Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: xtoff3 CYS_Receiver
Fork of RF24Network by
Revision 2:a5f8e04bd02b, committed 2015-11-05
- Comitter:
- akashvibhute
- Date:
- Thu Nov 05 05:40:44 2015 +0000
- Parent:
- 1:caf146ffe8b0
- Child:
- 3:dfc8da7ac18c
- Commit message:
- Updated with TMRh20's RF24 library on Nov/04/2015 from https://github.com/TMRh20; Porting completed on Nov/05/2015
Changed in this revision
--- a/RF24Network.cpp Mon Jul 06 05:18:22 2015 +0000
+++ b/RF24Network.cpp Thu Nov 05 05:40:44 2015 +0000
@@ -7,279 +7,1031 @@
*/
#include "RF24Network_config.h"
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
#include <RF24.h>
#include "RF24Network.h"
-uint16_t RF24NetworkHeader::next_id = 1;
+
+
+
+
+
+
+
+uint16_t RF24NetworkHeader::next_id = 1;
+#if defined ENABLE_NETWORK_STATS
+uint32_t RF24Network::nFails = 0;
+uint32_t RF24Network::nOK = 0;
+#endif
uint64_t pipe_address( uint16_t node, uint8_t pipe );
+#if defined (RF24NetworkMulticast)
+uint16_t levelToAddress( uint8_t level );
+#endif
bool is_valid_address( uint16_t node );
/******************************************************************/
-RF24Network::RF24Network( RF24& _radio ): radio(_radio), next_frame(frame_queue)
+
+
+
+
+
+
+
+#if !defined (DUAL_HEAD_RADIO)
+RF24Network::RF24Network( RF24& _radio ): radio(_radio), next_frame(frame_queue)
{
+ #if !defined ( DISABLE_FRAGMENTATION )
+ frag_queue.message_buffer=&frag_queue_message_buffer[0];
+ frag_ptr = &frag_queue;
+ #endif
}
-
+#else
+RF24Network::RF24Network( RF24& _radio, RF24& _radio1 ): radio(_radio), radio1(_radio1), next_frame(frame_queue)
+{
+ #if !defined ( DISABLE_FRAGMENTATION )
+ frag_queue.message_buffer=&frag_queue_message_buffer[0];
+ frag_ptr = &frag_queue;
+ #endif
+}
+#endif
/******************************************************************/
void RF24Network::begin(uint8_t _channel, uint16_t _node_address )
{
- if (! is_valid_address(_node_address) )
+rf24netTimer.start();
+if (! is_valid_address(_node_address) )
return;
+
+ node_address = _node_address;
- node_address = _node_address;
+ if ( ! radio.isValid() ){
+ return;
+ }
// Set up the radio the way we want it to look
- radio.setChannel(_channel);
- radio.setDataRate(RF24_1MBPS);
- radio.setCRCLength(RF24_CRC_16);
-
- // Setup Auto ack enabled as it is required by nodes
- radio.setAutoAck(1);
-
+ if(_channel != USE_CURRENT_CHANNEL){
+ radio.setChannel(_channel);
+ }
+ //radio.enableDynamicAck();
+ radio.setAutoAck(0,0);
+
+ #if defined (ENABLE_DYNAMIC_PAYLOADS)
+ radio.enableDynamicPayloads();
+ #endif
+
+ // Use different retry periods to reduce data collisions
+ uint8_t retryVar = (((node_address % 6)+1) *2) + 3;
+ radio.setRetries(retryVar, 5);
+ txTimeout = 25;
+ routeTimeout = txTimeout*9; // Adjust for max delay per node
+
+
+#if defined (DUAL_HEAD_RADIO)
+ radio1.setChannel(_channel);
+ radio1.enableDynamicAck();
+ radio1.enableDynamicPayloads();
+#endif
+
// Setup our address helper cache
setup_address();
-
+
// Open up all listening pipes
- int i = 6;
- while (i--)
- radio.openReadingPipe(i,pipe_address(_node_address,i));
+ uint8_t i = 6;
+ while (i--){
+ radio.openReadingPipe(i,pipe_address(_node_address,i));
+ }
radio.startListening();
-
- // Spew debugging state about the radio
- radio.printDetails();
+
}
/******************************************************************/
-void RF24Network::update(void)
+#if defined ENABLE_NETWORK_STATS
+void RF24Network::failures(uint32_t *_fails, uint32_t *_ok){
+ *_fails = nFails;
+ *_ok = nOK;
+}
+#endif
+
+/******************************************************************/
+
+uint8_t RF24Network::update(void)
{
// if there is data ready
uint8_t pipe_num;
- while ( radio.available(&pipe_num) )
- {
- // Dump the payloads until we've gotten everything
- bool done = false;
- while (!done)
- {
- // Fetch the payload, and see if this was the last one.
- done = radio.read( frame_buffer, sizeof(frame_buffer) );
+ uint8_t returnVal = 0;
+
+ // If bypass is enabled, continue although incoming user data may be dropped
+ // Allows system payloads to be read while user cache is full
+ // Incoming Hold prevents data from being read from the radio, preventing incoming payloads from being acked
+
+
+ if(!(networkFlags & FLAG_BYPASS_HOLDS)){
+ if( (networkFlags & FLAG_HOLD_INCOMING) || (next_frame-frame_queue) + 34 > MAIN_BUFFER_SIZE ){
+ if(!available()){
+ networkFlags &= ~FLAG_HOLD_INCOMING;
+ }else{
+ return 0;
+ }
+ }
+ }
+
+
+ while ( radio.isValid() && radio.available(&pipe_num) ){
+ #if defined (ENABLE_DYNAMIC_PAYLOADS)
+ if( (frame_size = radio.getDynamicPayloadSize() ) < sizeof(RF24NetworkHeader)){
+ wait_ms(10);
+ continue;
+ }
+ #else
+ frame_size=32;
+ #endif
+ // Dump the payloads until we've gotten everything
+ // Fetch the payload, and see if this was the last one.
+ radio.read( frame_buffer, frame_size );
+
// Read the beginning of the frame as the header
- const RF24NetworkHeader& header = * reinterpret_cast<RF24NetworkHeader*>(frame_buffer);
+ RF24NetworkHeader *header = (RF24NetworkHeader*)(&frame_buffer);
+
- //IF_SERIAL_DEBUG(printf_P(PSTR("%lu: MAC Received on %u %s\n\r"),millis(),pipe_num,header.toString()));
- //IF_SERIAL_DEBUG(const uint16_t* i = reinterpret_cast<const uint16_t*>(frame_buffer + sizeof(RF24NetworkHeader));printf_P(PSTR("%lu: NET message %04x\n\r"),millis(),*i));
+
+
+
+
+
+
+ IF_SERIAL_DEBUG(printf_P(PSTR("%lu: MAC Received on %u %s\n\r"),millis(),pipe_num,header->toString()));
+ IF_SERIAL_DEBUG(const uint16_t* i = reinterpret_cast<const uint16_t*>(frame_buffer + sizeof(RF24NetworkHeader));printf_P(PSTR("%lu: NET message %04x\n\r"),millis(),*i));
+
// Throw it away if it's not a valid address
- if ( !is_valid_address(header.to_node) )
- continue;
+ if ( !is_valid_address(header->to_node) ){
+ continue;
+ }
+
+ uint8_t returnVal = header->type;
// Is this for us?
- if ( header.to_node == node_address )
- // Add it to the buffer of frames for us
- enqueue();
- else
- // Relay it
- write(header.to_node);
-
- // NOT NEEDED anymore. Now all reading pipes are open to start.
-#if 0
- // If this was for us, from one of our children, but on our listening
- // pipe, it could mean that we are not listening to them. If so, open up
- // and listen to their talking pipe
+ if ( header->to_node == node_address ){
+
+ if(header->type == NETWORK_PING){
+ continue;
+ }
+ if(header->type == NETWORK_ADDR_RESPONSE ){
+ uint16_t requester = frame_buffer[8];
+ requester |= frame_buffer[9] << 8;
+ if(requester != node_address){
+ header->to_node = requester;
+ write(header->to_node,USER_TX_TO_PHYSICAL_ADDRESS);
+ wait_ms(10);
+ write(header->to_node,USER_TX_TO_PHYSICAL_ADDRESS);
+ //printf("Fwd add response to 0%o\n",requester);
+ continue;
+ }
+ }
+ if(header->type == NETWORK_REQ_ADDRESS && node_address){
+ //printf("Fwd add req to 0\n");
+ header->from_node = node_address;
+ header->to_node = 0;
+ write(header->to_node,TX_NORMAL);
+ continue;
+ }
+
+ if( (returnSysMsgs && header->type > 127) || header->type == NETWORK_ACK ){
+ //IF_SERIAL_DEBUG_ROUTING( printf_P(PSTR("%lu MAC: System payload rcvd %d\n"),millis(),returnVal); );
+ //if( (header->type < 148 || header->type > 150) && header->type != NETWORK_MORE_FRAGMENTS_NACK && header->type != EXTERNAL_DATA_TYPE && header->type!= NETWORK_LAST_FRAGMENT){
+ if( header->type != NETWORK_FIRST_FRAGMENT && header->type != NETWORK_MORE_FRAGMENTS && header->type != NETWORK_MORE_FRAGMENTS_NACK && header->type != EXTERNAL_DATA_TYPE && header->type!= NETWORK_LAST_FRAGMENT){
+ return returnVal;
+ }
+ }
- if ( header.to_node == node_address && pipe_num == 0 && is_descendant(header.from_node) )
- {
- uint8_t pipe = pipe_to_descendant(header.from_node);
- radio.openReadingPipe(pipe,pipe_address(node_address,pipe));
+ if( enqueue(header) == 2 ){ //External data received
+ #if defined (SERIAL_DEBUG_MINIMAL)
+ printf("ret ext\n");
+ #endif
+ return EXTERNAL_DATA_TYPE;
+ }
+ }else{
+
+ #if defined (RF24NetworkMulticast)
+
+ if( header->to_node == 0100){
+
- // Also need to open pipe 1 so the system can get the full 5-byte address of the pipe.
- radio.openReadingPipe(1,pipe_address(node_address,1));
+ if(header->type == NETWORK_POLL ){
+ //Serial.println("Send poll");
+ header->to_node = header->from_node;
+ header->from_node = node_address;
+ //delay((node_address%5)*3);
+ write(header->to_node,USER_TX_TO_PHYSICAL_ADDRESS);
+ continue;
+ }
+ uint8_t val = enqueue(header);
+
+ if(multicastRelay){
+ //IF_SERIAL_DEBUG_ROUTING( printf_P(PSTR("%u MAC: FWD multicast frame from 0%o to level %u\n"),millis(),header->from_node,multicast_level+1); );
+ write(levelToAddress(multicast_level)<<3,4);
+ }
+ if( val == 2 ){ //External data received
+ //Serial.println("ret ext multicast");
+ return EXTERNAL_DATA_TYPE;
+ }
+
+ }else{
+ write(header->to_node,1); //Send it on, indicate it is a routed payload
+ }
+ #else
+ write(header->to_node,1); //Send it on, indicate it is a routed payload
+ #endif
}
-#endif
- }
+
}
+ return returnVal;
}
+
+
/******************************************************************/
-bool RF24Network::enqueue(void)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+/******************************************************************/
+/******************************************************************/
+
+ // Not defined RF24_Linux:
+
+/******************************************************************/
+/******************************************************************/
+
+uint8_t RF24Network::enqueue(RF24NetworkHeader* header)
{
bool result = false;
+ uint8_t message_size = frame_size - sizeof(RF24NetworkHeader);
- //IF_SERIAL_DEBUG(printf_P(PSTR("%lu: NET Enqueue @%x "),millis(),next_frame-frame_queue));
+ IF_SERIAL_DEBUG(printf_P(PSTR("%lu: NET Enqueue @%x "),millis(),next_frame-frame_queue));
+
+#if !defined ( DISABLE_FRAGMENTATION )
+
+ bool isFragment = header->type == NETWORK_FIRST_FRAGMENT || header->type == NETWORK_MORE_FRAGMENTS || header->type == NETWORK_LAST_FRAGMENT || header->type == NETWORK_MORE_FRAGMENTS_NACK ;
+
+ if(isFragment){
+
+ if(header->type == NETWORK_FIRST_FRAGMENT){
+ // Drop frames exceeding max size and duplicates (MAX_PAYLOAD_SIZE needs to be divisible by 24)
+ if(header->reserved > (MAX_PAYLOAD_SIZE / max_frame_payload_size) ){
+
+ #if defined (SERIAL_DEBUG_FRAGMENTATION) || defined (SERIAL_DEBUG_MINIMAL)
+ printf_P(PSTR("Frag frame with %d frags exceeds MAX_PAYLOAD_SIZE or out of sequence\n"),header->reserved);
+ #endif
+ frag_queue.header.reserved = 0;
+ return false;
+ }else
+ if(frag_queue.header.id == header->id && frag_queue.header.from_node == header->from_node){
+ return true;
+ }
+
+ if( (header->reserved * 24) > (MAX_PAYLOAD_SIZE - (next_frame-frame_queue)) ){
+ networkFlags |= FLAG_HOLD_INCOMING;
+ radio.stopListening();
+ }
+
+ memcpy(&frag_queue,&frame_buffer,8);
+ memcpy(frag_queue.message_buffer,frame_buffer+sizeof(RF24NetworkHeader),message_size);
+
+//IF_SERIAL_DEBUG_FRAGMENTATION( Serial.print(F("queue first, total frags ")); Serial.println(header->reserved); );
+ //Store the total size of the stored frame in message_size
+ frag_queue.message_size = message_size;
+ --frag_queue.header.reserved;
+
+IF_SERIAL_DEBUG_FRAGMENTATION_L2( for(int i=0; i<frag_queue.message_size;i++){ Serial.println(frag_queue.message_buffer[i],HEX); } );
+
+ return true;
+
+ }else // NETWORK_MORE_FRAGMENTS
+ if(header->type == NETWORK_LAST_FRAGMENT || header->type == NETWORK_MORE_FRAGMENTS || header->type == NETWORK_MORE_FRAGMENTS_NACK){
+
+ if(frag_queue.message_size + message_size > MAX_PAYLOAD_SIZE){
+ #if defined (SERIAL_DEBUG_FRAGMENTATION) || defined (SERIAL_DEBUG_MINIMAL)
+ Serial.print(F("Drop frag ")); Serial.print(header->reserved);
+ Serial.println(F(" Size exceeds max"));
+ #endif
+ frag_queue.header.reserved=0;
+ return false;
+ }
+ if( frag_queue.header.reserved == 0 || (header->type != NETWORK_LAST_FRAGMENT && header->reserved != frag_queue.header.reserved ) || frag_queue.header.id != header->id ){
+ #if defined (SERIAL_DEBUG_FRAGMENTATION) || defined (SERIAL_DEBUG_MINIMAL)
+ Serial.print(F("Drop frag ")); Serial.print(header->reserved);
+ //Serial.print(F(" header id ")); Serial.print(header->id);
+ Serial.println(F(" Out of order "));
+ #endif
+ return false;
+ }
+
+ memcpy(frag_queue.message_buffer+frag_queue.message_size,frame_buffer+sizeof(RF24NetworkHeader),message_size);
+ frag_queue.message_size += message_size;
+
+ if(header->type != NETWORK_LAST_FRAGMENT){
+ --frag_queue.header.reserved;
+ return true;
+ }
+ frag_queue.header.reserved = 0;
+ frag_queue.header.type = header->reserved;
+
+IF_SERIAL_DEBUG_FRAGMENTATION( printf(PSTR("fq 3: %d\n"),frag_queue.message_size); );
+IF_SERIAL_DEBUG_FRAGMENTATION_L2(for(int i=0; i< frag_queue.message_size;i++){ Serial.println(frag_queue.message_buffer[i],HEX); } );
+
+ //Frame assembly complete, copy to main buffer if OK
+ if(frag_queue.header.type == EXTERNAL_DATA_TYPE){
+ return 2;
+ }
+ #if defined (DISABLE_USER_PAYLOADS)
+ return 0;
+ #endif
+
+ if(MAX_PAYLOAD_SIZE - (next_frame-frame_queue) >= frag_queue.message_size){
+ memcpy(next_frame,&frag_queue,10);
+ memcpy(next_frame+10,frag_queue.message_buffer,frag_queue.message_size);
+ next_frame += (10+frag_queue.message_size);
+ IF_SERIAL_DEBUG_FRAGMENTATION( printf(PSTR("enq size %d\n"),frag_queue.message_size); );
+ return true;
+ }else{
+ radio.stopListening();
+ networkFlags |= FLAG_HOLD_INCOMING;
+ }
+ IF_SERIAL_DEBUG_FRAGMENTATION( printf(PSTR("Drop frag payload, queue full\n")); );
+ return false;
+ }//If more or last fragments
+
+ }else //else is not a fragment
+ #endif // End fragmentation enabled
// Copy the current frame into the frame queue
- if ( next_frame < frame_queue + sizeof(frame_queue) )
- {
- memcpy(next_frame,frame_buffer, frame_size );
- next_frame += frame_size;
+
+#if !defined( DISABLE_FRAGMENTATION )
+ if(header->type == EXTERNAL_DATA_TYPE){
+ memcpy(&frag_queue,&frame_buffer,8);
+ frag_queue.message_buffer = frame_buffer+sizeof(RF24NetworkHeader);
+ frag_queue.message_size = message_size;
+ return 2;
+ }
+#endif
+#if defined (DISABLE_USER_PAYLOADS)
+ return 0;
+ }
+#else
+ if(message_size + (next_frame-frame_queue) <= MAIN_BUFFER_SIZE){
+ memcpy(next_frame,&frame_buffer,8);
+ RF24NetworkFrame *f = (RF24NetworkFrame*)next_frame;
+ f->message_size = message_size;
+ memcpy(next_frame+10,frame_buffer+sizeof(RF24NetworkHeader),message_size);
+
+ IF_SERIAL_DEBUG_FRAGMENTATION( for(int i=0; i<message_size;i++){ Serial.print(next_frame[i],HEX); Serial.print(" : "); } Serial.println(""); );
+
+ next_frame += (message_size + 10);
+ IF_SERIAL_DEBUG_FRAGMENTATION( Serial.print("Enq "); Serial.println(next_frame-frame_queue); );//printf_P(PSTR("enq %d\n"),next_frame-frame_queue); );
+
result = true;
- //IF_SERIAL_DEBUG(printf_P(PSTR("ok\n\r")));
+ }else{
+ result = false;
+ IF_SERIAL_DEBUG(printf_P(PSTR("NET **Drop Payload** Buffer Full")));
}
- else
- {
- //IF_SERIAL_DEBUG(printf_P(PSTR("failed\n\r")));
- }
-
return result;
}
+#endif //USER_PAYLOADS_ENABLED
+
/******************************************************************/
bool RF24Network::available(void)
{
+
+
+
// Are there frames on the queue for us?
return (next_frame > frame_queue);
-}
-
-/******************************************************************/
-
-void RF24Network::peek(RF24NetworkHeader& header)
-{
- if ( available() )
- {
- // Copy the next available frame from the queue into the provided buffer
- memcpy(&header,next_frame-frame_size,sizeof(RF24NetworkHeader));
- }
+
}
/******************************************************************/
-size_t RF24Network::read(RF24NetworkHeader& header,void* message, size_t maxlen)
+uint16_t RF24Network::parent() const
{
- size_t bufsize = 0;
+ if ( node_address == 0 )
+ return -1;
+ else
+ return parent_node;
+}
+/******************************************************************/
+/*uint8_t RF24Network::peekData(){
+
+ return frame_queue[0];
+}*/
+
+uint16_t RF24Network::peek(RF24NetworkHeader& header)
+{
if ( available() )
{
- // Move the pointer back one in the queue
- next_frame -= frame_size;
- uint8_t* frame = next_frame;
+
+
+
+
+
+ RF24NetworkFrame *frame = (RF24NetworkFrame*)(frame_queue);
+ memcpy(&header,&frame->header,sizeof(RF24NetworkHeader));
+ return frame->message_size;
+
+ }
+ return 0;
+}
+
+/******************************************************************/
+
+uint16_t RF24Network::read(RF24NetworkHeader& header,void* message, uint16_t maxlen)
+{
+ uint16_t bufsize = 0;
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ if ( available() )
+ {
+
+ memcpy(&header,frame_queue,8);
+ RF24NetworkFrame *f = (RF24NetworkFrame*)frame_queue;
+ bufsize = f->message_size;
+
+ if (maxlen > 0)
+ {
+ maxlen = min(maxlen,bufsize);
+ memcpy(message,frame_queue+10,maxlen);
+ IF_SERIAL_DEBUG(printf("%lu: NET message size %d\n",millis(),bufsize););
+
+
+ IF_SERIAL_DEBUG( uint16_t len = maxlen; printf_P(PSTR("%lu: NET r message "),millis());const uint8_t* charPtr = reinterpret_cast<const uint8_t*>(message);while(len--){ printf("%02x ",charPtr[len]);} printf_P(PSTR("\n\r") ) );
- // How much buffer size should we actually copy?
- bufsize = min(maxlen,frame_size-sizeof(RF24NetworkHeader));
+ }
+ memmove(frame_queue,frame_queue+bufsize+10,sizeof(frame_queue)- bufsize);
+ next_frame-=bufsize+10;
- // Copy the next available frame from the queue into the provided buffer
- memcpy(&header,frame,sizeof(RF24NetworkHeader));
- memcpy(message,frame+sizeof(RF24NetworkHeader),bufsize);
-
//IF_SERIAL_DEBUG(printf_P(PSTR("%lu: NET Received %s\n\r"),millis(),header.toString()));
}
return bufsize;
}
+
+#if defined RF24NetworkMulticast
+/******************************************************************/
+bool RF24Network::multicast(RF24NetworkHeader& header,const void* message, uint16_t len, uint8_t level){
+ // Fill out the header
+ header.to_node = 0100;
+ header.from_node = node_address;
+ return write(header, message, len, levelToAddress(level));
+}
+#endif
+
+/******************************************************************/
+bool RF24Network::write(RF24NetworkHeader& header,const void* message, uint16_t len){
+ return write(header,message,len,070);
+}
+/******************************************************************/
+bool RF24Network::write(RF24NetworkHeader& header,const void* message, uint16_t len, uint16_t writeDirect){
+
+ //Allows time for requests (RF24Mesh) to get through between failed writes on busy nodes
+ while(rf24netTimer.read_ms()-txTime < 25){ if(update() > 127){break;} }
+ wait_us(200);
+
+#if defined (DISABLE_FRAGMENTATION)
+ frame_size = rf24_min(len+sizeof(RF24NetworkHeader),MAX_FRAME_SIZE);
+ return _write(header,message,rf24_min(len,max_frame_payload_size),writeDirect);
+#else
+ if(len <= max_frame_payload_size){
+ //Normal Write (Un-Fragmented)
+ frame_size = len + sizeof(RF24NetworkHeader);
+ if(_write(header,message,len,writeDirect)){
+ return 1;
+ }
+ txTime = rf24netTimer.read_ms();
+ return 0;
+ }
+ //Check payload size
+ if (len > MAX_PAYLOAD_SIZE) {
+ IF_SERIAL_DEBUG(printf("%u: NET write message failed. Given 'len' %d is bigger than the MAX Payload size %i\n\r",millis(),len,MAX_PAYLOAD_SIZE););
+ return false;
+ }
+
+ //Divide the message payload into chunks of max_frame_payload_size
+ uint8_t fragment_id = (len % max_frame_payload_size != 0) + ((len ) / max_frame_payload_size); //the number of fragments to send = ceil(len/max_frame_payload_size)
+
+ uint8_t msgCount = 0;
+
+ IF_SERIAL_DEBUG_FRAGMENTATION(printf("%lu: FRG Total message fragments %d\n\r",millis(),fragment_id););
+
+ if(header.to_node != 0100){
+ networkFlags |= FLAG_FAST_FRAG;
+ #if !defined (DUAL_HEAD_RADIO)
+ radio.stopListening();
+ #endif
+ }
+
+ uint8_t retriesPerFrag = 0;
+ uint8_t type = header.type;
+
+ while (fragment_id > 0) {
+
+ //Copy and fill out the header
+ //RF24NetworkHeader fragmentHeader = header;
+ header.reserved = fragment_id;
+
+ if (fragment_id == 1) {
+ header.type = NETWORK_LAST_FRAGMENT; //Set the last fragment flag to indicate the last fragment
+ header.reserved = type; //The reserved field is used to transmit the header type
+ } else {
+ if (msgCount == 0) {
+ header.type = NETWORK_FIRST_FRAGMENT;
+ }else{
+ header.type = NETWORK_MORE_FRAGMENTS; //Set the more fragments flag to indicate a fragmented frame
+ }
+ }
+
+ uint16_t offset = msgCount*max_frame_payload_size;
+ uint16_t fragmentLen = rf24_min((uint16_t)(len-offset),max_frame_payload_size);
+
+ //Try to send the payload chunk with the copied header
+ frame_size = sizeof(RF24NetworkHeader)+fragmentLen;
+ bool ok = _write(header,((char *)message)+offset,fragmentLen,writeDirect);
+
+ if (!ok) {
+ wait_ms(2);
+ ++retriesPerFrag;
+
+ }else{
+ retriesPerFrag = 0;
+ fragment_id--;
+ msgCount++;
+ }
+
+ if(writeDirect != 070){ wait_ms(2); } //Delay 2ms between sending multicast payloads
+
+ if (!ok && retriesPerFrag >= 3) {
+ IF_SERIAL_DEBUG_FRAGMENTATION(printf("%lu: FRG TX with fragmentID '%d' failed after %d fragments. Abort.\n\r",millis(),fragment_id,msgCount););
+ break;
+ }
+
+
+ //Message was successful sent
+ #if defined SERIAL_DEBUG_FRAGMENTATION_L2
+ printf("%lu: FRG message transmission with fragmentID '%d' sucessfull.\n\r",millis(),fragment_id);
+ #endif
+
+ }
+
+ #if !defined (DUAL_HEAD_RADIO)
+ if(networkFlags & FLAG_FAST_FRAG){
+ radio.startListening();
+ }
+ #endif
+ networkFlags &= ~FLAG_FAST_FRAG
+ //int frag_delay = uint8_t(len/48);
+ //delay( rf24_min(len/48,20));
+
+ //Return true if all the chunks where sent successfully
+
+ IF_SERIAL_DEBUG_FRAGMENTATION(printf("%u: FRG total message fragments sent %i. \n",millis(),msgCount); );
+ if(fragment_id > 0){
+ txTime = rf24netTimer.read_ms();
+ return false;
+ }
+ return true;
+
+#endif //Fragmentation enabled
+}
/******************************************************************/
-bool RF24Network::write(RF24NetworkHeader& header,const void* message, size_t len)
+bool RF24Network::_write(RF24NetworkHeader& header,const void* message, uint16_t len, uint16_t writeDirect)
{
// Fill out the header
header.from_node = node_address;
-
+
// Build the full frame to send
memcpy(frame_buffer,&header,sizeof(RF24NetworkHeader));
- if (len)
- memcpy(frame_buffer + sizeof(RF24NetworkHeader),message,min(frame_size-sizeof(RF24NetworkHeader),len));
+
+
+
+
+ IF_SERIAL_DEBUG(printf_P(PSTR("%lu: NET Sending %s\n\r"),millis(),header.toString()));
+
+ if (len){
- //IF_SERIAL_DEBUG(printf_P(PSTR("%lu: NET Sending %s\n\r"),millis(),header.toString()));
- if (len)
- {
- //IF_SERIAL_DEBUG(const uint16_t* i = reinterpret_cast<const uint16_t*>(message);printf_P(PSTR("%lu: NET message %04x\n\r"),millis(),*i));
+
+
+
+
+
+ memcpy(frame_buffer + sizeof(RF24NetworkHeader),message,len);
+
+ IF_SERIAL_DEBUG(uint16_t tmpLen = len;printf_P(PSTR("%lu: NET message "),millis());const uint8_t* charPtr = reinterpret_cast<const uint8_t*>(message);while(tmpLen--){ printf("%02x ",charPtr[tmpLen]);} printf_P(PSTR("\n\r") ) );
+
}
// If the user is trying to send it to himself
- if ( header.to_node == node_address )
+ /*if ( header.to_node == node_address ){
+ #if defined (RF24_LINUX)
+ RF24NetworkFrame frame = RF24NetworkFrame(header,message,rf24_min(MAX_FRAME_SIZE-sizeof(RF24NetworkHeader),len));
+ #else
+ RF24NetworkFrame frame(header,len);
+ #endif
// Just queue it in the received queue
- return enqueue();
- else
- // Otherwise send it out over the air
- return write(header.to_node);
+ return enqueue(frame);
+ }*/
+ // Otherwise send it out over the air
+
+
+ if(writeDirect != 070){
+ uint8_t sendType = USER_TX_TO_LOGICAL_ADDRESS; // Payload is multicast to the first node, and routed normally to the next
+
+ if(header.to_node == 0100){
+ sendType = USER_TX_MULTICAST;
+ }
+ if(header.to_node == writeDirect){
+ sendType = USER_TX_TO_PHYSICAL_ADDRESS; // Payload is multicast to the first node, which is the recipient
+ }
+ return write(writeDirect,sendType);
+ }
+ return write(header.to_node,TX_NORMAL);
+
}
/******************************************************************/
-bool RF24Network::write(uint16_t to_node)
+bool RF24Network::write(uint16_t to_node, uint8_t directTo) // Direct To: 0 = First Payload, standard routing, 1=routed payload, 2=directRoute to host, 3=directRoute to Route
{
bool ok = false;
+ bool isAckType = false;
+ if(frame_buffer[6] > 64 && frame_buffer[6] < 192 ){ isAckType=true; }
+
+ /*if( ( (frame_buffer[7] % 2) && frame_buffer[6] == NETWORK_MORE_FRAGMENTS) ){
+ isAckType = 0;
+ }*/
// Throw it away if it's not a valid address
if ( !is_valid_address(to_node) )
- return false;
+ return false;
+
+ //Load info into our conversion structure, and get the converted address info
+ logicalToPhysicalStruct conversion = { to_node,directTo,0};
+ logicalToPhysicalAddress(&conversion);
+
+
+
+
+ IF_SERIAL_DEBUG(printf_P(PSTR("%lu: MAC Sending to 0%o via 0%o on pipe %x\n\r"),millis(),to_node,conversion.send_node,conversion.send_pipe));
+
+ /**Write it*/
+ ok=write_to_pipe(conversion.send_node, conversion.send_pipe, conversion.multicast);
+
+
+ if(!ok){
- // First, stop listening so we can talk.
- //radio.stopListening();
+
+
+
+ IF_SERIAL_DEBUG_ROUTING( printf_P(PSTR("%lu: MAC Send fail to 0%o via 0%o on pipe %x\n\r"),millis(),to_node,conversion.send_node,conversion.send_pipe););
+ }
+
+
+ if( directTo == TX_ROUTED && ok && conversion.send_node == to_node && isAckType){
+
+ RF24NetworkHeader* header = (RF24NetworkHeader*)&frame_buffer;
+ header->type = NETWORK_ACK; // Set the payload type to NETWORK_ACK
+ header->to_node = header->from_node; // Change the 'to' address to the 'from' address
+
+ conversion.send_node = header->from_node;
+ conversion.send_pipe = TX_ROUTED;
+ conversion.multicast = 0;
+ logicalToPhysicalAddress(&conversion);
+
+ //Write the data using the resulting physical address
+ frame_size = sizeof(RF24NetworkHeader);
+ write_to_pipe(conversion.send_node, conversion.send_pipe, conversion.multicast);
+
+ //dynLen=0;
- // Where do we send this? By default, to our parent
- uint16_t send_node = parent_node;
- // On which pipe
- uint8_t send_pipe = parent_pipe;
-
- // If the node is a direct child,
- if ( is_direct_child(to_node) )
- {
- // Send directly
- send_node = to_node;
+
+
+ IF_SERIAL_DEBUG_ROUTING( printf_P(PSTR("%lu MAC: Route OK to 0%o ACK sent to 0%o\n"),millis(),to_node,header->from_node); );
+
+ }
+
+
+
+ if( ok && conversion.send_node != to_node && (directTo==0 || directTo==3) && isAckType){
+ #if !defined (DUAL_HEAD_RADIO)
+ // Now, continue listening
+ if(networkFlags & FLAG_FAST_FRAG){
+ radio.txStandBy(txTimeout);
+ networkFlags &= ~FLAG_FAST_FRAG;
+ }
+ radio.startListening();
+ #endif
+ uint32_t reply_time = rf24netTimer.read_ms();
- // To its listening pipe
- send_pipe = 0;
+ while( update() != NETWORK_ACK){
+ wait_us(900);
+ if(rf24netTimer.read_ms() - reply_time > routeTimeout){
+
+
+
+ IF_SERIAL_DEBUG_ROUTING( printf_P(PSTR("%lu: MAC Network ACK fail from 0%o via 0%o on pipe %x\n\r"),millis(),to_node,conversion.send_node,conversion.send_pipe); );
+
+ ok=false;
+ break;
+ }
+ }
+ }
+ if( !(networkFlags & FLAG_FAST_FRAG) ){
+ #if !defined (DUAL_HEAD_RADIO)
+ // Now, continue listening
+ radio.startListening();
+ #endif
+ }
+
+#if defined ENABLE_NETWORK_STATS
+ if(ok == true){
+ ++nOK;
+ }else{ ++nFails;
}
- // If the node is a child of a child
- // talk on our child's listening pipe,
- // and let the direct child relay it.
- else if ( is_descendant(to_node) )
- {
- send_node = direct_child_route_to(to_node);
- send_pipe = 0;
- }
-
- //IF_SERIAL_DEBUG(printf_P(PSTR("%lu: MAC Sending to 0%o via 0%o on pipe %x\n\r"),millis(),to_node,send_node,send_pipe));
-
- // First, stop listening so we can talk
- radio.stopListening();
-
- // Put the frame on the pipe
- ok = write_to_pipe( send_node, send_pipe );
-
- // NOT NEEDED anymore. Now all reading pipes are open to start.
-#if 0
- // If we are talking on our talking pipe, it's possible that no one is listening.
- // If this fails, try sending it on our parent's listening pipe. That will wake
- // it up, and next time it will listen to us.
-
- if ( !ok && send_node == parent_node )
- ok = write_to_pipe( parent_node, 0 );
#endif
-
- // Now, continue listening
- radio.startListening();
-
return ok;
}
/******************************************************************/
-bool RF24Network::write_to_pipe( uint16_t node, uint8_t pipe )
+ // Provided the to_node and directTo option, it will return the resulting node and pipe
+bool RF24Network::logicalToPhysicalAddress(logicalToPhysicalStruct *conversionInfo){
+
+ //Create pointers so this makes sense.. kind of
+ //We take in the to_node(logical) now, at the end of the function, output the send_node(physical) address, etc.
+ //back to the original memory address that held the logical information.
+ uint16_t *to_node = &conversionInfo->send_node;
+ uint8_t *directTo = &conversionInfo->send_pipe;
+ bool *multicast = &conversionInfo->multicast;
+
+ // Where do we send this? By default, to our parent
+ uint16_t pre_conversion_send_node = parent_node;
+
+ // On which pipe
+ uint8_t pre_conversion_send_pipe = parent_pipe %5;
+
+ if(*directTo > TX_ROUTED ){
+ pre_conversion_send_node = *to_node;
+ *multicast = 1;
+ //if(*directTo == USER_TX_MULTICAST || *directTo == USER_TX_TO_PHYSICAL_ADDRESS){
+ pre_conversion_send_pipe=0;
+ //}
+ }
+ // If the node is a direct child,
+ else
+ if ( is_direct_child(*to_node) )
+ {
+ // Send directly
+ pre_conversion_send_node = *to_node;
+ // To its listening pipe
+ pre_conversion_send_pipe = 5;
+ }
+ // If the node is a child of a child
+ // talk on our child's listening pipe,
+ // and let the direct child relay it.
+ else if ( is_descendant(*to_node) )
+ {
+ pre_conversion_send_node = direct_child_route_to(*to_node);
+ pre_conversion_send_pipe = 5;
+ }
+
+ *to_node = pre_conversion_send_node;
+ *directTo = pre_conversion_send_pipe;
+
+ return 1;
+
+}
+
+/********************************************************/
+
+
+bool RF24Network::write_to_pipe( uint16_t node, uint8_t pipe, bool multicast )
{
bool ok = false;
+ uint64_t out_pipe = pipe_address( node, pipe );
- uint64_t out_pipe = pipe_address( node, pipe );
-
- // Open the correct pipe for writing.
- radio.openWritingPipe(out_pipe);
+ #if !defined (DUAL_HEAD_RADIO)
+ // Open the correct pipe for writing.
+ // First, stop listening so we can talk
- // Retry a few times
- short attempts = 5;
- do
- {
- ok = radio.write( frame_buffer, frame_size );
+ if(!(networkFlags & FLAG_FAST_FRAG)){
+ radio.stopListening();
}
- while ( !ok && --attempts );
+
+ if(multicast){ radio.setAutoAck(0,0);}else{radio.setAutoAck(0,1);}
+
+ radio.openWritingPipe(out_pipe);
+ radio.writeFast(frame_buffer, frame_size,multicast);
+ ok = radio.txStandBy(txTimeout);
+
+ radio.setAutoAck(0,0);
+
+#else
+ radio1.openWritingPipe(out_pipe);
+ radio1.writeFast(frame_buffer, frame_size);
+ ok = radio1.txStandBy(txTimeout,multicast);
- //IF_SERIAL_DEBUG(printf_P(PSTR("%lu: MAC Sent on %lx %S\n\r"),millis(),(uint32_t)out_pipe,ok?PSTR("ok"):PSTR("failed")));
+#endif
+
+
+
+ IF_SERIAL_DEBUG(printf_P(PSTR("%lu: MAC Sent on %lx %S\n\r"),rf24netTimer.read_ms(),(uint32_t)out_pipe,ok?PSTR("ok"):PSTR("failed")));
+
+
return ok;
}
@@ -288,7 +1040,8 @@
const char* RF24NetworkHeader::toString(void) const
{
static char buffer[45];
- //snprintf_P(buffer,sizeof(buffer),("id %04x from 0%o to 0%o type %c"),id,from_node,to_node,type);
+ //snprintf_P(buffer,sizeof(buffer),PSTR("id %04x from 0%o to 0%o type %c"),id,from_node,to_node,type);
+ sprintf(buffer,PSTR("id %u from 0%o to 0%o type %d"),id,from_node,to_node,type);
return buffer;
}
@@ -311,7 +1064,6 @@
uint16_t child_node_mask = ( ~ node_mask ) << 3;
result = ( node & child_node_mask ) == 0 ;
}
-
return result;
}
@@ -327,9 +1079,20 @@
void RF24Network::setup_address(void)
{
// First, establish the node_mask
- uint16_t node_mask_check = 0xFFFF;
- while ( node_address & node_mask_check )
+ uint16_t node_mask_check = 0xFFFF;
+ #if defined (RF24NetworkMulticast)
+ uint8_t count = 0;
+ #endif
+
+ while ( node_address & node_mask_check ){
node_mask_check <<= 3;
+ #if defined (RF24NetworkMulticast)
+ count++;
+ }
+ multicast_level = count;
+ #else
+ }
+ #endif
node_mask = ~ node_mask_check;
@@ -349,9 +1112,24 @@
}
parent_pipe = i;
-#ifdef SERIAL_DEBUG
- printf_P(PSTR("setup_address node=0%o mask=0%o parent=0%o pipe=0%o\n\r"),node_address,node_mask,parent_node,parent_pipe);
-#endif
+ IF_SERIAL_DEBUG( printf_P(PSTR("setup_address node=0%o mask=0%o parent=0%o pipe=0%o\n\r"),node_address,node_mask,parent_node,parent_pipe););
+
+}
+
+/******************************************************************/
+uint16_t RF24Network::addressOfPipe( uint16_t node, uint8_t pipeNo )
+{
+ //Say this node is 013 (1011), mask is 077 or (00111111)
+ //Say we want to use pipe 3 (11)
+ //6 bits in node mask, so shift pipeNo 6 times left and | into address
+ uint16_t m = node_mask >> 3;
+ uint8_t i=0;
+
+ while (m){ //While there are bits left in the node mask
+ m>>=1; //Shift to the right
+ i++; //Count the # of increments
+ }
+ return node | (pipeNo << i);
}
/******************************************************************/
@@ -359,40 +1137,44 @@
uint16_t RF24Network::direct_child_route_to( uint16_t node )
{
// Presumes that this is in fact a child!!
-
uint16_t child_mask = ( node_mask << 3 ) | 7;
- return node & child_mask ;
+ return node & child_mask;
+
}
/******************************************************************/
-
+/*
uint8_t RF24Network::pipe_to_descendant( uint16_t node )
{
- uint16_t i = node;
+ uint16_t i = node;
uint16_t m = node_mask;
-
+
while (m)
{
i >>= 3;
m >>= 3;
}
- return i & 7;
-}
+ return i & 0B111;
+}*/
/******************************************************************/
-bool is_valid_address( uint16_t node )
+bool RF24Network::is_valid_address( uint16_t node )
{
bool result = true;
while(node)
{
uint8_t digit = node & 7;
+ #if !defined (RF24NetworkMulticast)
if (digit < 1 || digit > 5)
+ #else
+ if (digit < 0 || digit > 5) //Allow our out of range multicast address
+ #endif
{
result = false;
- //printf_P(("*** WARNING *** Invalid address 0%o\n\r"),node);
+ IF_SERIAL_DEBUG_MINIMAL(printf_P(PSTR("*** WARNING *** Invalid address 0%o\n\r"),node););
break;
}
node >>= 3;
@@ -402,39 +1184,133 @@
}
/******************************************************************/
+#if defined (RF24NetworkMulticast)
+void RF24Network::multicastLevel(uint8_t level){
+ multicast_level = level;
+ //radio.stopListening();
+ radio.openReadingPipe(0,pipe_address(levelToAddress(level),0));
+ //radio.startListening();
+ }
+
+uint16_t levelToAddress(uint8_t level){
+
+ uint16_t levelAddr = 1;
+ if(level){
+ levelAddr = levelAddr << ((level-1) * 3);
+ }else{
+ return 0;
+ }
+ return levelAddr;
+}
+#endif
+/******************************************************************/
uint64_t pipe_address( uint16_t node, uint8_t pipe )
{
- static uint8_t pipe_segment[] = { 0x3c, 0x5a, 0x69, 0x96, 0xa5, 0xc3 };
-
- uint64_t result;
+
+ static uint8_t address_translation[] = { 0xc3,0x3c,0x33,0xce,0x3e,0xe3,0xec };
+ uint64_t result = 0xCCCCCCCCCCLL;
uint8_t* out = reinterpret_cast<uint8_t*>(&result);
-
- out[0] = pipe_segment[pipe];
+
+ // Translate the address to use our optimally chosen radio address bytes
+ uint8_t count = 1; uint16_t dec = node;
- uint8_t w;
- short i = 4;
- short shift = 12;
- while(i--)
- {
- w = ( node >> shift ) & 0xF ;
- w |= ~w << 4;
- out[i+1] = w;
+ while(dec){
+ #if defined (RF24NetworkMulticast)
+ if(pipe != 0 || !node)
+ #endif
+ out[count]=address_translation[(dec % 8)]; // Convert our decimal values to octal, translate them to address bytes, and set our address
+
+ dec /= 8;
+ count++;
+ }
+
+ #if defined (RF24NetworkMulticast)
+ if(pipe != 0 || !node)
+ #endif
+ out[0] = address_translation[pipe];
+ #if defined (RF24NetworkMulticast)
+ else
+ out[1] = address_translation[count-1];
+ #endif
- shift -= 4;
- }
+
+
- //IF_SERIAL_DEBUG(uint32_t* top = reinterpret_cast<uint32_t*>(out+1);printf_P(PSTR("%lu: NET Pipe %i on node 0%o has address %lx%x\n\r"),millis(),pipe,node,*top,*out));
+
+
+ IF_SERIAL_DEBUG(uint32_t* top = reinterpret_cast<uint32_t*>(out+1);printf_P(PSTR("%lu: NET Pipe %i on node 0%o has address %lx%x\n\r"),millis(),pipe,node,*top,*out));
+
return result;
}
-// vim:ai:cin:sts=2 sw=2 ft=cpp
+
+/************************ Sleep Mode ******************************************/
+
+
+#if defined ENABLE_SLEEP_MODE
+
+#if !defined(__arm__) && !defined(__ARDUINO_X86__)
+
+void wakeUp(){
+ wasInterrupted=true;
+ sleep_cycles_remaining = 0;
+}
+
+ISR(WDT_vect){
+ --sleep_cycles_remaining;
+}
+
+
+bool RF24Network::sleepNode( unsigned int cycles, int interruptPin ){
+
+
+ sleep_cycles_remaining = cycles;
+ set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here
+ sleep_enable();
+ if(interruptPin != 255){
+ wasInterrupted = false; //Reset Flag
+ attachInterrupt(interruptPin,wakeUp, LOW);
+ }
+
+
+
+
+ WDTCSR |= _BV(WDIE);
+
-uint8_t RF24Network::min(uint8_t a, uint8_t b)
-{
- if(a < b)
- return a;
- else
- return b;
-}
\ No newline at end of file
+ while(sleep_cycles_remaining){
+ sleep_mode(); // System sleeps here
+ } // The WDT_vect interrupt wakes the MCU from here
+ sleep_disable(); // System continues execution here when watchdog timed out
+ detachInterrupt(interruptPin);
+
+
+
+
+
+ WDTCSR &= ~_BV(WDIE);
+
+
+ return !wasInterrupted;
+}
+
+void RF24Network::setup_watchdog(uint8_t prescalar){
+
+ uint8_t wdtcsr = prescalar & 7;
+ if ( prescalar & 8 )
+ wdtcsr |= _BV(WDP3);
+ MCUSR &= ~_BV(WDRF); // Clear the WD System Reset Flag
+
+
+
+
+ WDTCSR = _BV(WDCE) | _BV(WDE); // Write the WD Change enable bit to enable changing the prescaler and enable system reset
+ WDTCSR = _BV(WDCE) | wdtcsr | _BV(WDIE); // Write the prescalar bits (how long to sleep, enable the interrupt to wake the MCU
+
+}
+
+
+#endif // not ATTiny
+#endif // Enable sleep mode
--- a/RF24Network.h Mon Jul 06 05:18:22 2015 +0000
+++ b/RF24Network.h Thu Nov 05 05:40:44 2015 +0000
@@ -14,9 +14,172 @@
*
* Class declaration for RF24Network
*/
-
+#define min(a,b) (a<b?a:b)
#include <stddef.h>
#include <stdint.h>
+#include "RF24Network_config.h"
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+/* Header types range */
+#define MIN_USER_DEFINED_HEADER_TYPE 0
+#define MAX_USER_DEFINED_HEADER_TYPE 127
+
+/**
+
+ */
+
+// ACK Response Types
+/**
+ * **Reserved network message types**
+ *
+ * The network will determine whether to automatically acknowledge payloads based on their general type <br>
+ *
+ * **User types** (1-127) 1-64 will NOT be acknowledged <br>
+ * **System types** (128-255) 192 through 255 will NOT be acknowledged<br>
+ *
+ * @defgroup DEFINED_TYPES Reserved System Message Types
+ *
+ * System types can also contain message data.
+ *
+ * @{
+ */
+
+/**
+* A NETWORK_ADDR_RESPONSE type is utilized to manually route custom messages containing a single RF24Network address
+*
+* Used by RF24Mesh
+*
+* If a node receives a message of this type that is directly addressed to it, it will read the included message, and forward the payload
+* on to the proper recipient. <br>
+* This allows nodes to forward multicast messages to the master node, receive a response, and forward it back to the requester.
+*/
+#define NETWORK_ADDR_RESPONSE 128
+//#define NETWORK_ADDR_CONFIRM 129
+
+/**
+* Messages of type NETWORK_PING will be dropped automatically by the recipient. A NETWORK_ACK or automatic radio-ack will indicate to the sender whether the
+* payload was successful. The time it takes to successfully send a NETWORK_PING is the round-trip-time.
+*/
+#define NETWORK_PING 130
+
+/**
+ * External data types are used to define messages that will be passed to an external data system. This allows RF24Network to route and pass any type of data, such
+ * as TCP/IP frames, while still being able to utilize standard RF24Network messages etc.
+ *
+ * **Linux**
+ * Linux devices (defined RF24_LINUX) will buffer all data types in the user cache.
+ *
+ * **Arduino/AVR/Etc:** Data transmitted with the type set to EXTERNAL_DATA_TYPE will not be loaded into the user cache. <br>
+ * External systems can extract external data using the following process, while internal data types are cached in the user buffer, and accessed using network.read() :
+ * @code
+ * uint8_t return_type = network.update();
+ * if(return_type == EXTERNAL_DATA_TYPE){
+ * uint16_t size = network.frag_ptr->message_size;
+ * memcpy(&myDataBuffer,network.frag_ptr->message_buffer,network.frag_ptr->message_size);
+ * }
+ * @endcode
+ */
+#define EXTERNAL_DATA_TYPE 131
+
+/**
+ * Messages of this type designate the first of two or more message fragments, and will be re-assembled automatically.
+ */
+#define NETWORK_FIRST_FRAGMENT 148
+
+/**
+ * Messages of this type indicate a fragmented payload with two or more message fragments.
+ */
+#define NETWORK_MORE_FRAGMENTS 149
+
+/**
+ * Messages of this type indicate the last fragment in a sequence of message fragments.
+ * Messages of this type do not receive a NETWORK_ACK
+ */
+#define NETWORK_LAST_FRAGMENT 150
+//#define NETWORK_LAST_FRAGMENT 201
+
+// NO ACK Response Types
+//#define NETWORK_ACK_REQUEST 192
+
+/**
+ * Messages of this type are used internally, to signal the sender that a transmission has been completed.
+ * RF24Network does not directly have a built-in transport layer protocol, so message delivery is not 100% guaranteed.<br>
+ * Messages can be lost via corrupted dynamic payloads, or a NETWORK_ACK can fail, while the message was actually successful.
+ *
+ * NETWORK_ACK messages can be utilized as a traffic/flow control mechanism, since transmitting nodes will be forced to wait until
+ * the payload is transmitted across the network and acknowledged, before sending additional data.
+ *
+ * In the event that the transmitting device will be waiting for a direct response, manually sent by the recipient, a NETWORK_ACK is not required. <br>
+ * User messages utilizing a 'type' with a decimal value of 64 or less will not be acknowledged across the network via NETWORK_ACK messages.
+ */
+#define NETWORK_ACK 193
+
+/**
+ * Used by RF24Mesh
+ *
+ * Messages of this type are used with multi-casting , to find active/available nodes.
+ * Any node receiving a NETWORK_POLL sent to a multicast address will respond directly to the sender with a blank message, indicating the
+ * address of the available node via the header.
+ */
+#define NETWORK_POLL 194
+
+/**
+ * Used by RF24Mesh
+ *
+ * Messages of this type are used to request information from the master node, generally via a unicast (direct) write.
+ * Any (non-master) node receiving a message of this type will manually forward it to the master node using an normal network write.
+ */
+#define NETWORK_REQ_ADDRESS 195
+//#define NETWORK_ADDR_LOOKUP 196
+//#define NETWORK_ADDR_RELEASE 197
+/** @} */
+
+#define NETWORK_MORE_FRAGMENTS_NACK 200
+
+
+/** Internal defines for handling written payloads */
+#define TX_NORMAL 0
+#define TX_ROUTED 1
+#define USER_TX_TO_PHYSICAL_ADDRESS 2 //no network ACK
+#define USER_TX_TO_LOGICAL_ADDRESS 3 // network ACK
+#define USER_TX_MULTICAST 4
+
+#define MAX_FRAME_SIZE 32 //Size of individual radio frames
+#define FRAME_HEADER_SIZE 10 //Size of RF24Network frames - data
+
+#define USE_CURRENT_CHANNEL 255 // Use current radio channel when setting up the network
+
+/** Internal defines for handling internal payloads - prevents reading additional data from the radio
+ * when buffers are full */
+ #define FLAG_HOLD_INCOMING 1
+ /** FLAG_BYPASS_HOLDS is mainly for use with RF24Mesh as follows:
+ * a: Ensure no data in radio buffers, else exit
+ * b: Address is changed to multicast address for renewal
+ * c: Holds Cleared (bypass flag is set)
+ * d: Address renewal takes place and is set
+ * e: Holds Enabled (bypass flag off)
+ */
+ #define FLAG_BYPASS_HOLDS 2
+
+ #define FLAG_FAST_FRAG 4
class RF24;
@@ -24,40 +187,62 @@
* Header which is sent with each message
*
* The frame put over the air consists of this header and a message
+ *
+ * Headers are addressed to the appropriate node, and the network forwards them on to their final destination.
*/
struct RF24NetworkHeader
{
uint16_t from_node; /**< Logical address where the message was generated */
uint16_t to_node; /**< Logical address where the message is going */
- uint16_t id; /**< Sequential message ID, incremented every message */
- unsigned char type; /**< Type of the packet. 0-127 are user-defined types, 128-255 are reserved for system */
- unsigned char reserved; /**< Reserved for future use */
+ uint16_t id; /**< Sequential message ID, incremented every time a new frame is constructed */
+ /**
+ * Message Types:
+ * User message types 1 through 64 will NOT be acknowledged by the network, while message types 65 through 127 will receive a network ACK.
+ * System message types 192 through 255 will NOT be acknowledged by the network. Message types 128 through 192 will receive a network ACK. <br>
+ * <br><br>
+ */
+ unsigned char type; /**< <b>Type of the packet. </b> 0-127 are user-defined types, 128-255 are reserved for system */
+
+ /**
+ * During fragmentation, it carries the fragment_id, and on the last fragment
+ * it carries the header_type.<br>
+ */
+ unsigned char reserved; /**< *Reserved for system use* */
- static uint16_t next_id; /**< The message ID of the next message to be sent */
+ static uint16_t next_id; /**< The message ID of the next message to be sent (unused)*/
/**
* Default constructor
*
+
* Simply constructs a blank header
*/
RF24NetworkHeader() {}
/**
- * Send constructor
+ * Send constructor
+ *
+ * @note Now supports automatic fragmentation for very long messages, which can be sent as usual if fragmentation is enabled.
*
- * Use this constructor to create a header and then send a message
- *
+ * Fragmentation is enabled by default for all devices except ATTiny <br>
+ * Configure fragmentation and max payload size in RF24Network_config.h
+ *
+ * Use this constructor to create a header and then send a message
+ *
* @code
+ * uint16_t recipient_address = 011;
+ *
* RF24NetworkHeader header(recipient_address,'t');
+ *
* network.write(header,&message,sizeof(message));
* @endcode
*
- * @param _to The logical node address where the message is going
+ * @param _to The Octal format, logical node address where the message is going
* @param _type The type of message which follows. Only 0-127 are allowed for
- * user messages.
+ * user messages. Types 1-64 will not receive a network acknowledgement.
*/
- RF24NetworkHeader(uint16_t _to, unsigned char _type = 0): to_node(_to), id(next_id++), type(_type&0x7f) {}
+ RF24NetworkHeader(uint16_t _to, unsigned char _type = 0): to_node(_to), id(next_id++), type(_type) {}
/**
* Create debugging string
*
@@ -70,8 +255,92 @@
const char* toString(void) const;
};
+
/**
- * Network Layer for RF24 Radios
+ * Frame structure for internal message handling, and for use by external applications
+ *
+ * The actual frame put over the air consists of a header (8-bytes) and a message payload (Up to 24-bytes)<br>
+ * When data is received, it is stored using the RF24NetworkFrame structure, which includes:
+ * 1. The header
+ * 2. The size of the included message
+ * 3. The 'message' or data being received
+ *
+ *
+ */
+
+
+ struct RF24NetworkFrame
+{
+ RF24NetworkHeader header; /**< Header which is sent with each message */
+ uint16_t message_size; /**< The size in bytes of the payload length */
+
+ /**
+ * On Arduino, the message buffer is just a pointer, and can be pointed to any memory location.
+ * On Linux the message buffer is a standard byte array, equal in size to the defined MAX_PAYLOAD_SIZE
+ */
+
+
+
+ uint8_t *message_buffer; //< Pointer to the buffer storing the actual message
+
+ /**
+ * Default constructor
+ *
+ * Simply constructs a blank frame. Frames are generally used internally. See RF24NetworkHeader.
+ */
+ //RF24NetworkFrame() {}
+
+ RF24NetworkFrame() {}
+ /**
+ * Constructor - create a network frame with data
+ * Frames are constructed and handled differently on Arduino/AVR and Linux devices (defined RF24_LINUX)
+ *
+ * <br>
+ * **Linux:**
+ * @param _header The RF24Network header to be stored in the frame
+ * @param _message The 'message' or data.
+ * @param _len The size of the 'message' or data.
+ *
+ * <br>
+ * **Arduino/AVR/Etc.**
+ * @see RF24Network.frag_ptr
+ * @param _header The RF24Network header to be stored in the frame
+ * @param _message_size The size of the 'message' or data
+ *
+ *
+ * Frames are used internally and by external systems. See RF24NetworkHeader.
+ */
+
+
+
+
+
+
+
+
+ RF24NetworkFrame(RF24NetworkHeader &_header, uint16_t _message_size):
+ header(_header), message_size(_message_size){
+ }
+
+
+
+ /**
+ * Create debugging string
+ *
+ * Useful for debugging. Dumps all members into a single string, using
+ * internal static memory. This memory will get overridden next time
+ * you call the method.
+ *
+ * @return String representation of this object
+ */
+ const char* toString(void) const;
+
+};
+
+
+
+/**
+ * 2014-2015 - Optimized Network Layer for RF24 Radios
*
* This class implements an OSI Network Layer using nRF24L01(+) radios driven
* by RF24 library.
@@ -79,6 +348,15 @@
class RF24Network
{
+private:
+ Timer rf24netTimer;
+ /**@}*/
+ /**
+ * @name Primary Interface
+ *
+ * These are the main methods you need to operate the network
+ */
+ /**@{*/
public:
/**
* Construct the network
@@ -86,33 +364,56 @@
* @param _radio The underlying radio driver instance
*
*/
+
RF24Network( RF24& _radio );
/**
- * Bring up the network
- *
+ * Bring up the network using the current radio frequency/channel.
+ * Calling begin brings up the network, and configures the address, which designates the location of the node within RF24Network topology.
+ * @note Node addresses are specified in Octal format, see <a href=Addressing.html>RF24Network Addressing</a> for more information.
* @warning Be sure to 'begin' the radio first.
*
- * @param _channel The RF channel to operate on
+ * **Example 1:** Begin on current radio channel with address 0 (master node)
+ * @code
+ * network.begin(00);
+ * @endcode
+ * **Example 2:** Begin with address 01 (child of master)
+ * @code
+ * network.begin(01);
+ * @endcode
+ * **Example 3:** Begin with address 011 (child of 01, grandchild of master)
+ * @code
+ * network.begin(011);
+ * @endcode
+ *
+ * @see begin(uint8_t _channel, uint16_t _node_address )
* @param _node_address The logical address of this node
+ *
*/
- void begin(uint8_t _channel, uint16_t _node_address );
-
+
+ inline void begin(uint16_t _node_address){
+ begin(USE_CURRENT_CHANNEL,_node_address);
+ }
+
/**
* Main layer loop
*
- * This function must be called regularly to keep the layer going. This is where all
- * the action happens!
+ * This function must be called regularly to keep the layer going. This is where payloads are
+ * re-routed, received, and all the action happens.
+ *
+ * @see
+ *
+ * @return Returns the type of the last received payload.
*/
- void update(void);
+ uint8_t update(void);
/**
* Test whether there is a message available for this node
- *
+ *
* @return Whether there is a message available for this node
*/
bool available(void);
-
+
/**
* Read the next available header
*
@@ -123,59 +424,428 @@
*
* @param[out] header The header (envelope) of the next message
*/
- void peek(RF24NetworkHeader& header);
+ uint16_t peek(RF24NetworkHeader& header);
/**
* Read a message
*
+ * @code
+ * while ( network.available() ) {
+ * RF24NetworkHeader header;
+ * uint32_t time;
+ * network.peek(header);
+ * if(header.type == 'T'){
+ * network.read(header,&time,sizeof(time));
+ * Serial.print("Got time: ");
+ * Serial.println(time);
+ * }
+ * }
+ * @endcode
* @param[out] header The header (envelope) of this message
* @param[out] message Pointer to memory where the message should be placed
* @param maxlen The largest message size which can be held in @p message
* @return The total number of bytes copied into @p message
*/
- size_t read(RF24NetworkHeader& header, void* message, size_t maxlen);
-
+ uint16_t read(RF24NetworkHeader& header, void* message, uint16_t maxlen);
+
/**
* Send a message
*
+ * @note RF24Network now supports fragmentation for very long messages, send as normal. Fragmentation
+ * may need to be enabled or configured by editing the RF24Network_config.h file. Default max payload size is 120 bytes.
+ *
+ * @code
+ * uint32_t time = millis();
+ * uint16_t to = 00; // Send to master
+ * RF24NetworkHeader header(to, 'T'); // Send header type 'T'
+ * network.write(header,&time,sizeof(time));
+ * @endcode
* @param[in,out] header The header (envelope) of this message. The critical
* thing to fill in is the @p to_node field so we know where to send the
* message. It is then updated with the details of the actual header sent.
- * @param message Pointer to memory where the message is located
- * @param len The size of the message
- * @return Whether the message was successfully received
+ * @param message Pointer to memory where the message is located
+ * @param len The size of the message
+ * @return Whether the message was successfully received
+ */
+ bool write(RF24NetworkHeader& header,const void* message, uint16_t len);
+
+ /**@}*/
+ /**
+ * @name Advanced Configuration
+ *
+ * For advanced configuration of the network
+ */
+ /**@{*/
+
+
+ /**
+ * Construct the network in dual head mode using two radio modules.
+ * @note Not working on RPi. Radios will share MISO, MOSI and SCK pins, but require separate CE,CS pins.
+ * @code
+ * RF24 radio(7,8);
+ * RF24 radio1(4,5);
+ * RF24Network(radio.radio1);
+ * @endcode
+ * @param _radio The underlying radio driver instance
+ * @param _radio1 The second underlying radio driver instance
+ */
+
+ RF24Network( RF24& _radio, RF24& _radio1);
+
+ /**
+ * By default, multicast addresses are divided into levels.
+ *
+ * Nodes 1-5 share a multicast address, nodes n1-n5 share a multicast address, and nodes n11-n55 share a multicast address.<br>
+ *
+ * This option is used to override the defaults, and create custom multicast groups that all share a single
+ * address. <br>
+ * The level should be specified in decimal format 1-6 <br>
+ * @see multicastRelay
+ * @param level Levels 1 to 6 are available. All nodes at the same level will receive the same
+ * messages if in range. Messages will be routed in order of level, low to high by default, with the
+ * master node (00) at multicast Level 0
+ */
+
+ void multicastLevel(uint8_t level);
+
+ /**
+ * Enabling this will allow this node to automatically forward received multicast frames to the next highest
+ * multicast level. Duplicate frames are filtered out, so multiple forwarding nodes at the same level should
+ * not interfere. Forwarded payloads will also be received.
+ * @see multicastLevel
+ */
+
+ bool multicastRelay;
+
+ /**
+ * Set up the watchdog timer for sleep mode using the number 0 through 10 to represent the following time periods:<br>
+ * wdt_16ms = 0, wdt_32ms, wdt_64ms, wdt_128ms, wdt_250ms, wdt_500ms, wdt_1s, wdt_2s, wdt_4s, wdt_8s
+ * @code
+ * setup_watchdog(7); // Sets the WDT to trigger every second
+ * @endcode
+ * @param prescalar The WDT prescaler to define how often the node will wake up. When defining sleep mode cycles, this time period is 1 cycle.
*/
- bool write(RF24NetworkHeader& header,const void* message, size_t len);
+ void setup_watchdog(uint8_t prescalar);
+
+ /**
+ * @note: This value is automatically assigned based on the node address
+ * to reduce errors and increase throughput of the network.
+ *
+ * Sets the timeout period for individual payloads in milliseconds at staggered intervals.
+ * Payloads will be retried automatically until success or timeout
+ * Set to 0 to use the normal auto retry period defined by radio.setRetries()
+ *
+ */
+
+ uint32_t txTimeout; /**< Network timeout value */
+
+ /**
+ * This only affects payloads that are routed by one or more nodes.
+ * This specifies how long to wait for an ack from across the network.
+ * Radios sending directly to their parent or children nodes do not
+ * utilize this value.
+ */
+
+ uint16_t routeTimeout; /**< Timeout for routed payloads */
+
+
+ /**@}*/
+ /**
+ * @name Advanced Operation
+ *
+ * For advanced operation of the network
+ */
+ /**@{*/
+
+ /**
+ * Return the number of failures and successes for all transmitted payloads, routed or sent directly
+ * @note This needs to be enabled via #define ENABLE_NETWORK_STATS in RF24Network_config.h
+ *
+ * @code
+ * bool fails, success;
+ * network.failures(&fails,&success);
+ * @endcode
+ *
+ */
+ void failures(uint32_t *_fails, uint32_t *_ok);
+
+ #if defined (RF24NetworkMulticast)
+
+ /**
+ * Send a multicast message to multiple nodes at once
+ * Allows messages to be rapidly broadcast through the network
+ *
+ * Multicasting is arranged in levels, with all nodes on the same level listening to the same address
+ * Levels are assigned by network level ie: nodes 01-05: Level 1, nodes 011-055: Level 2
+ * @see multicastLevel
+ * @see multicastRelay
+ * @param message Pointer to memory where the message is located
+ * @param len The size of the message
+ * @param level Multicast level to broadcast to
+ * @return Whether the message was successfully sent
+ */
+
+ bool multicast(RF24NetworkHeader& header,const void* message, uint16_t len, uint8_t level);
+
+
+ #endif
+
+ /**
+ * Writes a direct (unicast) payload. This allows routing or sending messages outside of the usual routing paths.
+ * The same as write, but a physical address is specified as the last option.
+ * The payload will be written to the physical address, and routed as necessary by the recipient
+ */
+ bool write(RF24NetworkHeader& header,const void* message, uint16_t len, uint16_t writeDirect);
-protected:
- void open_pipes(void);
- uint16_t find_node( uint16_t current_node, uint16_t target_node );
- bool write(uint16_t);
- bool write_to_pipe( uint16_t node, uint8_t pipe );
- bool enqueue(void);
+ /**
+ * Sleep this node - For AVR devices only
+ * @note NEW - Nodes can now be slept while the radio is not actively transmitting. This must be manually enabled by uncommenting
+ * the #define ENABLE_SLEEP_MODE in RF24Network_config.h
+ * @note Setting the interruptPin to 255 will disable interrupt wake-ups
+ * @note The watchdog timer should be configured in setup() if using sleep mode.
+ * This function will sleep the node, with the radio still active in receive mode.
+ *
+ * The node can be awoken in two ways, both of which can be enabled simultaneously:
+ * 1. An interrupt - usually triggered by the radio receiving a payload. Must use pin 2 (interrupt 0) or 3 (interrupt 1) on Uno, Nano, etc.
+ * 2. The watchdog timer waking the MCU after a designated period of time, can also be used instead of delays to control transmission intervals.
+ * @code
+ * if(!network.available()){ network.sleepNode(1,0); } //Sleeps the node for 1 second or a payload is received
+ *
+ * Other options:
+ * network.sleepNode(0,0); // Sleep this node for the designated time period, or a payload is received.
+ * network.sleepNode(1,255); // Sleep this node for 1 cycle. Do not wake up until then, even if a payload is received ( no interrupt )
+ * @endcode
+ * @see setup_watchdog()
+ * @param cycles: The node will sleep in cycles of 1s. Using 2 will sleep 2 WDT cycles, 3 sleeps 3WDT cycles...
+ * @param interruptPin: The interrupt number to use (0,1) for pins two and three on Uno,Nano. More available on Mega etc.
+ * @return True if sleepNode completed normally, after the specified number of cycles. False if sleep was interrupted
+ */
+ bool sleepNode( unsigned int cycles, int interruptPin );
+
+
+ /**
+ * This node's parent address
+ *
+ * @return This node's parent address, or -1 if this is the base
+ */
+ uint16_t parent() const;
+
+ /**
+ * Provided a node address and a pipe number, will return the RF24Network address of that child pipe for that node
+ */
+ uint16_t addressOfPipe( uint16_t node,uint8_t pipeNo );
+
+ /**
+ * @note Addresses are specified in octal: 011, 034
+ * @return True if a supplied address is valid
+ */
+ bool is_valid_address( uint16_t node );
+
+ /**@}*/
+ /**
+ * @name Deprecated
+ *
+ * Maintained for backwards compatibility
+ */
+ /**@{*/
+
+ /**
+ * Bring up the network on a specific radio frequency/channel.
+ * @note Use radio.setChannel() to configure the radio channel
+ *
+ * **Example 1:** Begin on channel 90 with address 0 (master node)
+ * @code
+ * network.begin(90,0);
+ * @endcode
+ * **Example 2:** Begin on channel 90 with address 01 (child of master)
+ * @code
+ * network.begin(90,01);
+ * @endcode
+ * **Example 3:** Begin on channel 90 with address 011 (child of 01, grandchild of master)
+ * @code
+ * network.begin(90,011);
+ * @endcode
+ *
+ * @param _channel The RF channel to operate on
+ * @param _node_address The logical address of this node
+ *
+ */
+ void begin(uint8_t _channel, uint16_t _node_address );
+
+ /**@}*/
+ /**
+ * @name External Applications/Systems
+ *
+ * Interface for External Applications and Systems ( RF24Mesh, RF24Ethernet )
+ */
+ /**@{*/
+
+ /** The raw system frame buffer of received data. */
+
+ uint8_t frame_buffer[MAX_FRAME_SIZE];
+
+ /**
+ * **Linux** <br>
+ * Data with a header type of EXTERNAL_DATA_TYPE will be loaded into a separate queue.
+ * The data can be accessed as follows:
+ * @code
+ * RF24NetworkFrame f;
+ * while(network.external_queue.size() > 0){
+ * f = network.external_queue.front();
+ * uint16_t dataSize = f.message_size;
+ * //read the frame message buffer
+ * memcpy(&myBuffer,&f.message_buffer,dataSize);
+ * network.external_queue.pop();
+ * }
+ * @endcode
+ */
+
+
+
+
+ #if !defined ( DISABLE_FRAGMENTATION )
+ /**
+ * **ARDUINO** <br>
+ * The frag_ptr is only used with Arduino (not RPi/Linux) and is mainly used for external data systems like RF24Ethernet. When
+ * an EXTERNAL_DATA payload type is received, and returned from network.update(), the frag_ptr will always point to the starting
+ * memory location of the received frame. <br>This is used by external data systems (RF24Ethernet) to immediately copy the received
+ * data to a buffer, without using the user-cache.
+ *
+ * @see RF24NetworkFrame
+ *
+ * @code
+ * uint8_t return_type = network.update();
+ * if(return_type == EXTERNAL_DATA_TYPE){
+ * uint16_t size = network.frag_ptr->message_size;
+ * memcpy(&myDataBuffer,network.frag_ptr->message_buffer,network.frag_ptr->message_size);
+ * }
+ * @endcode
+ * Linux devices (defined as RF24_LINUX) currently cache all payload types, and do not utilize frag_ptr.
+ */
+ RF24NetworkFrame* frag_ptr;
+ #endif
+
+ /**
+ * Variable to determine whether update() will return after the radio buffers have been emptied (DEFAULT), or
+ * whether to return immediately when (most) system types are received.
+ *
+ * As an example, this is used with RF24Mesh to catch and handle system messages without loading them into the user cache.
+ *
+ * The following reserved/system message types are handled automatically, and not returned.
+ *
+ * | System Message Types <br> (Not Returned) |
+ * |-----------------------|
+ * | NETWORK_ADDR_RESPONSE |
+ * | NETWORK_ACK |
+ * | NETWORK_PING |
+ * | NETWORK_POLL <br>(With multicast enabled) |
+ * | NETWORK_REQ_ADDRESS |
+ *
+ */
+ bool returnSysMsgs;
+
+ /**
+ * Network Flags allow control of data flow
+ *
+ * Incoming Blocking: If the network user-cache is full, lets radio cache fill up. Radio ACKs are not sent when radio internal cache is full.<br>
+ * This behaviour may seem to result in more failed sends, but the payloads would have otherwise been dropped due to the cache being full.<br>
+ *
+ * | FLAGS | Value | Description |
+ * |-------|-------|-------------|
+ * |FLAG_HOLD_INCOMING| 1(bit_1) | INTERNAL: Set automatically when a fragmented payload will exceed the available cache |
+ * |FLAG_BYPASS_HOLDS| 2(bit_2) | EXTERNAL: Can be used to prevent holds from blocking. Note: Holds are disabled & re-enabled by RF24Mesh when renewing addresses. This will cause data loss if incoming data exceeds the available cache space|
+ * |FLAG_FAST_FRAG| 4(bit_3) | INTERNAL: Replaces the fastFragTransfer variable, and allows for faster transfers between directly connected nodes. |
+ *
+ */
+ uint8_t networkFlags;
+
+ private:
+
+ uint32_t txTime;
+
+ bool write(uint16_t, uint8_t directTo);
+ bool write_to_pipe( uint16_t node, uint8_t pipe, bool multicast );
+ uint8_t enqueue(RF24NetworkHeader *header);
bool is_direct_child( uint16_t node );
bool is_descendant( uint16_t node );
+
uint16_t direct_child_route_to( uint16_t node );
- uint8_t pipe_to_descendant( uint16_t node );
+ //uint8_t pipe_to_descendant( uint16_t node );
void setup_address(void);
+ bool _write(RF24NetworkHeader& header,const void* message, uint16_t len, uint16_t writeDirect);
+
+ struct logicalToPhysicalStruct{
+ uint16_t send_node;
+ uint8_t send_pipe;
+ bool multicast;
+ };
+
+ bool logicalToPhysicalAddress(logicalToPhysicalStruct *conversionInfo);
+
+
+ RF24& radio; /**< Underlying radio driver, provides link/physical layers */
+#if defined (DUAL_HEAD_RADIO)
+ RF24& radio1;
+#endif
+#if defined (RF24NetworkMulticast)
+ uint8_t multicast_level;
+#endif
+ uint16_t node_address; /**< Logical node address of this unit, 1 .. UINT_MAX */
+ //const static int frame_size = 32; /**< How large is each frame over the air */
+ uint8_t frame_size;
+ const static unsigned int max_frame_payload_size = MAX_FRAME_SIZE-sizeof(RF24NetworkHeader);
+
-private:
- RF24& radio; /**< Underlying radio driver, provides link/physical layers */
- uint16_t node_address; /**< Logical node address of this unit, 1 .. UINT_MAX */
- const static int frame_size = 32; /**< How large is each frame over the air */
- uint8_t frame_buffer[frame_size]; /**< Space to put the frame that will be sent/received over the air */
- uint8_t frame_queue[5*frame_size]; /**< Space for a small set of frames that need to be delivered to the app layer */
- uint8_t* next_frame; /**< Pointer into the @p frame_queue where we should place the next received frame */
+
+
+
+
+
+
+
+
+
+
+ #if !defined (NUM_USER_PAYLOADS)
+ #define NUM_USER_PAYLOADS 5
+ #endif
+
+ #if defined (DISABLE_USER_PAYLOADS)
+ uint8_t frame_queue[1]; /**< Space for a small set of frames that need to be delivered to the app layer */
+ #else
+ uint8_t frame_queue[MAIN_BUFFER_SIZE]; /**< Space for a small set of frames that need to be delivered to the app layer */
+ #endif
+
+ uint8_t* next_frame; /**< Pointer into the @p frame_queue where we should place the next received frame */
+
+ #if !defined ( DISABLE_FRAGMENTATION )
+ RF24NetworkFrame frag_queue;
+ uint8_t frag_queue_message_buffer[MAX_PAYLOAD_SIZE]; //frame size + 1
+ #endif
+
+
+ //uint8_t frag_queue[MAX_PAYLOAD_SIZE + 11];
+ //RF24NetworkFrame frag_queue;
+
uint16_t parent_node; /**< Our parent's node address */
uint8_t parent_pipe; /**< The pipe our parent uses to listen to us */
uint16_t node_mask; /**< The bits which contain signfificant node address information */
- uint8_t min(uint8_t, uint8_t);
+
+ #if defined ENABLE_NETWORK_STATS
+ static uint32_t nFails;
+ static uint32_t nOK;
+ #endif
+
+public:
+
+
+
};
/**
- * @example helloworld_tx.pde
+ * @example helloworld_tx.ino
*
* Simplest possible example of using RF24Network. Put this sketch
* on one node, and helloworld_rx.pde on the other. Tx will send
@@ -183,7 +853,7 @@
*/
/**
- * @example helloworld_rx.pde
+ * @example helloworld_rx.ino
*
* Simplest possible example of using RF24Network. Put this sketch
* on one node, and helloworld_tx.pde on the other. Tx will send
@@ -191,12 +861,34 @@
*/
/**
- * @example meshping.pde
+ * @example Network_Ping.ino
*
- * Example of pinging across a mesh network
+ * Example to give users an understanding of addressing and topology in the mesh network
* Using this sketch, each node will send a ping to the base every
* few seconds. The RF24Network library will route the message across
* the mesh to the correct node.
+ *
+ */
+
+/**
+ * @example Network_Ping_Sleep.ino
+ *
+ * Example: This is almost exactly the same as the Network_Ping example, but with use
+ * of the integrated sleep mode.
+ *
+ * This example demonstrates how nodes on the network utilize sleep mode to conserve power. For example,
+ * the radio itself will draw about 13.5mA in receive mode. In sleep mode, it will use as little as 22ua (.000022mA)
+ * of power when not actively transmitting or receiving data. In addition, the Arduino is powered down as well,
+ * dropping network power consumption dramatically compared to previous capabilities. <br>
+ * Note: Sleeping nodes generate traffic that will wake other nodes up. This may be mitigated with further modifications. Sleep
+ * payloads are currently always routed to the master node, which will wake up intermediary nodes. Routing nodes can be configured
+ * to go back to sleep immediately.
+ * The displayed millis() count will give an indication of how much a node has been sleeping compared to the others, as millis() will
+ * not increment while a node sleeps.
+ *<br>
+ * - Using this sketch, each node will send a ping to every other node in the network every few seconds.<br>
+ * - The RF24Network library will route the message across the mesh to the correct node.<br>
+ *
*/
/**
@@ -211,17 +903,19 @@
* @mainpage Network Layer for RF24 Radios
*
* This class implements an <a href="http://en.wikipedia.org/wiki/Network_layer">OSI Network Layer</a> using nRF24L01(+) radios driven
- * by the <a href="http://maniacbug.github.com/RF24/">RF24</a> library.
+ * by the newly optimized <a href="http://tmrh20.github.com/RF24/">RF24</a> library fork.
*
* @section Purpose Purpose/Goal
*
- * Create an alternative to ZigBee radios for Arduino communication.
+ * Original: Create an alternative to ZigBee radios for Arduino communication.
+ *
+ * New: Enhance the current functionality for maximum efficiency, reliability, and speed
*
- * Xbees are excellent little radios, backed up by a mature and robust standard
+ * Xbees are excellent little radios, backed up by a mature and robust standard
* protocol stack. They are also expensive.
*
- * For many Arduino uses, they seem like overkill. So I am working to build
- * an alternative using nRF24L01 radios. Modules are available for less than
+ * For many Arduino uses, they seem like overkill. So I am working to improve the current
+ * standard for nRF24L01 radios. The best RF24 modules are available for less than
* $6 from many sources. With the RF24Network layer, I hope to cover many
* common communication scenarios.
*
@@ -229,39 +923,55 @@
*
* @section Features Features
*
+ * <b>Whats new? </b><br>
+ * @li New: (Dec 8) Merge of RPi and Arduino code. Finally moving closer to a stable release. Report issues at https://github.com/TMRh20/RF24Network/issues
+ * @li New functionality: (Dec 8) Support for fragmented multicast payloads on both RPi and Arduino
+ * @li New functionality: (Nov 24) Fragmentation & reassembly supported on both RPi and Arduino
+ * @li Note: structure of network frames is changed, these are only used by external applications like RF24Ethernet and RF24toTUN, and for fragmentation
+ * @li New functionality: User message types 1 through 64 will not receive a network ack
+ *
* The layer provides:
+ * @li <b>New</b> (2014): Network ACKs: Efficient acknowledgement of network-wide transmissions, via dynamic radio acks and network protocol acks.
+ * @li <b>New</b> (2014): Updated addressing standard for optimal radio transmission.
+ * @li <b>New</b> (2014): Extended timeouts and staggered timeout intervals. The new txTimeout variable allows fully automated extended timeout periods via auto-retry/auto-reUse of payloads.
+ * @li <b>New</b> (2014): Optimization to the core library provides improvements to reliability, speed and efficiency. See https://tmrh20.github.io/RF24 for more info.
+ * @li <b>New</b> (2014): Built in sleep mode using interrupts. (Still under development. (Enable via RF24Network_config.h))
+ * @li <b>New</b> (2014): Dual headed operation: The use of dual radios for busy routing nodes or the master node enhances throughput and decreases errors. See the <a href="Tuning.html">Tuning</a> section.
* @li Host Addressing. Each node has a logical address on the local network.
* @li Message Forwarding. Messages can be sent from one node to any other, and
* this layer will get them there no matter how many hops it takes.
* @li Ad-hoc Joining. A node can join a network without any changes to any
* existing nodes.
*
- * The layer does not (yet) provide:
- * @li Fragmentation/reassembly. Ability to send longer messages and put them
- * all back together before exposing them up to the app.
- * @li Power-efficient listening. It would be useful for nodes who are listening
- * to sleep for extended periods of time if they could know that they would miss
- * no traffic.
- * @li Dynamic address assignment.
+ * The layer does not provide:
+ * @li Dynamic address assignment. (See RF24Mesh)
+ * @li Layer 4 protocols (TCP/IP - See RF24Ethernet and RF24toTUN)
*
* @section More How to learn more
*
- * @li <a href="http://maniacbug.github.com/RF24/">RF24: Underlying radio driver</a>
* @li <a href="classRF24Network.html">RF24Network Class Documentation</a>
- * @li <a href="https://github.com/maniacbug/RF24Network/">Source Code</a>
- * @li <a href="https://github.com/maniacbug/RF24Network/archives/master">Downloads Page</a>
- * @li <a href="examples.html">Examples Page</a>. Start with <a href="helloworld_rx_8pde-example.html">helloworld_rx</a> and <a href="helloworld_tx_8pde-example.html">helloworld_tx</a>.
+ * @li <a href="AdvancedConfig.html"> Advanced Configuration Options</a>
+ * @li <a href="Addressing.html"> Addressing format</a>
+ * @li <a href="Tuning.html"> Topology and Overview</a>
+ * @li <a href="https://github.com/TMRh20/RF24Network/archive/Development.zip">Download Current Development Package</a>
+ * @li <a href="examples.html">Examples Page</a>. Start with <a href="helloworld_rx_8ino-example.html">helloworld_rx</a> and <a href="helloworld_tx_8ino-example.html">helloworld_tx</a>.
*
+ * <b> Additional Information & Add-ons </b>
+ * @li <a href="https://github.com/TMRh20/RF24Mesh">RF24Mesh: Dynamic Mesh Layer for RF24Network Dev</a>
+ * @li <a href="https://github.com/TMRh20/RF24Ethernet">RF24Ethernet: TCP/IP over RF24Network</a>
+ * @li <a href="http://tmrh20.blogspot.com/2014/03/high-speed-data-transfers-and-wireless.html">My Blog: RF24 Optimization Overview</a>
+ * @li <a href="http://tmrh20.blogspot.com/2014/03/arduino-radiointercomwireless-audio.html">My Blog: RF24 Wireless Audio</a>
+ * @li <a href="http://maniacbug.github.com/RF24/">RF24: Original Author</a>
* @section Topology Topology for Mesh Networks using nRF24L01(+)
*
* This network layer takes advantage of the fundamental capability of the nRF24L01(+) radio to
- * listen actively to up to 6 other radios at once. The network is arranged in a
+ * listen actively to up to 6 other radios at once. The network is arranged in a
* <a href="http://en.wikipedia.org/wiki/Network_Topology#Tree">Tree Topology</a>, where
* one node is the base, and all other nodes are children either of that node, or of another.
* Unlike a true mesh network, multiple nodes are not connected together, so there is only one
* path to any given node.
*
- * @section Octal Octal Addressing
+ * @section Octal Octal Addressing and Topology
*
* Each node must be assigned an 15-bit address by the administrator. This address exactly
* describes the position of the node within the tree. The address is an octal number. Each
@@ -272,6 +982,15 @@
* @li Node 021 is the second child of node 01.
* @li Node 0321 is the third child of node 021, an so on.
* @li The largest node address is 05555, so 3,125 nodes are allowed on a single channel.
+ * An example topology is shown below, with 5 nodes in direct communication with the master node,
+ * and multiple leaf nodes spread out at a distance, using intermediate nodes to reach other nodes.
+ *
+ *| | | 00 | | | 00 | | | | Master Node (00) |
+ *|---|----|----|----|----|----|----|----|----|-----------------------------------------------------|
+ *| | | 01 | | | 04 | | | | 1st level children of master (00) |
+ *| | 011| | 021| | |014 | | | 2nd level children of master. Children of 1st level.|
+ *|111| | | 121| 221| | | 114| | 3rd level children of master. Children of 2nd level.|
+ *| | | | |1221| |1114|2114|3114| 4th level children of master. Children of 3rd level.|
*
* @section Routing How routing is handled
*
@@ -291,26 +1010,257 @@
* relay nodes are being used to bridge the distance to the base, so leaf nodes are out
* of range of the base.
*
- * @section Directionality Directionality
+ * @section Directionality Directionality
*
* By default all nodes are always listening, so messages will quickly reach
- * their destination.
+ * their destination.
+ *
+ * You may choose to sleep any nodes on the network if using interrupts. This is useful in a
+ * case where the nodes are operating on batteries and need to sleep. This greatly decreases
+ * the power requirements for a sensor network. The leaf nodes can sleep most of the time,
+ * and wake every few minutes to send in a reading. Routing nodes can be triggered to wake up
+ * whenever a payload is received See sleepNode() in the class documentation, and RFNetwork_config.h
+ * to enable sleep mode.
+ *
+ *
+ * @page Addressing Addressing Format: Understanding Addressing and Topology
+ * An overview of addressing in RF24Network
+ *
+ * @section Overview Overview
+ * The nrf24 radio modules typically use a 40-bit address format, requiring 5-bytes of storage space per address, and allowing a wide
+ * array of addresses to be utilized. In addition, the radios are limited to direct communication with 6 other nodes while using the
+ * Enhanced-Shock-Burst (ESB) functionality of the radios.
+ *
+ * RF24Network uses a simple method of data compression to store the addresses using only 2 bytes, in a format designed to represent the
+ * network topology in an intuitive way.
+ * See the <a href="Tuning.html"> Topology and Overview</a> page for more info regarding topology.
+ *
+ * @section Octal_Binary Decimal, Octal and Binary formats
+ *
+ * Say we want to designate a logical address to a node, using a tree topology as defined by the manufacturer.
+ * In the simplest format, we could assign the first node the address of 1, the second 2 and so on.
+ * Since a single node can only connect to 6 other nodes (1 parent and 5 children) subnets need to be created if using more than 6 nodes.<br>
+ * In this case the children of node 1 could simply be designated as 11,21,31,41, and 51<br>
+ * Children of node 2 could be designated as 12,22,32,42, and 52
+ *
+ * The above example is exactly how RF24Network manages the addresses, but they are represented in Octal format.
+ *
+ * <b>Decimal, Octal and Binary</b>
+ * <table>
+ * <tr bgcolor="#a3b4d7" >
+ * <td> Decimal </td> <td> Binary </td><td> Decimal </td> <td> Binary </td><td> Decimal </td> <td> Binary </td>
+ * </tr><tr>
+ * <td> 1 </td> <td> 00000001 </td><td> 11 </td> <td> 00001011 </td><td> 111 </td> <td> 01101111 </td>
+ * </tr><tr bgcolor="#a3b4d7" >
+ * <td> Octal </td> <td> Binary </td><td> Octal </td> <td> Binary </td><td> Octal </td> <td> Binary </td>
+ * </tr><tr>
+ * <td> 1 </td> <td> 00000001 </td><td> 011 </td> <td> 00001001 </td><td> 0111 </td> <td> 1001001 </td>
+ * </tr>
+ * </table>
+ *
+ *
+ * Since the numbers 0-7 can be represented in exactly three bits, each digit is represented by exactly 3 bits when viewed in octal format.
+ * This allows a very simple method of managing addresses via masking and bit shifting.
+ *
+ * @section DisplayAddresses Displaying Addresses
+ *
+ * When using Arduino devices, octal addresses can be printed in the following manner:
+ * @code
+ * uint16_t address = 0111;
+ * Serial.println(address,OCT);
+ * @endcode
+ *
+ * Printf can also be used, if enabled, or if using linux/RPi
+ * @code
+ * uint16_t address = 0111;
+ * printf("0%o\n",address);
+ * @endcode
+ *
+ * See http://www.cplusplus.com/doc/hex/ for more information<br>
+ * See the <a href="Tuning.html"> Topology and Overview</a> page for more info regarding topology.
+ *
+ * @page AdvancedConfig Advanced Configuration
+ *
+ * RF24Network offers many features, some of which can be configured by editing the RF24Network_config.h file
+ *
+ * | Configuration Option | Description |
+ * |----------------------|-------------|
+ * |<b> #define RF24NetworkMulticast </b> | This option allows nodes to send and receive multicast payloads. Nodes with multicast enabled can also be configured to relay multicast payloads on to further multicast levels. See multicastRelay |
+ * | <b> #define DISABLE_FRAGMENTATION </b> | Fragmentation is enabled by default, and uses an additional 144 bytes of memory. |
+ * | <b> #define MAX_PAYLOAD_SIZE 144 </b> | The maximum size of payloads defaults to 144 bytes. If used with RF24toTUN and two Raspberry Pi, set this to 1514 (TAP) or 1500 (TUN) |
+ * | <b> #define NUM_USER_PAYLOADS 5 </b> | This is the number of 24-byte payloads the network layer will cache for the user. If using fragmentation, this number * 24 must be larger than MAX_PAYLOAD_SIZE |
+ * | <b> #define DISABLE_USER_PAYLOADS </b> | This option will disable user-caching of payloads entirely. Use with RF24Ethernet to reduce memory usage. (TCP/IP is an external data type, and not cached) |
+ * | <b> #define ENABLE_SLEEP_MODE </b> | Uncomment this option to enable sleep mode for AVR devices. (ATTiny,Uno, etc) |
+ * | <b> #define DUAL_HEAD_RADIO </b> | Uncomment this option to enable use of dual radios |
+ * | **#define ENABLE_NETWORK_STATS** | Enable counting of all successful or failed transmissions, routed or sent directly |
+ *
+ ** @page Tuning Performance and Data Loss: Tuning the Network
+ * Tips and examples for tuning the network and general operation.
+ *
+ * <img src="tmrh20/topologyImage.jpg" alt="Topology" height="75%" width="75%">
+ *
+ * @section General Understanding Radio Communication and Topology
+ * When a transmission takes place from one radio module to another, the receiving radio will communicate
+ * back to the sender with an acknowledgement (ACK) packet, to indicate success. If the sender does not
+ * receive an ACK, the radio automatically engages in a series of timed retries, at set intervals. The
+ * radios use techniques like addressing and numbering of payloads to manage this, but it is all done
+ * automatically by the nrf chip, out of sight from the user.
+ *
+ * When working over a radio network, some of these automated techniques can actually hinder data transmission to a degree.
+ * Retrying failed payloads over and over on a radio network can hinder communication for nearby nodes, or
+ * reduce throughput and errors on routing nodes.
+ *
+ * Radios in this network are linked by <b>addresses</b> assigned to <b>pipes</b>. Each radio can listen
+ * to 6 addresses on 6 pipes, therefore each radio has a parent pipe and 5 child pipes, which are used
+ * to form a tree structure. Nodes communicate directly with their parent and children nodes. Any other
+ * traffic to or from a node must be routed through the network.
+ *
+ * @section Topology Topology of RF24Network
+ *
+ * Anybody who is familiar at all with IP networking should be able to easily understand RF24Network topology. The
+ * master node can be seen as the gateway, with up to 4 directly connected nodes. Each of those nodes creates a
+ * subnet below it, with up to 4 additional child nodes. The numbering scheme can also be related to IP addresses,
+ * for purposes of understanding the topology via subnetting. Nodes can have 5 children if multicast is disabled.
+ *
+ * Expressing RF24Network addresses in IP format:
+ *
+ * As an example, we could designate the master node in theory, as Address 10.10.10.10 <br>
+ * The children nodes of the master would be 10.10.10.1, 10.10.10.2, 10.10.10.3, 10.10.10.4 and 10.10.10.5 <br>
+ * The children nodes of 10.10.10.1 would be 10.10.1.1, 10.10.2.1, 10.10.3.1, 10.10.4.1 and 10.10.5.1 <br>
+ *
+ * In RF24Network, the master is just 00 <br>
+ * Children of master are 01,02,03,04,05 <br>
+ * Children of 01 are 011,021,031,041,051 <br>
*
- * You may choose to sleep any nodes which do not have any active children on the network
- * (i.e. leaf nodes). This is useful in a case where
- * the leaf nodes are operating on batteries and need to sleep.
- * This is useful for a sensor network. The leaf nodes can sleep most of the time, and wake
- * every few minutes to send in a reading. However, messages cannot be sent to these
- * sleeping nodes.
+ * @section Network Routing
+ *
+ * Routing of traffic is handled invisibly to the user, by the network layer. If the network addresses are
+ * assigned in accordance with the physical layout of the network, nodes will route traffic automatically
+ * as required. Users simply constuct a header containing the appropriate destination address, and the network
+ * will forward it through to the correct node. Individual nodes only route individual fragments, so if using
+ * fragmentation, routing nodes do not need it enabled, unless sending or receiving fragmented payloads themselves.
+ *
+ * If routing data between parent and child nodes (marked by direct links on the topology image above) the network
+ * uses built-in acknowledgement and retry functions of the chip to prevent data loss. When payloads are sent to
+ * other nodes, they need to be routed. Routing is managed using a combination of built in ACK requests, and
+ * software driven network ACKs. This allows all routing nodes to forward data very quickly, with only the final
+ * routing node confirming delivery and sending back an
+ * acknowledgement.
+ *
+ * Example: Node 00 sends to node 01. The nodes will use the built in auto-retry and auto-ack functions.<br>
+ * Example: Node 00 sends to node 011. Node 00 will send to node 01 as before. Node 01 will forward the message to
+ * 011. If delivery was successful, node 01 will also forward a message back to node 00, indicating success.
+ *
+ * Old Functionality: Node 00 sends to node 011 using auto-ack. Node 00 first sends to 01, 01 acknowledges.
+ * Node 01 forwards the payload to 011 using auto-ack. If the payload fails between 01 and 011, node 00 has
+ * no way of knowing.
+ *
+ * @note When retrying failed payloads that have been routed, there is a chance of duplicate payloads if the network-ack
+ * is not successful. In this case, it is left up to the user to manage retries and filtering of duplicate payloads.
+ *
+ * Acknowledgements can and should be managed by the application or user. If requesting a response from another node,
+ * an acknowledgement is not required, so a user defined type of 0-64 should be used, to prevent the network from
+ * responding with an acknowledgement. If not requesting a response, and wanting to know if the payload was successful
+ * or not, users can utilize header types 65-127.
+ *
+ * @section TuningOverview Tuning Overview
+ * The RF24 radio modules are generally only capable of either sending or receiving data at any given
+ * time, but have built-in auto-retry mechanisms to prevent the loss of data. These values are adjusted
+ * automatically by the library on startup, but can be further adjusted to reduce data loss, and
+ * thus increase throughput of the network. This page is intended to provide a general overview of its
+ * operation within the context of the network library, and provide guidance for adjusting these values.
+ *
+ * @section RetryTiming Auto-Retry Timing
+ *
+ * The core radio library provides the functionality of adjusting the internal auto-retry interval of the
+ * radio modules. In the network configuration, the radios can be set to automatically retry failed
+ * transmissions at intervals ranging anywhere from 500us (.5ms) up to 4000us (4ms). When operating any
+ * number of radios larger than two, it is important to stagger the assigned intervals, to prevent the
+ * radios from interfering with each other at the radio frequency (RF) layer.
+ *
+ * The library should provide fairly good working values, as it simply staggers the assigned values within
+ * groups of radios in direct communication. This value can be set manually by calling radio.setRetries(X,15);
+ * and adjusting the value of X from 1 to 15 (steps of 250us).
+ *
+ * @section AutoRetry Auto-Retry Count and Extended Timeouts
+ *
+ * The core radio library also provides the ability to adjust the internal auto-retry count of the radio
+ * modules. The default setting is 15 automatic retries per payload, and can be extended by configuring
+ * the network.txTimeout variable. This default retry count should generally be left at 15, as per the
+ * example in the above section. An interval/retry setting of (15,15) will provide 15 retrys at intervals of
+ * 4ms, taking up to 60ms per payload. The library now provides staggered timeout periods by default, but
+ * they can also be adjusted on a per-node basis.
*
- * In the future, I plan to write a system where messages can still be passed upward from
- * the base, and get delivered when a sleeping node is ready to receive them. The radio
- * and underlying driver support 'ack payloads', which will be a handy mechanism for this.
+ * The txTimeout variable is used to extend the retry count to a defined duration in milliseconds. See the
+ * network.txTimeout variable. Timeout periods of extended duration (500+) will generally not help when payloads
+ * are failing due to data collisions, it will only extend the duration of the errors. Extended duration timeouts
+ * should generally only be configured on leaf nodes that do not receive data, or on a dual-headed node.
+ *
+ * @section Examples
+ *
+ * <b>Example 1:</b> Network with master node and three leaf nodes that send data to the master node. None of the leaf
+ * nodes need to receive data.
+ *
+ * a: Master node uses default configuration<br>
+ * b: Leaf nodes can be configured with extended timeout periods to ensure reception by the master.<br>
+ * c:
+ * @code
+ * Leaf 01: network.txTimeout = 500; Leaf 02: network.txTimeout = 573; Leaf 03: network.txTimeout = 653;
+ * @endcode
+ * This configuration will provide a reduction in errors, as the timeouts have been extended, and are staggered
+ * between devices.
+ *
+ *
+ * <b>Example 2:</b> Network with master node and three leaf nodes that send data to the master node. The second leaf
+ * node needs to receive configuration data from the master at set intervals of 1 second, and send data back to the
+ * master node. The other leaf nodes will send basic sensor information every few seconds, and a few dropped payloads
+ * will not affect the operation greatly.
+ *
+ * a: Master node configured with extended timeouts of .5 seconds, and increased retry delay:
+ * @code
+ * radio.setRetries(11,15);
+ * network.txTimeout = 500;
+ * @endcode
+ * b: Second leaf node configured with a similar timeout period and retry delay:
+ * @code
+ * radio.setRetries(8,15);
+ * network.txTimeout = 553;
+ * @endcode
+ * c: First and third leaf nodes configured with default timeout periods or slightly increased timout periods.
+ *
+ * @section DualHead Dual Headed Operation
+ *
+ * The library now supports a dual radio configuration to further enhance network performance, while reducing errors on
+ * busy networks. Master nodes or relay nodes with a large number of child nodes can benefit somewhat from a dual headed
+ * configuration, since one radio is used for receiving, and the other entirely for transmission.
+ *
+ * To configure a dual headed node:
+ * 1. Edit the RF24Network_config.h file, and uncomment #define DUAL_HEAD_RADIO
+ * 2. Connect another radio, using the same MOSI, MISO, and SCK lines.
+ * 3. Choose another two pins to use for CE and CS on the second radio. Connect them.
+ * 4. Setup the radio and network like so:
+ *
+ * @code
+ * RF24 radio(7,8); // Using CE (7) and CS (8) for first radio
+ * RF24 radio1(4,5); // Using CE (4) and CS (5) for second radio
+ * RF24Network network(radio,radio1); // Set up the network using both radios
+ *
+ * Then in setup(), call radio.begin(); and radio1.begin(); before network.begin();
+ * @endcode
+ *
+ * 5. Upload to MCU. The node will now use the first radio to receive data, and radio1 to transmit, preventing data loss on a busy network.
+ * 6. Re-comment the #define in the config file as required if configuring other single-headed radios.
+ *
+ *
+ * Any node can be configured in dual-head mode.
+ *
+ *
+ *
*
* @page Zigbee Comparison to ZigBee
*
* This network layer is influenced by the design of ZigBee, but does not implement it
- * directly.
+ * directly.
*
* @section Advantage Which is better?
*
@@ -318,7 +1268,7 @@
* providing compatible chips.
*
* RF24Network is cheap. While ZigBee radios are well over $20, nRF24L01 modules can be found
- * for under $6. My personal favorite is
+ * for under $2. My personal favorite is
* <a href="http://www.mdfly.com/index.php?main_page=product_info&products_id=82">MDFly RF-IS2401</a>.
*
* @section Contrast Similiarities & Differences
@@ -326,8 +1276,8 @@
* Here are some comparisons between RF24Network and ZigBee.
*
* @li Both networks support Star and Tree topologies. Only Zigbee supports a true mesh.
- * @li In both networks, only leaf nodes can sleep (see @ref NodeNames).
- * @li ZigBee nodes are configured using AT commands, or a separate Windows application.
+ * @li In ZigBee networks, only leaf nodes can sleep
+ * @li ZigBee nodes are configured using AT commands, or a separate Windows application.
* RF24 nodes are configured by recompiliing the firmware or writing to EEPROM.
*
* @section NodeNames Node Naming
@@ -338,7 +1288,11 @@
* to the other. ZigBee calls it a Router.
* @li Base node. The top of the tree node with no parents, only children. Typically this node
* will bridge to another kind of network like Ethernet. ZigBee calls it a Co-ordinator node.
+ *
+ *
+ *
+ *
*/
#endif // __RF24NETWORK_H__
-// vim:ai:cin:sts=2 sw=2 ft=cpp
+
--- a/RF24Network_config.h Mon Jul 06 05:18:22 2015 +0000
+++ b/RF24Network_config.h Thu Nov 05 05:40:44 2015 +0000
@@ -7,17 +7,135 @@
version 2 as published by the Free Software Foundation.
*/
-#ifndef __RF24_CONFIG_H__
-#define __RF24_CONFIG_H__
+#ifndef __RF24NETWORK_CONFIG_H__
+#define __RF24NETWORK_CONFIG_H__
#include "mbed.h"
-#include <stddef.h>
+
+
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#define _BV(x) (1<<(x))
-#endif // __RF24_CONFIG_H__
-// vim:ai:cin:sts=2 sw=2 ft=cpp
+
+
+
+
+
+
+
+
+#include <stddef.h>
+
+
+
+
+
+/********** USER CONFIG - non ATTiny **************/
+
+//#define DUAL_HEAD_RADIO
+//#define ENABLE_SLEEP_MODE //AVR only
+#define RF24NetworkMulticast
+
+/** \def
+ * Saves memory by disabling fragmentation
+ */
+//#define DISABLE_FRAGMENTATION
+
+/** System defines */
+
+/** The size of the main buffer. This is the user-cache, where incoming data is stored.
+ * Data is stored using Frames: Header (8-bytes) + Frame_Size (2-bytes) + Data (?-bytes)
+ *
+ * @note The MAX_PAYLOAD_SIZE is (MAIN_BUFFER_SIZE - 10), and the result must be divisible by 24.
+ */
+#define MAIN_BUFFER_SIZE 144 + 10
+
+/** Maximum size of fragmented network frames and fragmentation cache. This MUST BE divisible by 24.
+* @note: Must be a multiple of 24.
+* @note: If used with RF24Ethernet, this value is used to set the buffer sizes.
+*/
+#define MAX_PAYLOAD_SIZE MAIN_BUFFER_SIZE-10
+
+/** Disable user payloads. Saves memory when used with RF24Ethernet or software that uses external data.*/
+//#define DISABLE_USER_PAYLOADS
+
+/** Enable tracking of success and failures for all transmissions, routed and user initiated */
+//#define ENABLE_NETWORK_STATS
+
+/** Enable dynamic payloads - If using different types of NRF24L01 modules, some may be incompatible when using this feature **/
+#define ENABLE_DYNAMIC_PAYLOADS
+
+/** Debug Options */
+//#define SERIAL_DEBUG
+//#define SERIAL_DEBUG_MINIMAL
+//#define SERIAL_DEBUG_ROUTING
+//#define SERIAL_DEBUG_FRAGMENTATION
+//#define SERIAL_DEBUG_FRAGMENTATION_L2
+/*************************************/
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+#ifndef rf24_max
+#define rf24_max(a,b) (a>b?a:b)
+#endif
+#ifndef rf24_min
+#define rf24_min(a,b) (a<b?a:b)
+#endif
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+#if defined (SERIAL_DEBUG_MINIMAL)
+#define IF_SERIAL_DEBUG_MINIMAL(x) ({x;})
+#else
+#define IF_SERIAL_DEBUG_MINIMAL(x)
+#endif
+
+#if defined (SERIAL_DEBUG_FRAGMENTATION)
+#define IF_SERIAL_DEBUG_FRAGMENTATION(x) ({x;})
+#else
+#define IF_SERIAL_DEBUG_FRAGMENTATION(x)
+#endif
+
+#if defined (SERIAL_DEBUG_FRAGMENTATION_L2)
+#define IF_SERIAL_DEBUG_FRAGMENTATION_L2(x) ({x;})
+#else
+#define IF_SERIAL_DEBUG_FRAGMENTATION_L2(x)
+#endif
+
+#if defined (SERIAL_DEBUG_ROUTING)
+#define IF_SERIAL_DEBUG_ROUTING(x) ({x;})
+#else
+#define IF_SERIAL_DEBUG_ROUTING(x)
+#endif
+#endif // RF24_NETWORK_CONFIG_H
+
