mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
platform/mbed_retarget.cpp
- Committer:
- Anna Bridge
- Date:
- 2018-06-22
- Revision:
- 186:707f6e361f3e
- Parent:
- 184:08ed48f1de7f
File content as of revision 186:707f6e361f3e:
/* mbed Microcontroller Library * Copyright (c) 2006-2015 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <time.h> #include "platform/platform.h" #include "platform/FilePath.h" #include "hal/serial_api.h" #include "hal/us_ticker_api.h" #include "platform/mbed_toolchain.h" #include "platform/mbed_semihost_api.h" #include "platform/mbed_interface.h" #include "platform/SingletonPtr.h" #include "platform/PlatformMutex.h" #include "platform/mbed_error.h" #include "platform/mbed_stats.h" #include "platform/mbed_critical.h" #include "platform/mbed_poll.h" #include "platform/PlatformMutex.h" #include "drivers/UARTSerial.h" #include "us_ticker_api.h" #include "lp_ticker_api.h" #include <stdlib.h> #include <string.h> #include <limits.h> #ifndef SSIZE_MAX #define SSIZE_MAX INT_MAX #endif #include <stdio.h> #include <errno.h> #include "platform/mbed_retarget.h" static SingletonPtr<PlatformMutex> _mutex; #if defined(__ARMCC_VERSION) # if __ARMCC_VERSION >= 6010050 # include <arm_compat.h> # endif # include <rt_sys.h> # include <rt_misc.h> # include <stdint.h> # define PREFIX(x) _sys##x # define OPEN_MAX _SYS_OPEN # ifdef __MICROLIB # pragma import(__use_full_stdio) # endif #elif defined(__ICCARM__) # include <yfuns.h> # define PREFIX(x) _##x # define OPEN_MAX 16 # define STDIN_FILENO 0 # define STDOUT_FILENO 1 # define STDERR_FILENO 2 #else # include <sys/syslimits.h> # define PREFIX(x) x #endif #define FILE_HANDLE_RESERVED ((FileHandle*)0xFFFFFFFF) /** * Macros for setting console flow control. */ #define CONSOLE_FLOWCONTROL_RTS 1 #define CONSOLE_FLOWCONTROL_CTS 2 #define CONSOLE_FLOWCONTROL_RTSCTS 3 #define mbed_console_concat_(x) CONSOLE_FLOWCONTROL_##x #define mbed_console_concat(x) mbed_console_concat_(x) #define CONSOLE_FLOWCONTROL mbed_console_concat(MBED_CONF_TARGET_CONSOLE_UART_FLOW_CONTROL) using namespace mbed; #if defined(__MICROLIB) && (__ARMCC_VERSION>5030000) // Before version 5.03, we were using a patched version of microlib with proper names extern const char __stdin_name[] = ":tt"; extern const char __stdout_name[] = ":tt"; extern const char __stderr_name[] = ":tt"; #else extern const char __stdin_name[] = "/stdin"; extern const char __stdout_name[] = "/stdout"; extern const char __stderr_name[] = "/stderr"; #endif unsigned char *mbed_heap_start = 0; uint32_t mbed_heap_size = 0; /* newlib has the filehandle field in the FILE struct as a short, so * we can't just return a Filehandle* from _open and instead have to * put it in a filehandles array and return the index into that array */ static FileHandle *filehandles[OPEN_MAX] = { FILE_HANDLE_RESERVED, FILE_HANDLE_RESERVED, FILE_HANDLE_RESERVED }; static char stdio_in_prev[OPEN_MAX]; static char stdio_out_prev[OPEN_MAX]; static SingletonPtr<PlatformMutex> filehandle_mutex; namespace mbed { void mbed_set_unbuffered_stream(std::FILE *_file); void remove_filehandle(FileHandle *file) { filehandle_mutex->lock(); /* Remove all open filehandles for this */ for (unsigned int fh_i = 0; fh_i < sizeof(filehandles)/sizeof(*filehandles); fh_i++) { if (filehandles[fh_i] == file) { filehandles[fh_i] = NULL; } } filehandle_mutex->unlock(); } } #if DEVICE_SERIAL extern int stdio_uart_inited; extern serial_t stdio_uart; /* Private FileHandle to implement backwards-compatible functionality of * direct HAL serial access for default stdin/stdout/stderr. * This is not a particularly well-behaved FileHandle for a stream, which * is why it's not public. People should be using UARTSerial. */ class DirectSerial : public FileHandle { public: DirectSerial(PinName tx, PinName rx, int baud); virtual ssize_t write(const void *buffer, size_t size); virtual ssize_t read(void *buffer, size_t size); virtual off_t seek(off_t offset, int whence = SEEK_SET) { return -ESPIPE; } virtual off_t size() { return -EINVAL; } virtual int isatty() { return true; } virtual int close() { return 0; } virtual short poll(short events) const; }; DirectSerial::DirectSerial(PinName tx, PinName rx, int baud) { if (stdio_uart_inited) return; serial_init(&stdio_uart, tx, rx); serial_baud(&stdio_uart, baud); #if CONSOLE_FLOWCONTROL == CONSOLE_FLOWCONTROL_RTS serial_set_flow_control(&stdio_uart, FlowControlRTS, STDIO_UART_RTS, NC); #elif CONSOLE_FLOWCONTROL == CONSOLE_FLOWCONTROL_CTS serial_set_flow_control(&stdio_uart, FlowControlCTS, NC, STDIO_UART_CTS); #elif CONSOLE_FLOWCONTROL == CONSOLE_FLOWCONTROL_RTSCTS serial_set_flow_control(&stdio_uart, FlowControlRTSCTS, STDIO_UART_RTS, STDIO_UART_CTS); #endif } ssize_t DirectSerial::write(const void *buffer, size_t size) { const unsigned char *buf = static_cast<const unsigned char *>(buffer); for (size_t i = 0; i < size; i++) { serial_putc(&stdio_uart, buf[i]); } return size; } ssize_t DirectSerial::read(void *buffer, size_t size) { unsigned char *buf = static_cast<unsigned char *>(buffer); if (size == 0) { return 0; } buf[0] = serial_getc(&stdio_uart); return 1; } short DirectSerial::poll(short events) const { short revents = 0; if ((events & POLLIN) && serial_readable(&stdio_uart)) { revents |= POLLIN; } if ((events & POLLOUT) && serial_writable(&stdio_uart)) { revents |= POLLOUT; } return revents; } #endif class Sink : public FileHandle { public: virtual ssize_t write(const void *buffer, size_t size); virtual ssize_t read(void *buffer, size_t size); virtual off_t seek(off_t offset, int whence = SEEK_SET) { return ESPIPE; } virtual off_t size() { return -EINVAL; } virtual int isatty() { return true; } virtual int close() { return 0; } }; ssize_t Sink::write(const void *buffer, size_t size) { // Just swallow the data - this is historical non-DEVICE_SERIAL behaviour return size; } ssize_t Sink::read(void *buffer, size_t size) { // Produce 1 zero byte - historical behaviour returned 1 without touching // the buffer unsigned char *buf = static_cast<unsigned char *>(buffer); buf[0] = 0; return 1; } MBED_WEAK FileHandle* mbed::mbed_target_override_console(int fd) { return NULL; } MBED_WEAK FileHandle* mbed::mbed_override_console(int fd) { return NULL; } static FileHandle* default_console() { #if DEVICE_SERIAL # if MBED_CONF_PLATFORM_STDIO_BUFFERED_SERIAL static UARTSerial console(STDIO_UART_TX, STDIO_UART_RX, MBED_CONF_PLATFORM_STDIO_BAUD_RATE); # if CONSOLE_FLOWCONTROL == CONSOLE_FLOWCONTROL_RTS console.set_flow_control(SerialBase::RTS, STDIO_UART_RTS, NC); # elif CONSOLE_FLOWCONTROL == CONSOLE_FLOWCONTROL_CTS console.set_flow_control(SerialBase::CTS, NC, STDIO_UART_CTS); # elif CONSOLE_FLOWCONTROL == CONSOLE_FLOWCONTROL_RTSCTS console.set_flow_control(SerialBase::RTSCTS, STDIO_UART_RTS, STDIO_UART_CTS); # endif # else static DirectSerial console(STDIO_UART_TX, STDIO_UART_RX, MBED_CONF_PLATFORM_STDIO_BAUD_RATE); # endif #else // DEVICE_SERIAL static Sink console; #endif return &console; } /* Locate the default console for stdout, stdin, stderr */ static FileHandle* get_console(int fd) { FileHandle *fh = mbed_override_console(fd); if (fh) { return fh; } fh = mbed_target_override_console(fd); if (fh) { return fh; } return default_console(); } /* Deal with the fact C library may not _open descriptors 0, 1, 2 - auto bind */ static FileHandle* get_fhc(int fd) { if (fd >= OPEN_MAX) { return NULL; } FileHandle *fh = filehandles[fd]; if (fh == FILE_HANDLE_RESERVED && fd < 3) { filehandles[fd] = fh = get_console(fd); } return fh; } /** * Sets errno when file opening fails. * Wipes out the filehandle too. * * @param error is a negative error code returned from an mbed function and * will be negated to store a positive error code in errno */ static int handle_open_errors(int error, unsigned filehandle_idx) { errno = -error; // Free file handle filehandles[filehandle_idx] = NULL; return -1; } static inline int openflags_to_posix(int openflags) { int posix = openflags; #ifdef __ARMCC_VERSION if (openflags & OPEN_PLUS) { posix = O_RDWR; } else if(openflags & OPEN_W) { posix = O_WRONLY; } else if(openflags & OPEN_A) { posix = O_WRONLY|O_APPEND; } else { posix = O_RDONLY; } /* a, w, a+, w+ all create if file does not already exist */ if (openflags & (OPEN_A|OPEN_W)) { posix |= O_CREAT; } /* w and w+ truncate */ if (openflags & OPEN_W) { posix |= O_TRUNC; } #elif defined(__ICCARM__) switch (openflags & _LLIO_RDWRMASK) { case _LLIO_RDONLY: posix = O_RDONLY; break; case _LLIO_WRONLY: posix = O_WRONLY; break; case _LLIO_RDWR : posix = O_RDWR ; break; } if (openflags & _LLIO_CREAT ) posix |= O_CREAT; if (openflags & _LLIO_APPEND) posix |= O_APPEND; if (openflags & _LLIO_TRUNC ) posix |= O_TRUNC; #elif defined(TOOLCHAIN_GCC) posix &= ~O_BINARY; #endif return posix; } static int reserve_filehandle() { // find the first empty slot in filehandles, after the slots reserved for stdin/stdout/stderr filehandle_mutex->lock(); int fh_i; for (fh_i = 3; fh_i < OPEN_MAX; fh_i++) { /* Take a next free filehandle slot available. */ if (filehandles[fh_i] == NULL) break; } if (fh_i >= OPEN_MAX) { /* Too many file handles have been opened */ errno = EMFILE; filehandle_mutex->unlock(); return -1; } filehandles[fh_i] = FILE_HANDLE_RESERVED; filehandle_mutex->unlock(); return fh_i; } int mbed::bind_to_fd(FileHandle *fh) { int fildes = reserve_filehandle(); if (fildes < 0) { return fildes; } filehandles[fildes] = fh; stdio_in_prev[fildes] = 0; stdio_out_prev[fildes] = 0; return fildes; } static int unbind_from_fd(int fd, FileHandle *fh) { if (filehandles[fd] == fh) { filehandles[fd] = NULL; return 0; } else { errno = EBADF; return -1; } } #ifndef __IAR_SYSTEMS_ICC__ /* IAR provides fdopen itself */ extern "C" std::FILE* fdopen(int fildes, const char *mode) { // This is to avoid scanf and the bloat it brings. char buf[1 + sizeof fildes]; /* @(integer) */ MBED_STATIC_ASSERT(sizeof buf == 5, "Integers should be 4 bytes."); buf[0] = '@'; memcpy(buf + 1, &fildes, sizeof fildes); std::FILE *stream = std::fopen(buf, mode); /* newlib-nano doesn't appear to ever call _isatty itself, so * happily fully buffers an interactive stream. Deal with that here. */ if (stream && isatty(fildes)) { mbed_set_unbuffered_stream(stream); } return stream; } #endif namespace mbed { std::FILE *fdopen(FileHandle *fh, const char *mode) { // First reserve the integer file descriptor int fd = bind_to_fd(fh); if (!fd) { return NULL; } // Then bind that to the C stream. If successful, C library // takes ownership and responsibility to close. std::FILE *stream = ::fdopen(fd, mode); if (!stream) { unbind_from_fd(fd, fh); } return stream; } } /* @brief standard c library fopen() retargeting function. * * This function is invoked by the standard c library retargeting to handle fopen() * * @return * On success, a valid FILEHANDLE is returned. * On failure, -1 is returned and errno is set to an appropriate value e.g. * ENOENT file not found (default errno setting) * EMFILE the maximum number of open files was exceeded. * * */ extern "C" FILEHANDLE PREFIX(_open)(const char *name, int openflags) { #if defined(__MICROLIB) && (__ARMCC_VERSION>5030000) #if !defined(MBED_CONF_RTOS_PRESENT) // valid only for mbed 2 // for ulib, this is invoked after RAM init, prior c++ // used as hook, as post stack/heap is not active there extern void mbed_copy_nvic(void); extern void mbed_sdk_init(void); static int mbed_sdk_inited = 0; if (!mbed_sdk_inited) { mbed_copy_nvic(); mbed_sdk_init(); mbed_sdk_inited = 1; } #endif // Before version 5.03, we were using a patched version of microlib with proper names // This is the workaround that the microlib author suggested us static int n = 0; if (std::strcmp(name, ":tt") == 0 && n < 3) { return n++; } #else /* Use the posix convention that stdin,out,err are filehandles 0,1,2. */ if (std::strcmp(name, __stdin_name) == 0) { get_fhc(STDIN_FILENO); return STDIN_FILENO; } else if (std::strcmp(name, __stdout_name) == 0) { get_fhc(STDOUT_FILENO); return STDOUT_FILENO; } else if (std::strcmp(name, __stderr_name) == 0) { get_fhc(STDERR_FILENO); return STDERR_FILENO; } #endif #ifndef __IAR_SYSTEMS_ICC__ /* FILENAME: "@(integer)" gives an already-allocated descriptor */ if (name[0] == '@') { int fd; memcpy(&fd, name + 1, sizeof fd); return fd; } #endif return open(name, openflags_to_posix(openflags)); } extern "C" int open(const char *name, int oflag, ...) { int fildes = reserve_filehandle(); if (fildes < 0) { return fildes; } FileHandle *res = NULL; FilePath path(name); if (!path.exists()) { /* The first part of the filename (between first 2 '/') is not a * registered mount point in the namespace. */ return handle_open_errors(-ENODEV, fildes); } if (path.isFile()) { res = path.file(); } else { FileSystemHandle *fs = path.fileSystem(); if (fs == NULL) { return handle_open_errors(-ENODEV, fildes); } int err = fs->open(&res, path.fileName(), oflag); if (err) { return handle_open_errors(err, fildes); } } filehandles[fildes] = res; stdio_in_prev[fildes] = 0; stdio_out_prev[fildes] = 0; return fildes; } extern "C" int PREFIX(_close)(FILEHANDLE fh) { return close(fh); } extern "C" int close(int fildes) { FileHandle* fhc = get_fhc(fildes); filehandles[fildes] = NULL; if (fhc == NULL) { errno = EBADF; return -1; } int err = fhc->close(); if (err < 0) { errno = -err; return -1; } else { return 0; } } static bool convert_crlf(int fd) { #if MBED_CONF_PLATFORM_STDIO_CONVERT_TTY_NEWLINES return isatty(fd); #elif MBED_CONF_PLATFORM_STDIO_CONVERT_NEWLINES return fd < 3 && isatty(fd); #else return false; #endif } #if defined(__ICCARM__) extern "C" size_t __write (int fh, const unsigned char *buffer, size_t length) { #else extern "C" int PREFIX(_write)(FILEHANDLE fh, const unsigned char *buffer, unsigned int length, int mode) { #endif #if defined(MBED_TRAP_ERRORS_ENABLED) && MBED_TRAP_ERRORS_ENABLED && defined(MBED_CONF_RTOS_PRESENT) if (core_util_is_isr_active() || !core_util_are_interrupts_enabled()) { MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_PROHIBITED_IN_ISR_CONTEXT), "Error - writing to a file in an ISR or critical section\r\n", fh); } #endif if (length > SSIZE_MAX) { errno = EINVAL; return -1; } ssize_t slength = length; ssize_t written = 0; if (convert_crlf(fh)) { // local prev is previous in buffer during seek // stdio_out_prev[fh] is last thing actually written char prev = stdio_out_prev[fh]; // Seek for '\n' without preceding '\r'; if found flush // preceding and insert '\r'. Continue until end of input. for (ssize_t cur = 0; cur < slength; cur++) { if (buffer[cur] == '\n' && prev != '\r') { ssize_t r; // flush stuff preceding the \n if (cur > written) { r = write(fh, buffer + written, cur - written); if (r < 0) { return -1; } written += r; if (written < cur) { // For some reason, didn't write all - give up now goto finish; } stdio_out_prev[fh] = prev; } // insert a \r now, leaving the \n still to be written r = write(fh, "\r", 1); if (r < 0) { return -1; } if (r < 1) { goto finish; } stdio_out_prev[fh] = '\r'; } prev = buffer[cur]; } } // Flush remaining from conversion, or the whole thing if no conversion if (written < slength) { ssize_t r = write(fh, buffer + written, slength - written); if (r < 0) { return -1; } written += r; if (written > 0) { stdio_out_prev[fh] = buffer[written - 1]; } } finish: #ifdef __ARMCC_VERSION if (written >= 0) { return slength - written; } else { return written; } #else return written; #endif } extern "C" ssize_t write(int fildes, const void *buf, size_t length) { FileHandle* fhc = get_fhc(fildes); if (fhc == NULL) { errno = EBADF; return -1; } ssize_t ret = fhc->write(buf, length); if (ret < 0) { errno = -ret; return -1; } else { return ret; } } #if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) extern "C" void PREFIX(_exit)(int return_code) { while(1) {} } extern "C" void _ttywrch(int ch) { char c = ch; write(STDOUT_FILENO, &c, 1); } #endif #if defined(__ICCARM__) extern "C" size_t __read (int fh, unsigned char *buffer, size_t length) { #else extern "C" int PREFIX(_read)(FILEHANDLE fh, unsigned char *buffer, unsigned int length, int mode) { #endif #if defined(MBED_TRAP_ERRORS_ENABLED) && MBED_TRAP_ERRORS_ENABLED && defined(MBED_CONF_RTOS_PRESENT) if (core_util_is_isr_active() || !core_util_are_interrupts_enabled()) { MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_PROHIBITED_IN_ISR_CONTEXT), "Error - reading from a file in an ISR or critical section\r\n", fh); } #endif if (length > SSIZE_MAX) { errno = EINVAL; return -1; } ssize_t bytes_read = 0; if (convert_crlf(fh)) { while (true) { char c; ssize_t r = read(fh, &c, 1); if (r < 0) { return -1; } if (r == 0) { return bytes_read; } if ((c == '\r' && stdio_in_prev[fh] != '\n') || (c == '\n' && stdio_in_prev[fh] != '\r')) { stdio_in_prev[fh] = c; *buffer = '\n'; break; } else if ((c == '\r' && stdio_in_prev[fh] == '\n') || (c == '\n' && stdio_in_prev[fh] == '\r')) { stdio_in_prev[fh] = c; continue; } else { stdio_in_prev[fh] = c; *buffer = c; break; } } bytes_read = 1; } else { bytes_read = read(fh, buffer, length); } #ifdef __ARMCC_VERSION if (bytes_read < 0) { return -1; } else if (bytes_read == 0) { return 0x80000000 | length; // weird EOF indication } else { return (ssize_t)length - bytes_read; } #else return bytes_read; #endif } extern "C" ssize_t read(int fildes, void *buf, size_t length) { FileHandle* fhc = get_fhc(fildes); if (fhc == NULL) { errno = EBADF; return -1; } ssize_t ret = fhc->read(buf, length); if (ret < 0) { errno = -ret; return -1; } else { return ret; } } #ifdef __ARMCC_VERSION extern "C" int PREFIX(_istty)(FILEHANDLE fh) #else extern "C" int _isatty(FILEHANDLE fh) #endif { return isatty(fh); } extern "C" int isatty(int fildes) { FileHandle* fhc = get_fhc(fildes); if (fhc == NULL) { errno = EBADF; return 0; } int tty = fhc->isatty(); if (tty < 0) { errno = -tty; return 0; } else { return tty; } } extern "C" #if defined(__ARMCC_VERSION) int _sys_seek(FILEHANDLE fh, long offset) #elif defined(__ICCARM__) long __lseek(int fh, long offset, int whence) #else int _lseek(FILEHANDLE fh, int offset, int whence) #endif { #if defined(__ARMCC_VERSION) int whence = SEEK_SET; #endif off_t off = lseek(fh, offset, whence); // Assuming INT_MAX = LONG_MAX, so we don't care about prototype difference if (off > INT_MAX) { errno = EOVERFLOW; return -1; } return off; } extern "C" off_t lseek(int fildes, off_t offset, int whence) { FileHandle* fhc = get_fhc(fildes); if (fhc == NULL) { errno = EBADF; return -1; } off_t off = fhc->seek(offset, whence); if (off < 0) { errno = -off; return -1; } return off; } #ifdef __ARMCC_VERSION extern "C" int PREFIX(_ensure)(FILEHANDLE fh) { return fsync(fh); } #endif extern "C" int fsync(int fildes) { FileHandle* fhc = get_fhc(fildes); if (fhc == NULL) { errno = EBADF; return -1; } int err = fhc->sync(); if (err < 0) { errno = -err; return -1; } else { return 0; } } #ifdef __ARMCC_VERSION extern "C" long PREFIX(_flen)(FILEHANDLE fh) { FileHandle* fhc = get_fhc(fh); if (fhc == NULL) { errno = EBADF; return -1; } off_t size = fhc->size(); if (size < 0) { errno = -size; return -1; } if (size > LONG_MAX) { errno = EOVERFLOW; return -1; } return size; } extern "C" char Image$$RW_IRAM1$$ZI$$Limit[]; extern "C" MBED_WEAK __value_in_regs struct __initial_stackheap _mbed_user_setup_stackheap(uint32_t R0, uint32_t R1, uint32_t R2, uint32_t R3) { uint32_t zi_limit = (uint32_t)Image$$RW_IRAM1$$ZI$$Limit; uint32_t sp_limit = __current_sp(); zi_limit = (zi_limit + 7) & ~0x7; // ensure zi_limit is 8-byte aligned struct __initial_stackheap r; r.heap_base = zi_limit; r.heap_limit = sp_limit; return r; } extern "C" __value_in_regs struct __initial_stackheap __user_setup_stackheap(uint32_t R0, uint32_t R1, uint32_t R2, uint32_t R3) { return _mbed_user_setup_stackheap(R0, R1, R2, R3); } #endif #if !defined(__ARMCC_VERSION) && !defined(__ICCARM__) extern "C" int _fstat(int fh, struct stat *st) { return fstat(fh, st); } #endif extern "C" int fstat(int fildes, struct stat *st) { FileHandle* fhc = get_fhc(fildes); if (fhc == NULL) { errno = EBADF; return -1; } st->st_mode = fhc->isatty() ? S_IFCHR : S_IFREG; st->st_size = fhc->size(); return 0; } extern "C" int fcntl(int fildes, int cmd, ...) { FileHandle *fhc = get_fhc(fildes); if (fhc == NULL) { errno = EBADF; return -1; } switch (cmd) { case F_GETFL: { int flags = 0; if (fhc->is_blocking()) { flags |= O_NONBLOCK; } return flags; } case F_SETFL: { va_list ap; va_start(ap, cmd); int flags = va_arg(ap, int); va_end(ap); int ret = fhc->set_blocking(flags & O_NONBLOCK); if (ret < 0) { errno = -ret; return -1; } return 0; } default: { errno = EINVAL; return -1; } } } extern "C" int poll(struct pollfd fds[], nfds_t nfds, int timeout) { if (nfds > OPEN_MAX) { errno = EINVAL; return -1; } struct mbed::pollfh fhs[OPEN_MAX]; for (nfds_t n = 0; n < nfds; n++) { // Underlying FileHandle poll returns POLLNVAL if given NULL, so // we don't need to take special action. fhs[n].fh = get_fhc(fds[n].fd); fhs[n].events = fds[n].events; } int ret = poll(fhs, nfds, timeout); for (nfds_t n = 0; n < nfds; n++) { fds[n].revents = fhs[n].revents; } return ret; } namespace std { extern "C" int remove(const char *path) { FilePath fp(path); FileSystemHandle *fs = fp.fileSystem(); if (fs == NULL) { errno = ENODEV; return -1; } int err = fs->remove(fp.fileName()); if (err < 0) { errno = -err; return -1; } else { return 0; } } extern "C" int rename(const char *oldname, const char *newname) { FilePath fpOld(oldname); FilePath fpNew(newname); FileSystemHandle *fsOld = fpOld.fileSystem(); FileSystemHandle *fsNew = fpNew.fileSystem(); if (fsOld == NULL) { errno = ENODEV; return -1; } /* rename only if both files are on the same FS */ if (fsOld != fsNew) { errno = EXDEV; return -1; } int err = fsOld->rename(fpOld.fileName(), fpNew.fileName()); if (err < 0) { errno = -err; return -1; } else { return 0; } } extern "C" char *tmpnam(char *s) { errno = EBADF; return NULL; } extern "C" FILE *tmpfile() { errno = EBADF; return NULL; } } // namespace std #ifdef __ARMCC_VERSION extern "C" char *_sys_command_string(char *cmd, int len) { return NULL; } #endif extern "C" DIR *opendir(const char *path) { FilePath fp(path); FileSystemHandle* fs = fp.fileSystem(); if (fs == NULL) { errno = ENODEV; return NULL; } DirHandle *dir; int err = fs->open(&dir, fp.fileName()); if (err < 0) { errno = -err; return NULL; } return dir; } extern "C" struct dirent *readdir(DIR *dir) { static struct dirent ent; int err = dir->read(&ent); if (err < 1) { if (err < 0) { errno = -err; } return NULL; } return &ent; } extern "C" int closedir(DIR *dir) { int err = dir->close(); if (err < 0) { errno = -err; return -1; } else { return 0; } } extern "C" void rewinddir(DIR *dir) { dir->rewind(); } extern "C" off_t telldir(DIR *dir) { return dir->tell(); } extern "C" void seekdir(DIR *dir, off_t off) { dir->seek(off); } extern "C" int mkdir(const char *path, mode_t mode) { FilePath fp(path); FileSystemHandle *fs = fp.fileSystem(); if (fs == NULL) { errno = ENODEV; return -1; } int err = fs->mkdir(fp.fileName(), mode); if (err < 0) { errno = -err; return -1; } else { return 0; } } extern "C" int stat(const char *path, struct stat *st) { FilePath fp(path); FileSystemHandle *fs = fp.fileSystem(); if (fs == NULL) { errno = ENODEV; return -1; } int err = fs->stat(fp.fileName(), st); if (err < 0) { errno = -err; return -1; } else { return 0; } } extern "C" int statvfs(const char *path, struct statvfs *buf) { FilePath fp(path); FileSystemHandle *fs = fp.fileSystem(); if (fs == NULL) { errno = ENODEV; return -1; } int err = fs->statvfs(fp.fileName(), buf); if (err < 0) { errno = -err; return -1; } else { return 0; } } #if defined(TOOLCHAIN_GCC) /* prevents the exception handling name demangling code getting pulled in */ #include "mbed_error.h" namespace __gnu_cxx { void __verbose_terminate_handler() { MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_CLIB_EXCEPTION),"Exception", 0); } } extern "C" WEAK void __cxa_pure_virtual(void); extern "C" WEAK void __cxa_pure_virtual(void) { exit(1); } #endif // Provide implementation of _sbrk (low-level dynamic memory allocation // routine) for GCC_ARM which compares new heap pointer with MSP instead of // SP. This make it compatible with RTX RTOS thread stacks. #if defined(TOOLCHAIN_GCC_ARM) || defined(TOOLCHAIN_GCC_CR) #if defined(TARGET_CORTEX_A) extern "C" uint32_t __HeapLimit; #endif // Turn off the errno macro and use actual global variable instead. #undef errno extern "C" int errno; // Dynamic memory allocation related syscall. #if (defined(TARGET_NUVOTON) || defined(TWO_RAM_REGIONS)) // Overwrite _sbrk() to support two region model (heap and stack are two distinct regions). // __wrap__sbrk() is implemented in: // TARGET_NUMAKER_PFM_NUC472 targets/TARGET_NUVOTON/TARGET_NUC472/TARGET_NUMAKER_PFM_NUC472/TOOLCHAIN_GCC_ARM/nuc472_retarget.c // TARGET_NUMAKER_PFM_M453 targets/TARGET_NUVOTON/TARGET_M451/TARGET_NUMAKER_PFM_M453/TOOLCHAIN_GCC_ARM/m451_retarget.c // TARGET_STM32L4 targets/TARGET_STM/TARGET_STM32L4/TARGET_STM32L4/l4_retarget.c extern "C" void *__wrap__sbrk(int incr); extern "C" caddr_t _sbrk(int incr) { return (caddr_t) __wrap__sbrk(incr); } #else // Linker defined symbol used by _sbrk to indicate where heap should start. extern "C" uint32_t __end__; // Weak attribute allows user to override, e.g. to use external RAM for dynamic memory. extern "C" WEAK caddr_t _sbrk(int incr) { static unsigned char* heap = (unsigned char*)&__end__; unsigned char* prev_heap = heap; unsigned char* new_heap = heap + incr; #if defined(TARGET_CORTEX_A) if (new_heap >= (unsigned char*)&__HeapLimit) { /* __HeapLimit is end of heap section */ #else if (new_heap >= (unsigned char*)__get_MSP()) { #endif errno = ENOMEM; return (caddr_t)-1; } // Additional heap checking if set if (mbed_heap_size && (new_heap >= mbed_heap_start + mbed_heap_size)) { errno = ENOMEM; return (caddr_t)-1; } heap = new_heap; return (caddr_t) prev_heap; } #endif #endif #if defined(TOOLCHAIN_GCC_ARM) || defined(TOOLCHAIN_GCC_CR) extern "C" void _exit(int return_code) { #else namespace std { extern "C" void exit(int return_code) { #endif #if DEVICE_STDIO_MESSAGES #if MBED_CONF_PLATFORM_STDIO_FLUSH_AT_EXIT fflush(stdout); fflush(stderr); #endif #endif #if DEVICE_SEMIHOST if (mbed_interface_connected()) { semihost_exit(); } #endif if (return_code) { mbed_die(); } while (1); } #if !defined(TOOLCHAIN_GCC_ARM) && !defined(TOOLCHAIN_GCC_CR) } //namespace std #endif #if defined(TOOLCHAIN_ARM) || defined(TOOLCHAIN_GCC) // This series of function disable the registration of global destructors // in a dynamic table which will be called when the application exit. // In mbed, program never exit properly, it dies. // More informations about this topic for ARMCC here: // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/6449.html extern "C" { int __aeabi_atexit(void *object, void (*dtor)(void* /*this*/), void *handle) { return 1; } int __cxa_atexit(void (*dtor)(void* /*this*/), void *object, void *handle) { return 1; } void __cxa_finalize(void *handle) { } } // end of extern "C" #endif #if defined(TOOLCHAIN_GCC) /* * Depending on how newlib is configured, it is often not enough to define * __aeabi_atexit, __cxa_atexit and __cxa_finalize in order to override the * behavior regarding the registration of handlers with atexit. * * To overcome this limitation, exit and atexit are overriden here. */ extern "C"{ /** * @brief Retarget of exit for GCC. * @details Unlike the standard version, this function doesn't call any function * registered with atexit before calling _exit. */ void __wrap_exit(int return_code) { _exit(return_code); } /** * @brief Retarget atexit from GCC. * @details This function will always fail and never register any handler to be * called at exit. */ int __wrap_atexit(void (*func)()) { return 1; } } #endif namespace mbed { void mbed_set_unbuffered_stream(std::FILE *_file) { #if defined (__ICCARM__) char buf[2]; std::setvbuf(_file,buf,_IONBF,NULL); #else setbuf(_file, NULL); #endif } int mbed_getc(std::FILE *_file){ #if defined(__IAR_SYSTEMS_ICC__ ) && (__VER__ < 8000000) /*This is only valid for unbuffered streams*/ int res = std::fgetc(_file); if (res>=0){ _file->_Mode = (unsigned short)(_file->_Mode & ~ 0x1000);/* Unset read mode */ _file->_Rend = _file->_Wend; _file->_Next = _file->_Wend; } return res; #else return std::fgetc(_file); #endif } char* mbed_gets(char*s, int size, std::FILE *_file){ #if defined(__IAR_SYSTEMS_ICC__ ) && (__VER__ < 8000000) /*This is only valid for unbuffered streams*/ char *str = fgets(s,size,_file); if (str!=NULL){ _file->_Mode = (unsigned short)(_file->_Mode & ~ 0x1000);/* Unset read mode */ _file->_Rend = _file->_Wend; _file->_Next = _file->_Wend; } return str; #else return std::fgets(s,size,_file); #endif } } // namespace mbed #if defined (__ICCARM__) // Stub out locks when an rtos is not present extern "C" WEAK void __iar_system_Mtxinit(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_system_Mtxdst(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_system_Mtxlock(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_system_Mtxunlock(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_file_Mtxinit(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_file_Mtxdst(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_file_Mtxlock(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_file_Mtxunlock(__iar_Rmtx *mutex) {} #if defined(__IAR_SYSTEMS_ICC__ ) && (__VER__ >= 8000000) #pragma section="__iar_tls$$DATA" extern "C" WEAK void *__aeabi_read_tp (void) { // Thread Local storage is not supported, using main thread memory for errno return __section_begin("__iar_tls$$DATA"); } #endif #elif defined(__CC_ARM) // Do nothing #elif defined (__GNUC__) struct _reent; // Stub out locks when an rtos is not present extern "C" WEAK void __rtos_malloc_lock( struct _reent *_r ) {} extern "C" WEAK void __rtos_malloc_unlock( struct _reent *_r ) {} extern "C" WEAK void __rtos_env_lock( struct _reent *_r ) {} extern "C" WEAK void __rtos_env_unlock( struct _reent *_r ) {} extern "C" void __malloc_lock( struct _reent *_r ) { __rtos_malloc_lock(_r); } extern "C" void __malloc_unlock( struct _reent *_r ) { __rtos_malloc_unlock(_r); } extern "C" void __env_lock( struct _reent *_r ) { __rtos_env_lock(_r); } extern "C" void __env_unlock( struct _reent *_r ) { __rtos_env_unlock(_r); } #endif #if defined (__GNUC__) || defined(__CC_ARM) || (defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) #define CXA_GUARD_INIT_DONE (1 << 0) #define CXA_GUARD_INIT_IN_PROGRESS (1 << 1) #define CXA_GUARD_MASK (CXA_GUARD_INIT_DONE | CXA_GUARD_INIT_IN_PROGRESS) extern "C" int __cxa_guard_acquire(int *guard_object_p) { uint8_t *guard_object = (uint8_t *)guard_object_p; if (CXA_GUARD_INIT_DONE == (*guard_object & CXA_GUARD_MASK)) { return 0; } singleton_lock(); if (CXA_GUARD_INIT_DONE == (*guard_object & CXA_GUARD_MASK)) { singleton_unlock(); return 0; } MBED_ASSERT(0 == (*guard_object & CXA_GUARD_MASK)); *guard_object = *guard_object | CXA_GUARD_INIT_IN_PROGRESS; return 1; } extern "C" void __cxa_guard_release(int *guard_object_p) { uint8_t *guard_object = (uint8_t *)guard_object_p; MBED_ASSERT(CXA_GUARD_INIT_IN_PROGRESS == (*guard_object & CXA_GUARD_MASK)); *guard_object = (*guard_object & ~CXA_GUARD_MASK) | CXA_GUARD_INIT_DONE; singleton_unlock(); } extern "C" void __cxa_guard_abort(int *guard_object_p) { uint8_t *guard_object = (uint8_t *)guard_object_p; MBED_ASSERT(CXA_GUARD_INIT_IN_PROGRESS == (*guard_object & CXA_GUARD_MASK)); *guard_object = *guard_object & ~CXA_GUARD_INIT_IN_PROGRESS; singleton_unlock(); } #endif #if defined(MBED_MEM_TRACING_ENABLED) && (defined(__CC_ARM) || defined(__ICCARM__) || (defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))) // If the memory tracing is enabled, the wrappers in mbed_alloc_wrappers.cpp // provide the implementation for these. Note: this needs to use the wrappers // instead of malloc()/free() as the caller address would point to wrappers, // not the caller of "new" or "delete". extern "C" void* malloc_wrapper(size_t size, const void* caller); extern "C" void free_wrapper(void *ptr, const void* caller); void *operator new(std::size_t count) { void *buffer = malloc_wrapper(count, MBED_CALLER_ADDR()); if (NULL == buffer) { MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_OUT_OF_MEMORY), "Operator new out of memory\r\n", count); } return buffer; } void *operator new[](std::size_t count) { void *buffer = malloc_wrapper(count, MBED_CALLER_ADDR()); if (NULL == buffer) { error("Operator new[] out of memory\r\n"); } return buffer; } void *operator new(std::size_t count, const std::nothrow_t& tag) { return malloc_wrapper(count, MBED_CALLER_ADDR()); } void *operator new[](std::size_t count, const std::nothrow_t& tag) { return malloc_wrapper(count, MBED_CALLER_ADDR()); } void operator delete(void *ptr) { free_wrapper(ptr, MBED_CALLER_ADDR()); } void operator delete[](void *ptr) { free_wrapper(ptr, MBED_CALLER_ADDR()); } #elif defined(MBED_MEM_TRACING_ENABLED) && defined(__GNUC__) #include <reent.h> extern "C" void* malloc_wrapper(struct _reent * r, size_t size, void * caller); extern "C" void free_wrapper(struct _reent * r, void * ptr, void * caller); void *operator new(std::size_t count) { void *buffer = malloc_wrapper(_REENT, count, MBED_CALLER_ADDR()); if (NULL == buffer) { MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_OUT_OF_MEMORY), "Operator new out of memory\r\n", count); } return buffer; } void *operator new[](std::size_t count) { void *buffer = malloc_wrapper(_REENT, count, MBED_CALLER_ADDR()); if (NULL == buffer) { MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_OUT_OF_MEMORY), "Operator new out of memory\r\n", count); } return buffer; } void *operator new(std::size_t count, const std::nothrow_t& tag) { return malloc_wrapper(_REENT, count, MBED_CALLER_ADDR()); } void *operator new[](std::size_t count, const std::nothrow_t& tag) { return malloc_wrapper(_REENT, count, MBED_CALLER_ADDR()); } void operator delete(void *ptr) { free_wrapper(_REENT, ptr, MBED_CALLER_ADDR()); } void operator delete[](void *ptr) { free_wrapper(_REENT, ptr, MBED_CALLER_ADDR()); } #else void *operator new(std::size_t count) { void *buffer = malloc(count); if (NULL == buffer) { MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_OUT_OF_MEMORY), "Operator new out of memory\r\n", count); } return buffer; } void *operator new[](std::size_t count) { void *buffer = malloc(count); if (NULL == buffer) { MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_OUT_OF_MEMORY), "Operator new[] out of memory\r\n", count); } return buffer; } void *operator new(std::size_t count, const std::nothrow_t& tag) { return malloc(count); } void *operator new[](std::size_t count, const std::nothrow_t& tag) { return malloc(count); } void operator delete(void *ptr) { free(ptr); } void operator delete[](void *ptr) { free(ptr); } #endif /* @brief standard c library clock() function. * * This function returns the number of clock ticks elapsed since the start of the program. * * @note Synchronization level: Thread safe * * @return * the number of clock ticks elapsed since the start of the program. * * */ extern "C" clock_t clock() { _mutex->lock(); clock_t t = ticker_read(get_us_ticker_data()); t /= 1000000 / CLOCKS_PER_SEC; // convert to processor time _mutex->unlock(); return t; } // temporary - Default to 1MHz at 32 bits if target does not have us_ticker_get_info MBED_WEAK const ticker_info_t* us_ticker_get_info() { static const ticker_info_t info = { 1000000, 32 }; return &info; } // temporary - Default to 1MHz at 32 bits if target does not have lp_ticker_get_info MBED_WEAK const ticker_info_t* lp_ticker_get_info() { static const ticker_info_t info = { 1000000, 32 }; return &info; }