0:13a5d365ba16
|
192
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
193
|
struct lpNorm_selector<Derived, Infinity>
|
ykuroda |
0:13a5d365ba16
|
194
|
{
|
ykuroda |
0:13a5d365ba16
|
195
|
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
ykuroda |
0:13a5d365ba16
|
196
|
{
|
ykuroda |
0:13a5d365ba16
|
197
|
return m.cwiseAbs().maxCoeff();
|
ykuroda |
0:13a5d365ba16
|
198
|
}
|
ykuroda |
0:13a5d365ba16
|
199
|
};
|
ykuroda |
0:13a5d365ba16
|
200
|
|
ykuroda |
0:13a5d365ba16
|
201
|
} // end namespace internal
|
ykuroda |
0:13a5d365ba16
|
202
|
|
ykuroda |
0:13a5d365ba16
|
203
|
/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
|
ykuroda |
0:13a5d365ba16
|
204
|
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
|
ykuroda |
0:13a5d365ba16
|
205
|
* norm, that is the maximum of the absolute values of the coefficients of *this.
|
ykuroda |
0:13a5d365ba16
|
206
|
*
|
ykuroda |
0:13a5d365ba16
|
207
|
* \sa norm()
|
ykuroda |
0:13a5d365ba16
|
208
|
*/
|
ykuroda |
0:13a5d365ba16
|
209
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
210
|
template<int p>
|
ykuroda |
0:13a5d365ba16
|
211
|
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
ykuroda |
0:13a5d365ba16
|
212
|
MatrixBase<Derived>::lpNorm() const
|
ykuroda |
0:13a5d365ba16
|
213
|
{
|
ykuroda |
0:13a5d365ba16
|
214
|
return internal::lpNorm_selector<Derived, p>::run(*this);
|
ykuroda |
0:13a5d365ba16
|
215
|
}
|
ykuroda |
0:13a5d365ba16
|
216
|
|
ykuroda |
0:13a5d365ba16
|
217
|
//---------- implementation of isOrthogonal / isUnitary ----------
|
ykuroda |
0:13a5d365ba16
|
218
|
|
ykuroda |
0:13a5d365ba16
|
219
|
/** \returns true if *this is approximately orthogonal to \a other,
|
ykuroda |
0:13a5d365ba16
|
220
|
* within the precision given by \a prec.
|
ykuroda |
0:13a5d365ba16
|
221
|
*
|
ykuroda |
0:13a5d365ba16
|
222
|
* Example: \include MatrixBase_isOrthogonal.cpp
|
ykuroda |
0:13a5d365ba16
|
223
|
* Output: \verbinclude MatrixBase_isOrthogonal.out
|
ykuroda |
0:13a5d365ba16
|
224
|
*/
|
ykuroda |
0:13a5d365ba16
|
225
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
226
|
template<typename OtherDerived>
|
ykuroda |
0:13a5d365ba16
|
227
|
bool MatrixBase<Derived>::isOrthogonal
|
ykuroda |
0:13a5d365ba16
|
228
|
(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
|
ykuroda |
0:13a5d365ba16
|
229
|
{
|
ykuroda |
0:13a5d365ba16
|
230
|
typename internal::nested<Derived,2>::type nested(derived());
|
ykuroda |
0:13a5d365ba16
|
231
|
typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
|
ykuroda |
0:13a5d365ba16
|
232
|
return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
|
ykuroda |
0:13a5d365ba16
|
233
|
}
|
ykuroda |
0:13a5d365ba16
|
234
|
|
ykuroda |
0:13a5d365ba16
|
235
|
/** \returns true if *this is approximately an unitary matrix,
|
ykuroda |
0:13a5d365ba16
|
236
|
* within the precision given by \a prec. In the case where the \a Scalar
|
ykuroda |
0:13a5d365ba16
|
237
|
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
|
ykuroda |
0:13a5d365ba16
|
238
|
*
|
ykuroda |
0:13a5d365ba16
|
239
|
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
|
ykuroda |
0:13a5d365ba16
|
240
|
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
|
ykuroda |
0:13a5d365ba16
|
241
|
* orthonormal basis.
|
ykuroda |
0:13a5d365ba16
|
242
|
*
|
ykuroda |
0:13a5d365ba16
|
243
|
* Example: \include MatrixBase_isUnitary.cpp
|
ykuroda |
0:13a5d365ba16
|
244
|
* Output: \verbinclude MatrixBase_isUnitary.out
|
ykuroda |
0:13a5d365ba16
|
245
|
*/
|
ykuroda |
0:13a5d365ba16
|
246
|
template<typename Derived>
|
ykuroda |
0:13a5d365ba16
|
247
|
bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
|
ykuroda |
0:13a5d365ba16
|
248
|
{
|
ykuroda |
0:13a5d365ba16
|
249
|
typename Derived::Nested nested(derived());
|
ykuroda |
0:13a5d365ba16
|
250
|
for(Index i = 0; i < cols(); ++i)
|
ykuroda |
0:13a5d365ba16
|
251
|
{
|
ykuroda |
0:13a5d365ba16
|
252
|
if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
|
ykuroda |
0:13a5d365ba16
|
253
|
return false;
|
ykuroda |
0:13a5d365ba16
|
254
|
for(Index j = 0; j < i; ++j)
|
ykuroda |
0:13a5d365ba16
|
255
|
if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
|
ykuroda |
0:13a5d365ba16
|
256
|
return false;
|
ykuroda |
0:13a5d365ba16
|
257
|
}
|
ykuroda |
0:13a5d365ba16
|
258
|
return true;
|
ykuroda |
0:13a5d365ba16
|
259
|
}
|
ykuroda |
0:13a5d365ba16
|
260
|
|
ykuroda |
0:13a5d365ba16
|
261
|
} // end namespace Eigen
|
ykuroda |
0:13a5d365ba16
|
262
|
|
ykuroda |
0:13a5d365ba16
|
263
|
#endif // EIGEN_DOT_H |