SPKT

Dependents:   WAV

Committer:
phungductung
Date:
Tue Jun 04 21:51:46 2019 +0000
Revision:
0:e87aa4c49e95
libray

Who changed what in which revision?

UserRevisionLine numberNew contents of line
phungductung 0:e87aa4c49e95 1 /* ----------------------------------------------------------------------
phungductung 0:e87aa4c49e95 2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
phungductung 0:e87aa4c49e95 3 *
phungductung 0:e87aa4c49e95 4 * $Date: 19. March 2015
phungductung 0:e87aa4c49e95 5 * $Revision: V.1.4.5
phungductung 0:e87aa4c49e95 6 *
phungductung 0:e87aa4c49e95 7 * Project: CMSIS DSP Library
phungductung 0:e87aa4c49e95 8 * Title: arm_math.h
phungductung 0:e87aa4c49e95 9 *
phungductung 0:e87aa4c49e95 10 * Description: Public header file for CMSIS DSP Library
phungductung 0:e87aa4c49e95 11 *
phungductung 0:e87aa4c49e95 12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
phungductung 0:e87aa4c49e95 13 *
phungductung 0:e87aa4c49e95 14 * Redistribution and use in source and binary forms, with or without
phungductung 0:e87aa4c49e95 15 * modification, are permitted provided that the following conditions
phungductung 0:e87aa4c49e95 16 * are met:
phungductung 0:e87aa4c49e95 17 * - Redistributions of source code must retain the above copyright
phungductung 0:e87aa4c49e95 18 * notice, this list of conditions and the following disclaimer.
phungductung 0:e87aa4c49e95 19 * - Redistributions in binary form must reproduce the above copyright
phungductung 0:e87aa4c49e95 20 * notice, this list of conditions and the following disclaimer in
phungductung 0:e87aa4c49e95 21 * the documentation and/or other materials provided with the
phungductung 0:e87aa4c49e95 22 * distribution.
phungductung 0:e87aa4c49e95 23 * - Neither the name of ARM LIMITED nor the names of its contributors
phungductung 0:e87aa4c49e95 24 * may be used to endorse or promote products derived from this
phungductung 0:e87aa4c49e95 25 * software without specific prior written permission.
phungductung 0:e87aa4c49e95 26 *
phungductung 0:e87aa4c49e95 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
phungductung 0:e87aa4c49e95 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
phungductung 0:e87aa4c49e95 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
phungductung 0:e87aa4c49e95 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
phungductung 0:e87aa4c49e95 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
phungductung 0:e87aa4c49e95 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
phungductung 0:e87aa4c49e95 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
phungductung 0:e87aa4c49e95 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
phungductung 0:e87aa4c49e95 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
phungductung 0:e87aa4c49e95 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
phungductung 0:e87aa4c49e95 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
phungductung 0:e87aa4c49e95 38 * POSSIBILITY OF SUCH DAMAGE.
phungductung 0:e87aa4c49e95 39 * -------------------------------------------------------------------- */
phungductung 0:e87aa4c49e95 40
phungductung 0:e87aa4c49e95 41 /**
phungductung 0:e87aa4c49e95 42 \mainpage CMSIS DSP Software Library
phungductung 0:e87aa4c49e95 43 *
phungductung 0:e87aa4c49e95 44 * Introduction
phungductung 0:e87aa4c49e95 45 * ------------
phungductung 0:e87aa4c49e95 46 *
phungductung 0:e87aa4c49e95 47 * This user manual describes the CMSIS DSP software library,
phungductung 0:e87aa4c49e95 48 * a suite of common signal processing functions for use on Cortex-M processor based devices.
phungductung 0:e87aa4c49e95 49 *
phungductung 0:e87aa4c49e95 50 * The library is divided into a number of functions each covering a specific category:
phungductung 0:e87aa4c49e95 51 * - Basic math functions
phungductung 0:e87aa4c49e95 52 * - Fast math functions
phungductung 0:e87aa4c49e95 53 * - Complex math functions
phungductung 0:e87aa4c49e95 54 * - Filters
phungductung 0:e87aa4c49e95 55 * - Matrix functions
phungductung 0:e87aa4c49e95 56 * - Transforms
phungductung 0:e87aa4c49e95 57 * - Motor control functions
phungductung 0:e87aa4c49e95 58 * - Statistical functions
phungductung 0:e87aa4c49e95 59 * - Support functions
phungductung 0:e87aa4c49e95 60 * - Interpolation functions
phungductung 0:e87aa4c49e95 61 *
phungductung 0:e87aa4c49e95 62 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
phungductung 0:e87aa4c49e95 63 * 32-bit integer and 32-bit floating-point values.
phungductung 0:e87aa4c49e95 64 *
phungductung 0:e87aa4c49e95 65 * Using the Library
phungductung 0:e87aa4c49e95 66 * ------------
phungductung 0:e87aa4c49e95 67 *
phungductung 0:e87aa4c49e95 68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
phungductung 0:e87aa4c49e95 69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
phungductung 0:e87aa4c49e95 70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
phungductung 0:e87aa4c49e95 71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
phungductung 0:e87aa4c49e95 72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
phungductung 0:e87aa4c49e95 73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
phungductung 0:e87aa4c49e95 74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
phungductung 0:e87aa4c49e95 75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
phungductung 0:e87aa4c49e95 76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
phungductung 0:e87aa4c49e95 77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
phungductung 0:e87aa4c49e95 78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
phungductung 0:e87aa4c49e95 79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
phungductung 0:e87aa4c49e95 80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
phungductung 0:e87aa4c49e95 81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
phungductung 0:e87aa4c49e95 82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
phungductung 0:e87aa4c49e95 83 *
phungductung 0:e87aa4c49e95 84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
phungductung 0:e87aa4c49e95 85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
phungductung 0:e87aa4c49e95 86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
phungductung 0:e87aa4c49e95 87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
phungductung 0:e87aa4c49e95 88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
phungductung 0:e87aa4c49e95 89 *
phungductung 0:e87aa4c49e95 90 * Examples
phungductung 0:e87aa4c49e95 91 * --------
phungductung 0:e87aa4c49e95 92 *
phungductung 0:e87aa4c49e95 93 * The library ships with a number of examples which demonstrate how to use the library functions.
phungductung 0:e87aa4c49e95 94 *
phungductung 0:e87aa4c49e95 95 * Toolchain Support
phungductung 0:e87aa4c49e95 96 * ------------
phungductung 0:e87aa4c49e95 97 *
phungductung 0:e87aa4c49e95 98 * The library has been developed and tested with MDK-ARM version 5.14.0.0
phungductung 0:e87aa4c49e95 99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
phungductung 0:e87aa4c49e95 100 *
phungductung 0:e87aa4c49e95 101 * Building the Library
phungductung 0:e87aa4c49e95 102 * ------------
phungductung 0:e87aa4c49e95 103 *
phungductung 0:e87aa4c49e95 104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
phungductung 0:e87aa4c49e95 105 * - arm_cortexM_math.uvprojx
phungductung 0:e87aa4c49e95 106 *
phungductung 0:e87aa4c49e95 107 *
phungductung 0:e87aa4c49e95 108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
phungductung 0:e87aa4c49e95 109 *
phungductung 0:e87aa4c49e95 110 * Pre-processor Macros
phungductung 0:e87aa4c49e95 111 * ------------
phungductung 0:e87aa4c49e95 112 *
phungductung 0:e87aa4c49e95 113 * Each library project have differant pre-processor macros.
phungductung 0:e87aa4c49e95 114 *
phungductung 0:e87aa4c49e95 115 * - UNALIGNED_SUPPORT_DISABLE:
phungductung 0:e87aa4c49e95 116 *
phungductung 0:e87aa4c49e95 117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
phungductung 0:e87aa4c49e95 118 *
phungductung 0:e87aa4c49e95 119 * - ARM_MATH_BIG_ENDIAN:
phungductung 0:e87aa4c49e95 120 *
phungductung 0:e87aa4c49e95 121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
phungductung 0:e87aa4c49e95 122 *
phungductung 0:e87aa4c49e95 123 * - ARM_MATH_MATRIX_CHECK:
phungductung 0:e87aa4c49e95 124 *
phungductung 0:e87aa4c49e95 125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
phungductung 0:e87aa4c49e95 126 *
phungductung 0:e87aa4c49e95 127 * - ARM_MATH_ROUNDING:
phungductung 0:e87aa4c49e95 128 *
phungductung 0:e87aa4c49e95 129 * Define macro ARM_MATH_ROUNDING for rounding on support functions
phungductung 0:e87aa4c49e95 130 *
phungductung 0:e87aa4c49e95 131 * - ARM_MATH_CMx:
phungductung 0:e87aa4c49e95 132 *
phungductung 0:e87aa4c49e95 133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
phungductung 0:e87aa4c49e95 134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
phungductung 0:e87aa4c49e95 135 * ARM_MATH_CM7 for building the library on cortex-M7.
phungductung 0:e87aa4c49e95 136 *
phungductung 0:e87aa4c49e95 137 * - __FPU_PRESENT:
phungductung 0:e87aa4c49e95 138 *
phungductung 0:e87aa4c49e95 139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
phungductung 0:e87aa4c49e95 140 *
phungductung 0:e87aa4c49e95 141 * <hr>
phungductung 0:e87aa4c49e95 142 * CMSIS-DSP in ARM::CMSIS Pack
phungductung 0:e87aa4c49e95 143 * -----------------------------
phungductung 0:e87aa4c49e95 144 *
phungductung 0:e87aa4c49e95 145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
phungductung 0:e87aa4c49e95 146 * |File/Folder |Content |
phungductung 0:e87aa4c49e95 147 * |------------------------------|------------------------------------------------------------------------|
phungductung 0:e87aa4c49e95 148 * |\b CMSIS\\Documentation\\DSP | This documentation |
phungductung 0:e87aa4c49e95 149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
phungductung 0:e87aa4c49e95 150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
phungductung 0:e87aa4c49e95 151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
phungductung 0:e87aa4c49e95 152 *
phungductung 0:e87aa4c49e95 153 * <hr>
phungductung 0:e87aa4c49e95 154 * Revision History of CMSIS-DSP
phungductung 0:e87aa4c49e95 155 * ------------
phungductung 0:e87aa4c49e95 156 * Please refer to \ref ChangeLog_pg.
phungductung 0:e87aa4c49e95 157 *
phungductung 0:e87aa4c49e95 158 * Copyright Notice
phungductung 0:e87aa4c49e95 159 * ------------
phungductung 0:e87aa4c49e95 160 *
phungductung 0:e87aa4c49e95 161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
phungductung 0:e87aa4c49e95 162 */
phungductung 0:e87aa4c49e95 163
phungductung 0:e87aa4c49e95 164
phungductung 0:e87aa4c49e95 165 /**
phungductung 0:e87aa4c49e95 166 * @defgroup groupMath Basic Math Functions
phungductung 0:e87aa4c49e95 167 */
phungductung 0:e87aa4c49e95 168
phungductung 0:e87aa4c49e95 169 /**
phungductung 0:e87aa4c49e95 170 * @defgroup groupFastMath Fast Math Functions
phungductung 0:e87aa4c49e95 171 * This set of functions provides a fast approximation to sine, cosine, and square root.
phungductung 0:e87aa4c49e95 172 * As compared to most of the other functions in the CMSIS math library, the fast math functions
phungductung 0:e87aa4c49e95 173 * operate on individual values and not arrays.
phungductung 0:e87aa4c49e95 174 * There are separate functions for Q15, Q31, and floating-point data.
phungductung 0:e87aa4c49e95 175 *
phungductung 0:e87aa4c49e95 176 */
phungductung 0:e87aa4c49e95 177
phungductung 0:e87aa4c49e95 178 /**
phungductung 0:e87aa4c49e95 179 * @defgroup groupCmplxMath Complex Math Functions
phungductung 0:e87aa4c49e95 180 * This set of functions operates on complex data vectors.
phungductung 0:e87aa4c49e95 181 * The data in the complex arrays is stored in an interleaved fashion
phungductung 0:e87aa4c49e95 182 * (real, imag, real, imag, ...).
phungductung 0:e87aa4c49e95 183 * In the API functions, the number of samples in a complex array refers
phungductung 0:e87aa4c49e95 184 * to the number of complex values; the array contains twice this number of
phungductung 0:e87aa4c49e95 185 * real values.
phungductung 0:e87aa4c49e95 186 */
phungductung 0:e87aa4c49e95 187
phungductung 0:e87aa4c49e95 188 /**
phungductung 0:e87aa4c49e95 189 * @defgroup groupFilters Filtering Functions
phungductung 0:e87aa4c49e95 190 */
phungductung 0:e87aa4c49e95 191
phungductung 0:e87aa4c49e95 192 /**
phungductung 0:e87aa4c49e95 193 * @defgroup groupMatrix Matrix Functions
phungductung 0:e87aa4c49e95 194 *
phungductung 0:e87aa4c49e95 195 * This set of functions provides basic matrix math operations.
phungductung 0:e87aa4c49e95 196 * The functions operate on matrix data structures. For example,
phungductung 0:e87aa4c49e95 197 * the type
phungductung 0:e87aa4c49e95 198 * definition for the floating-point matrix structure is shown
phungductung 0:e87aa4c49e95 199 * below:
phungductung 0:e87aa4c49e95 200 * <pre>
phungductung 0:e87aa4c49e95 201 * typedef struct
phungductung 0:e87aa4c49e95 202 * {
phungductung 0:e87aa4c49e95 203 * uint16_t numRows; // number of rows of the matrix.
phungductung 0:e87aa4c49e95 204 * uint16_t numCols; // number of columns of the matrix.
phungductung 0:e87aa4c49e95 205 * float32_t *pData; // points to the data of the matrix.
phungductung 0:e87aa4c49e95 206 * } arm_matrix_instance_f32;
phungductung 0:e87aa4c49e95 207 * </pre>
phungductung 0:e87aa4c49e95 208 * There are similar definitions for Q15 and Q31 data types.
phungductung 0:e87aa4c49e95 209 *
phungductung 0:e87aa4c49e95 210 * The structure specifies the size of the matrix and then points to
phungductung 0:e87aa4c49e95 211 * an array of data. The array is of size <code>numRows X numCols</code>
phungductung 0:e87aa4c49e95 212 * and the values are arranged in row order. That is, the
phungductung 0:e87aa4c49e95 213 * matrix element (i, j) is stored at:
phungductung 0:e87aa4c49e95 214 * <pre>
phungductung 0:e87aa4c49e95 215 * pData[i*numCols + j]
phungductung 0:e87aa4c49e95 216 * </pre>
phungductung 0:e87aa4c49e95 217 *
phungductung 0:e87aa4c49e95 218 * \par Init Functions
phungductung 0:e87aa4c49e95 219 * There is an associated initialization function for each type of matrix
phungductung 0:e87aa4c49e95 220 * data structure.
phungductung 0:e87aa4c49e95 221 * The initialization function sets the values of the internal structure fields.
phungductung 0:e87aa4c49e95 222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
phungductung 0:e87aa4c49e95 223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
phungductung 0:e87aa4c49e95 224 *
phungductung 0:e87aa4c49e95 225 * \par
phungductung 0:e87aa4c49e95 226 * Use of the initialization function is optional. However, if initialization function is used
phungductung 0:e87aa4c49e95 227 * then the instance structure cannot be placed into a const data section.
phungductung 0:e87aa4c49e95 228 * To place the instance structure in a const data
phungductung 0:e87aa4c49e95 229 * section, manually initialize the data structure. For example:
phungductung 0:e87aa4c49e95 230 * <pre>
phungductung 0:e87aa4c49e95 231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
phungductung 0:e87aa4c49e95 232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
phungductung 0:e87aa4c49e95 233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
phungductung 0:e87aa4c49e95 234 * </pre>
phungductung 0:e87aa4c49e95 235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
phungductung 0:e87aa4c49e95 236 * specifies the number of columns, and <code>pData</code> points to the
phungductung 0:e87aa4c49e95 237 * data array.
phungductung 0:e87aa4c49e95 238 *
phungductung 0:e87aa4c49e95 239 * \par Size Checking
phungductung 0:e87aa4c49e95 240 * By default all of the matrix functions perform size checking on the input and
phungductung 0:e87aa4c49e95 241 * output matrices. For example, the matrix addition function verifies that the
phungductung 0:e87aa4c49e95 242 * two input matrices and the output matrix all have the same number of rows and
phungductung 0:e87aa4c49e95 243 * columns. If the size check fails the functions return:
phungductung 0:e87aa4c49e95 244 * <pre>
phungductung 0:e87aa4c49e95 245 * ARM_MATH_SIZE_MISMATCH
phungductung 0:e87aa4c49e95 246 * </pre>
phungductung 0:e87aa4c49e95 247 * Otherwise the functions return
phungductung 0:e87aa4c49e95 248 * <pre>
phungductung 0:e87aa4c49e95 249 * ARM_MATH_SUCCESS
phungductung 0:e87aa4c49e95 250 * </pre>
phungductung 0:e87aa4c49e95 251 * There is some overhead associated with this matrix size checking.
phungductung 0:e87aa4c49e95 252 * The matrix size checking is enabled via the \#define
phungductung 0:e87aa4c49e95 253 * <pre>
phungductung 0:e87aa4c49e95 254 * ARM_MATH_MATRIX_CHECK
phungductung 0:e87aa4c49e95 255 * </pre>
phungductung 0:e87aa4c49e95 256 * within the library project settings. By default this macro is defined
phungductung 0:e87aa4c49e95 257 * and size checking is enabled. By changing the project settings and
phungductung 0:e87aa4c49e95 258 * undefining this macro size checking is eliminated and the functions
phungductung 0:e87aa4c49e95 259 * run a bit faster. With size checking disabled the functions always
phungductung 0:e87aa4c49e95 260 * return <code>ARM_MATH_SUCCESS</code>.
phungductung 0:e87aa4c49e95 261 */
phungductung 0:e87aa4c49e95 262
phungductung 0:e87aa4c49e95 263 /**
phungductung 0:e87aa4c49e95 264 * @defgroup groupTransforms Transform Functions
phungductung 0:e87aa4c49e95 265 */
phungductung 0:e87aa4c49e95 266
phungductung 0:e87aa4c49e95 267 /**
phungductung 0:e87aa4c49e95 268 * @defgroup groupController Controller Functions
phungductung 0:e87aa4c49e95 269 */
phungductung 0:e87aa4c49e95 270
phungductung 0:e87aa4c49e95 271 /**
phungductung 0:e87aa4c49e95 272 * @defgroup groupStats Statistics Functions
phungductung 0:e87aa4c49e95 273 */
phungductung 0:e87aa4c49e95 274 /**
phungductung 0:e87aa4c49e95 275 * @defgroup groupSupport Support Functions
phungductung 0:e87aa4c49e95 276 */
phungductung 0:e87aa4c49e95 277
phungductung 0:e87aa4c49e95 278 /**
phungductung 0:e87aa4c49e95 279 * @defgroup groupInterpolation Interpolation Functions
phungductung 0:e87aa4c49e95 280 * These functions perform 1- and 2-dimensional interpolation of data.
phungductung 0:e87aa4c49e95 281 * Linear interpolation is used for 1-dimensional data and
phungductung 0:e87aa4c49e95 282 * bilinear interpolation is used for 2-dimensional data.
phungductung 0:e87aa4c49e95 283 */
phungductung 0:e87aa4c49e95 284
phungductung 0:e87aa4c49e95 285 /**
phungductung 0:e87aa4c49e95 286 * @defgroup groupExamples Examples
phungductung 0:e87aa4c49e95 287 */
phungductung 0:e87aa4c49e95 288 #ifndef _ARM_MATH_H
phungductung 0:e87aa4c49e95 289 #define _ARM_MATH_H
phungductung 0:e87aa4c49e95 290
phungductung 0:e87aa4c49e95 291 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
phungductung 0:e87aa4c49e95 292
phungductung 0:e87aa4c49e95 293 #if defined(ARM_MATH_CM7)
phungductung 0:e87aa4c49e95 294 #include "core_cm7.h"
phungductung 0:e87aa4c49e95 295 #elif defined (ARM_MATH_CM4)
phungductung 0:e87aa4c49e95 296 #include "core_cm4.h"
phungductung 0:e87aa4c49e95 297 #elif defined (ARM_MATH_CM3)
phungductung 0:e87aa4c49e95 298 #include "core_cm3.h"
phungductung 0:e87aa4c49e95 299 #elif defined (ARM_MATH_CM0)
phungductung 0:e87aa4c49e95 300 #include "core_cm0.h"
phungductung 0:e87aa4c49e95 301 #define ARM_MATH_CM0_FAMILY
phungductung 0:e87aa4c49e95 302 #elif defined (ARM_MATH_CM0PLUS)
phungductung 0:e87aa4c49e95 303 #include "core_cm0plus.h"
phungductung 0:e87aa4c49e95 304 #define ARM_MATH_CM0_FAMILY
phungductung 0:e87aa4c49e95 305 #else
phungductung 0:e87aa4c49e95 306 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
phungductung 0:e87aa4c49e95 307 #endif
phungductung 0:e87aa4c49e95 308
phungductung 0:e87aa4c49e95 309 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
phungductung 0:e87aa4c49e95 310 #include "string.h"
phungductung 0:e87aa4c49e95 311 #include "math.h"
phungductung 0:e87aa4c49e95 312 #ifdef __cplusplus
phungductung 0:e87aa4c49e95 313 extern "C"
phungductung 0:e87aa4c49e95 314 {
phungductung 0:e87aa4c49e95 315 #endif
phungductung 0:e87aa4c49e95 316
phungductung 0:e87aa4c49e95 317
phungductung 0:e87aa4c49e95 318 /**
phungductung 0:e87aa4c49e95 319 * @brief Macros required for reciprocal calculation in Normalized LMS
phungductung 0:e87aa4c49e95 320 */
phungductung 0:e87aa4c49e95 321
phungductung 0:e87aa4c49e95 322 #define DELTA_Q31 (0x100)
phungductung 0:e87aa4c49e95 323 #define DELTA_Q15 0x5
phungductung 0:e87aa4c49e95 324 #define INDEX_MASK 0x0000003F
phungductung 0:e87aa4c49e95 325 #ifndef PI
phungductung 0:e87aa4c49e95 326 #define PI 3.14159265358979f
phungductung 0:e87aa4c49e95 327 #endif
phungductung 0:e87aa4c49e95 328
phungductung 0:e87aa4c49e95 329 /**
phungductung 0:e87aa4c49e95 330 * @brief Macros required for SINE and COSINE Fast math approximations
phungductung 0:e87aa4c49e95 331 */
phungductung 0:e87aa4c49e95 332
phungductung 0:e87aa4c49e95 333 #define FAST_MATH_TABLE_SIZE 512
phungductung 0:e87aa4c49e95 334 #define FAST_MATH_Q31_SHIFT (32 - 10)
phungductung 0:e87aa4c49e95 335 #define FAST_MATH_Q15_SHIFT (16 - 10)
phungductung 0:e87aa4c49e95 336 #define CONTROLLER_Q31_SHIFT (32 - 9)
phungductung 0:e87aa4c49e95 337 #define TABLE_SIZE 256
phungductung 0:e87aa4c49e95 338 #define TABLE_SPACING_Q31 0x400000
phungductung 0:e87aa4c49e95 339 #define TABLE_SPACING_Q15 0x80
phungductung 0:e87aa4c49e95 340
phungductung 0:e87aa4c49e95 341 /**
phungductung 0:e87aa4c49e95 342 * @brief Macros required for SINE and COSINE Controller functions
phungductung 0:e87aa4c49e95 343 */
phungductung 0:e87aa4c49e95 344 /* 1.31(q31) Fixed value of 2/360 */
phungductung 0:e87aa4c49e95 345 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
phungductung 0:e87aa4c49e95 346 #define INPUT_SPACING 0xB60B61
phungductung 0:e87aa4c49e95 347
phungductung 0:e87aa4c49e95 348 /**
phungductung 0:e87aa4c49e95 349 * @brief Macro for Unaligned Support
phungductung 0:e87aa4c49e95 350 */
phungductung 0:e87aa4c49e95 351 #ifndef UNALIGNED_SUPPORT_DISABLE
phungductung 0:e87aa4c49e95 352 #define ALIGN4
phungductung 0:e87aa4c49e95 353 #else
phungductung 0:e87aa4c49e95 354 #if defined (__GNUC__)
phungductung 0:e87aa4c49e95 355 #define ALIGN4 __attribute__((aligned(4)))
phungductung 0:e87aa4c49e95 356 #else
phungductung 0:e87aa4c49e95 357 #define ALIGN4 __align(4)
phungductung 0:e87aa4c49e95 358 #endif
phungductung 0:e87aa4c49e95 359 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
phungductung 0:e87aa4c49e95 360
phungductung 0:e87aa4c49e95 361 /**
phungductung 0:e87aa4c49e95 362 * @brief Error status returned by some functions in the library.
phungductung 0:e87aa4c49e95 363 */
phungductung 0:e87aa4c49e95 364
phungductung 0:e87aa4c49e95 365 typedef enum
phungductung 0:e87aa4c49e95 366 {
phungductung 0:e87aa4c49e95 367 ARM_MATH_SUCCESS = 0, /**< No error */
phungductung 0:e87aa4c49e95 368 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
phungductung 0:e87aa4c49e95 369 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
phungductung 0:e87aa4c49e95 370 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
phungductung 0:e87aa4c49e95 371 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
phungductung 0:e87aa4c49e95 372 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
phungductung 0:e87aa4c49e95 373 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
phungductung 0:e87aa4c49e95 374 } arm_status;
phungductung 0:e87aa4c49e95 375
phungductung 0:e87aa4c49e95 376 /**
phungductung 0:e87aa4c49e95 377 * @brief 8-bit fractional data type in 1.7 format.
phungductung 0:e87aa4c49e95 378 */
phungductung 0:e87aa4c49e95 379 typedef int8_t q7_t;
phungductung 0:e87aa4c49e95 380
phungductung 0:e87aa4c49e95 381 /**
phungductung 0:e87aa4c49e95 382 * @brief 16-bit fractional data type in 1.15 format.
phungductung 0:e87aa4c49e95 383 */
phungductung 0:e87aa4c49e95 384 typedef int16_t q15_t;
phungductung 0:e87aa4c49e95 385
phungductung 0:e87aa4c49e95 386 /**
phungductung 0:e87aa4c49e95 387 * @brief 32-bit fractional data type in 1.31 format.
phungductung 0:e87aa4c49e95 388 */
phungductung 0:e87aa4c49e95 389 typedef int32_t q31_t;
phungductung 0:e87aa4c49e95 390
phungductung 0:e87aa4c49e95 391 /**
phungductung 0:e87aa4c49e95 392 * @brief 64-bit fractional data type in 1.63 format.
phungductung 0:e87aa4c49e95 393 */
phungductung 0:e87aa4c49e95 394 typedef int64_t q63_t;
phungductung 0:e87aa4c49e95 395
phungductung 0:e87aa4c49e95 396 /**
phungductung 0:e87aa4c49e95 397 * @brief 32-bit floating-point type definition.
phungductung 0:e87aa4c49e95 398 */
phungductung 0:e87aa4c49e95 399 typedef float float32_t;
phungductung 0:e87aa4c49e95 400
phungductung 0:e87aa4c49e95 401 /**
phungductung 0:e87aa4c49e95 402 * @brief 64-bit floating-point type definition.
phungductung 0:e87aa4c49e95 403 */
phungductung 0:e87aa4c49e95 404 typedef double float64_t;
phungductung 0:e87aa4c49e95 405
phungductung 0:e87aa4c49e95 406 /**
phungductung 0:e87aa4c49e95 407 * @brief definition to read/write two 16 bit values.
phungductung 0:e87aa4c49e95 408 */
phungductung 0:e87aa4c49e95 409 #if defined __CC_ARM
phungductung 0:e87aa4c49e95 410 #define __SIMD32_TYPE int32_t __packed
phungductung 0:e87aa4c49e95 411 #define CMSIS_UNUSED __attribute__((unused))
phungductung 0:e87aa4c49e95 412 #elif defined __ICCARM__
phungductung 0:e87aa4c49e95 413 #define __SIMD32_TYPE int32_t __packed
phungductung 0:e87aa4c49e95 414 #define CMSIS_UNUSED
phungductung 0:e87aa4c49e95 415 #elif defined __GNUC__
phungductung 0:e87aa4c49e95 416 #define __SIMD32_TYPE int32_t
phungductung 0:e87aa4c49e95 417 #define CMSIS_UNUSED __attribute__((unused))
phungductung 0:e87aa4c49e95 418 #elif defined __CSMC__ /* Cosmic */
phungductung 0:e87aa4c49e95 419 #define __SIMD32_TYPE int32_t
phungductung 0:e87aa4c49e95 420 #define CMSIS_UNUSED
phungductung 0:e87aa4c49e95 421 #elif defined __TASKING__
phungductung 0:e87aa4c49e95 422 #define __SIMD32_TYPE __unaligned int32_t
phungductung 0:e87aa4c49e95 423 #define CMSIS_UNUSED
phungductung 0:e87aa4c49e95 424 #else
phungductung 0:e87aa4c49e95 425 #error Unknown compiler
phungductung 0:e87aa4c49e95 426 #endif
phungductung 0:e87aa4c49e95 427
phungductung 0:e87aa4c49e95 428 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
phungductung 0:e87aa4c49e95 429 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
phungductung 0:e87aa4c49e95 430
phungductung 0:e87aa4c49e95 431 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
phungductung 0:e87aa4c49e95 432
phungductung 0:e87aa4c49e95 433 #define __SIMD64(addr) (*(int64_t **) & (addr))
phungductung 0:e87aa4c49e95 434
phungductung 0:e87aa4c49e95 435 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
phungductung 0:e87aa4c49e95 436 /**
phungductung 0:e87aa4c49e95 437 * @brief definition to pack two 16 bit values.
phungductung 0:e87aa4c49e95 438 */
phungductung 0:e87aa4c49e95 439 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
phungductung 0:e87aa4c49e95 440 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
phungductung 0:e87aa4c49e95 441 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
phungductung 0:e87aa4c49e95 442 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
phungductung 0:e87aa4c49e95 443
phungductung 0:e87aa4c49e95 444 #endif
phungductung 0:e87aa4c49e95 445
phungductung 0:e87aa4c49e95 446
phungductung 0:e87aa4c49e95 447 /**
phungductung 0:e87aa4c49e95 448 * @brief definition to pack four 8 bit values.
phungductung 0:e87aa4c49e95 449 */
phungductung 0:e87aa4c49e95 450 #ifndef ARM_MATH_BIG_ENDIAN
phungductung 0:e87aa4c49e95 451
phungductung 0:e87aa4c49e95 452 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
phungductung 0:e87aa4c49e95 453 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
phungductung 0:e87aa4c49e95 454 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
phungductung 0:e87aa4c49e95 455 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
phungductung 0:e87aa4c49e95 456 #else
phungductung 0:e87aa4c49e95 457
phungductung 0:e87aa4c49e95 458 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
phungductung 0:e87aa4c49e95 459 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
phungductung 0:e87aa4c49e95 460 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
phungductung 0:e87aa4c49e95 461 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
phungductung 0:e87aa4c49e95 462
phungductung 0:e87aa4c49e95 463 #endif
phungductung 0:e87aa4c49e95 464
phungductung 0:e87aa4c49e95 465
phungductung 0:e87aa4c49e95 466 /**
phungductung 0:e87aa4c49e95 467 * @brief Clips Q63 to Q31 values.
phungductung 0:e87aa4c49e95 468 */
phungductung 0:e87aa4c49e95 469 static __INLINE q31_t clip_q63_to_q31(
phungductung 0:e87aa4c49e95 470 q63_t x)
phungductung 0:e87aa4c49e95 471 {
phungductung 0:e87aa4c49e95 472 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
phungductung 0:e87aa4c49e95 473 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
phungductung 0:e87aa4c49e95 474 }
phungductung 0:e87aa4c49e95 475
phungductung 0:e87aa4c49e95 476 /**
phungductung 0:e87aa4c49e95 477 * @brief Clips Q63 to Q15 values.
phungductung 0:e87aa4c49e95 478 */
phungductung 0:e87aa4c49e95 479 static __INLINE q15_t clip_q63_to_q15(
phungductung 0:e87aa4c49e95 480 q63_t x)
phungductung 0:e87aa4c49e95 481 {
phungductung 0:e87aa4c49e95 482 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
phungductung 0:e87aa4c49e95 483 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
phungductung 0:e87aa4c49e95 484 }
phungductung 0:e87aa4c49e95 485
phungductung 0:e87aa4c49e95 486 /**
phungductung 0:e87aa4c49e95 487 * @brief Clips Q31 to Q7 values.
phungductung 0:e87aa4c49e95 488 */
phungductung 0:e87aa4c49e95 489 static __INLINE q7_t clip_q31_to_q7(
phungductung 0:e87aa4c49e95 490 q31_t x)
phungductung 0:e87aa4c49e95 491 {
phungductung 0:e87aa4c49e95 492 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
phungductung 0:e87aa4c49e95 493 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
phungductung 0:e87aa4c49e95 494 }
phungductung 0:e87aa4c49e95 495
phungductung 0:e87aa4c49e95 496 /**
phungductung 0:e87aa4c49e95 497 * @brief Clips Q31 to Q15 values.
phungductung 0:e87aa4c49e95 498 */
phungductung 0:e87aa4c49e95 499 static __INLINE q15_t clip_q31_to_q15(
phungductung 0:e87aa4c49e95 500 q31_t x)
phungductung 0:e87aa4c49e95 501 {
phungductung 0:e87aa4c49e95 502 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
phungductung 0:e87aa4c49e95 503 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
phungductung 0:e87aa4c49e95 504 }
phungductung 0:e87aa4c49e95 505
phungductung 0:e87aa4c49e95 506 /**
phungductung 0:e87aa4c49e95 507 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
phungductung 0:e87aa4c49e95 508 */
phungductung 0:e87aa4c49e95 509
phungductung 0:e87aa4c49e95 510 static __INLINE q63_t mult32x64(
phungductung 0:e87aa4c49e95 511 q63_t x,
phungductung 0:e87aa4c49e95 512 q31_t y)
phungductung 0:e87aa4c49e95 513 {
phungductung 0:e87aa4c49e95 514 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
phungductung 0:e87aa4c49e95 515 (((q63_t) (x >> 32) * y)));
phungductung 0:e87aa4c49e95 516 }
phungductung 0:e87aa4c49e95 517
phungductung 0:e87aa4c49e95 518
phungductung 0:e87aa4c49e95 519 //#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
phungductung 0:e87aa4c49e95 520 //#define __CLZ __clz
phungductung 0:e87aa4c49e95 521 //#endif
phungductung 0:e87aa4c49e95 522
phungductung 0:e87aa4c49e95 523 //note: function can be removed when all toolchain support __CLZ for Cortex-M0
phungductung 0:e87aa4c49e95 524 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
phungductung 0:e87aa4c49e95 525
phungductung 0:e87aa4c49e95 526 static __INLINE uint32_t __CLZ(
phungductung 0:e87aa4c49e95 527 q31_t data);
phungductung 0:e87aa4c49e95 528
phungductung 0:e87aa4c49e95 529
phungductung 0:e87aa4c49e95 530 static __INLINE uint32_t __CLZ(
phungductung 0:e87aa4c49e95 531 q31_t data)
phungductung 0:e87aa4c49e95 532 {
phungductung 0:e87aa4c49e95 533 uint32_t count = 0;
phungductung 0:e87aa4c49e95 534 uint32_t mask = 0x80000000;
phungductung 0:e87aa4c49e95 535
phungductung 0:e87aa4c49e95 536 while((data & mask) == 0)
phungductung 0:e87aa4c49e95 537 {
phungductung 0:e87aa4c49e95 538 count += 1u;
phungductung 0:e87aa4c49e95 539 mask = mask >> 1u;
phungductung 0:e87aa4c49e95 540 }
phungductung 0:e87aa4c49e95 541
phungductung 0:e87aa4c49e95 542 return (count);
phungductung 0:e87aa4c49e95 543
phungductung 0:e87aa4c49e95 544 }
phungductung 0:e87aa4c49e95 545
phungductung 0:e87aa4c49e95 546 #endif
phungductung 0:e87aa4c49e95 547
phungductung 0:e87aa4c49e95 548 /**
phungductung 0:e87aa4c49e95 549 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
phungductung 0:e87aa4c49e95 550 */
phungductung 0:e87aa4c49e95 551
phungductung 0:e87aa4c49e95 552 static __INLINE uint32_t arm_recip_q31(
phungductung 0:e87aa4c49e95 553 q31_t in,
phungductung 0:e87aa4c49e95 554 q31_t * dst,
phungductung 0:e87aa4c49e95 555 q31_t * pRecipTable)
phungductung 0:e87aa4c49e95 556 {
phungductung 0:e87aa4c49e95 557
phungductung 0:e87aa4c49e95 558 uint32_t out, tempVal;
phungductung 0:e87aa4c49e95 559 uint32_t index, i;
phungductung 0:e87aa4c49e95 560 uint32_t signBits;
phungductung 0:e87aa4c49e95 561
phungductung 0:e87aa4c49e95 562 if(in > 0)
phungductung 0:e87aa4c49e95 563 {
phungductung 0:e87aa4c49e95 564 signBits = __CLZ(in) - 1;
phungductung 0:e87aa4c49e95 565 }
phungductung 0:e87aa4c49e95 566 else
phungductung 0:e87aa4c49e95 567 {
phungductung 0:e87aa4c49e95 568 signBits = __CLZ(-in) - 1;
phungductung 0:e87aa4c49e95 569 }
phungductung 0:e87aa4c49e95 570
phungductung 0:e87aa4c49e95 571 /* Convert input sample to 1.31 format */
phungductung 0:e87aa4c49e95 572 in = in << signBits;
phungductung 0:e87aa4c49e95 573
phungductung 0:e87aa4c49e95 574 /* calculation of index for initial approximated Val */
phungductung 0:e87aa4c49e95 575 index = (uint32_t) (in >> 24u);
phungductung 0:e87aa4c49e95 576 index = (index & INDEX_MASK);
phungductung 0:e87aa4c49e95 577
phungductung 0:e87aa4c49e95 578 /* 1.31 with exp 1 */
phungductung 0:e87aa4c49e95 579 out = pRecipTable[index];
phungductung 0:e87aa4c49e95 580
phungductung 0:e87aa4c49e95 581 /* calculation of reciprocal value */
phungductung 0:e87aa4c49e95 582 /* running approximation for two iterations */
phungductung 0:e87aa4c49e95 583 for (i = 0u; i < 2u; i++)
phungductung 0:e87aa4c49e95 584 {
phungductung 0:e87aa4c49e95 585 tempVal = (q31_t) (((q63_t) in * out) >> 31u);
phungductung 0:e87aa4c49e95 586 tempVal = 0x7FFFFFFF - tempVal;
phungductung 0:e87aa4c49e95 587 /* 1.31 with exp 1 */
phungductung 0:e87aa4c49e95 588 //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
phungductung 0:e87aa4c49e95 589 out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
phungductung 0:e87aa4c49e95 590 }
phungductung 0:e87aa4c49e95 591
phungductung 0:e87aa4c49e95 592 /* write output */
phungductung 0:e87aa4c49e95 593 *dst = out;
phungductung 0:e87aa4c49e95 594
phungductung 0:e87aa4c49e95 595 /* return num of signbits of out = 1/in value */
phungductung 0:e87aa4c49e95 596 return (signBits + 1u);
phungductung 0:e87aa4c49e95 597
phungductung 0:e87aa4c49e95 598 }
phungductung 0:e87aa4c49e95 599
phungductung 0:e87aa4c49e95 600 /**
phungductung 0:e87aa4c49e95 601 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
phungductung 0:e87aa4c49e95 602 */
phungductung 0:e87aa4c49e95 603 static __INLINE uint32_t arm_recip_q15(
phungductung 0:e87aa4c49e95 604 q15_t in,
phungductung 0:e87aa4c49e95 605 q15_t * dst,
phungductung 0:e87aa4c49e95 606 q15_t * pRecipTable)
phungductung 0:e87aa4c49e95 607 {
phungductung 0:e87aa4c49e95 608
phungductung 0:e87aa4c49e95 609 uint32_t out = 0, tempVal = 0;
phungductung 0:e87aa4c49e95 610 uint32_t index = 0, i = 0;
phungductung 0:e87aa4c49e95 611 uint32_t signBits = 0;
phungductung 0:e87aa4c49e95 612
phungductung 0:e87aa4c49e95 613 if(in > 0)
phungductung 0:e87aa4c49e95 614 {
phungductung 0:e87aa4c49e95 615 signBits = __CLZ(in) - 17;
phungductung 0:e87aa4c49e95 616 }
phungductung 0:e87aa4c49e95 617 else
phungductung 0:e87aa4c49e95 618 {
phungductung 0:e87aa4c49e95 619 signBits = __CLZ(-in) - 17;
phungductung 0:e87aa4c49e95 620 }
phungductung 0:e87aa4c49e95 621
phungductung 0:e87aa4c49e95 622 /* Convert input sample to 1.15 format */
phungductung 0:e87aa4c49e95 623 in = in << signBits;
phungductung 0:e87aa4c49e95 624
phungductung 0:e87aa4c49e95 625 /* calculation of index for initial approximated Val */
phungductung 0:e87aa4c49e95 626 index = in >> 8;
phungductung 0:e87aa4c49e95 627 index = (index & INDEX_MASK);
phungductung 0:e87aa4c49e95 628
phungductung 0:e87aa4c49e95 629 /* 1.15 with exp 1 */
phungductung 0:e87aa4c49e95 630 out = pRecipTable[index];
phungductung 0:e87aa4c49e95 631
phungductung 0:e87aa4c49e95 632 /* calculation of reciprocal value */
phungductung 0:e87aa4c49e95 633 /* running approximation for two iterations */
phungductung 0:e87aa4c49e95 634 for (i = 0; i < 2; i++)
phungductung 0:e87aa4c49e95 635 {
phungductung 0:e87aa4c49e95 636 tempVal = (q15_t) (((q31_t) in * out) >> 15);
phungductung 0:e87aa4c49e95 637 tempVal = 0x7FFF - tempVal;
phungductung 0:e87aa4c49e95 638 /* 1.15 with exp 1 */
phungductung 0:e87aa4c49e95 639 out = (q15_t) (((q31_t) out * tempVal) >> 14);
phungductung 0:e87aa4c49e95 640 }
phungductung 0:e87aa4c49e95 641
phungductung 0:e87aa4c49e95 642 /* write output */
phungductung 0:e87aa4c49e95 643 *dst = out;
phungductung 0:e87aa4c49e95 644
phungductung 0:e87aa4c49e95 645 /* return num of signbits of out = 1/in value */
phungductung 0:e87aa4c49e95 646 return (signBits + 1);
phungductung 0:e87aa4c49e95 647
phungductung 0:e87aa4c49e95 648 }
phungductung 0:e87aa4c49e95 649
phungductung 0:e87aa4c49e95 650
phungductung 0:e87aa4c49e95 651 /*
phungductung 0:e87aa4c49e95 652 * @brief C custom defined intrinisic function for only M0 processors
phungductung 0:e87aa4c49e95 653 */
phungductung 0:e87aa4c49e95 654 #if defined(ARM_MATH_CM0_FAMILY)
phungductung 0:e87aa4c49e95 655
phungductung 0:e87aa4c49e95 656 static __INLINE q31_t __SSAT(
phungductung 0:e87aa4c49e95 657 q31_t x,
phungductung 0:e87aa4c49e95 658 uint32_t y)
phungductung 0:e87aa4c49e95 659 {
phungductung 0:e87aa4c49e95 660 int32_t posMax, negMin;
phungductung 0:e87aa4c49e95 661 uint32_t i;
phungductung 0:e87aa4c49e95 662
phungductung 0:e87aa4c49e95 663 posMax = 1;
phungductung 0:e87aa4c49e95 664 for (i = 0; i < (y - 1); i++)
phungductung 0:e87aa4c49e95 665 {
phungductung 0:e87aa4c49e95 666 posMax = posMax * 2;
phungductung 0:e87aa4c49e95 667 }
phungductung 0:e87aa4c49e95 668
phungductung 0:e87aa4c49e95 669 if(x > 0)
phungductung 0:e87aa4c49e95 670 {
phungductung 0:e87aa4c49e95 671 posMax = (posMax - 1);
phungductung 0:e87aa4c49e95 672
phungductung 0:e87aa4c49e95 673 if(x > posMax)
phungductung 0:e87aa4c49e95 674 {
phungductung 0:e87aa4c49e95 675 x = posMax;
phungductung 0:e87aa4c49e95 676 }
phungductung 0:e87aa4c49e95 677 }
phungductung 0:e87aa4c49e95 678 else
phungductung 0:e87aa4c49e95 679 {
phungductung 0:e87aa4c49e95 680 negMin = -posMax;
phungductung 0:e87aa4c49e95 681
phungductung 0:e87aa4c49e95 682 if(x < negMin)
phungductung 0:e87aa4c49e95 683 {
phungductung 0:e87aa4c49e95 684 x = negMin;
phungductung 0:e87aa4c49e95 685 }
phungductung 0:e87aa4c49e95 686 }
phungductung 0:e87aa4c49e95 687 return (x);
phungductung 0:e87aa4c49e95 688
phungductung 0:e87aa4c49e95 689
phungductung 0:e87aa4c49e95 690 }
phungductung 0:e87aa4c49e95 691
phungductung 0:e87aa4c49e95 692 #endif /* end of ARM_MATH_CM0_FAMILY */
phungductung 0:e87aa4c49e95 693
phungductung 0:e87aa4c49e95 694
phungductung 0:e87aa4c49e95 695
phungductung 0:e87aa4c49e95 696 /*
phungductung 0:e87aa4c49e95 697 * @brief C custom defined intrinsic function for M3 and M0 processors
phungductung 0:e87aa4c49e95 698 */
phungductung 0:e87aa4c49e95 699 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
phungductung 0:e87aa4c49e95 700
phungductung 0:e87aa4c49e95 701 /*
phungductung 0:e87aa4c49e95 702 * @brief C custom defined QADD8 for M3 and M0 processors
phungductung 0:e87aa4c49e95 703 */
phungductung 0:e87aa4c49e95 704 static __INLINE q31_t __QADD8(
phungductung 0:e87aa4c49e95 705 q31_t x,
phungductung 0:e87aa4c49e95 706 q31_t y)
phungductung 0:e87aa4c49e95 707 {
phungductung 0:e87aa4c49e95 708
phungductung 0:e87aa4c49e95 709 q31_t sum;
phungductung 0:e87aa4c49e95 710 q7_t r, s, t, u;
phungductung 0:e87aa4c49e95 711
phungductung 0:e87aa4c49e95 712 r = (q7_t) x;
phungductung 0:e87aa4c49e95 713 s = (q7_t) y;
phungductung 0:e87aa4c49e95 714
phungductung 0:e87aa4c49e95 715 r = __SSAT((q31_t) (r + s), 8);
phungductung 0:e87aa4c49e95 716 s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
phungductung 0:e87aa4c49e95 717 t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
phungductung 0:e87aa4c49e95 718 u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
phungductung 0:e87aa4c49e95 719
phungductung 0:e87aa4c49e95 720 sum =
phungductung 0:e87aa4c49e95 721 (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
phungductung 0:e87aa4c49e95 722 (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
phungductung 0:e87aa4c49e95 723
phungductung 0:e87aa4c49e95 724 return sum;
phungductung 0:e87aa4c49e95 725
phungductung 0:e87aa4c49e95 726 }
phungductung 0:e87aa4c49e95 727
phungductung 0:e87aa4c49e95 728 /*
phungductung 0:e87aa4c49e95 729 * @brief C custom defined QSUB8 for M3 and M0 processors
phungductung 0:e87aa4c49e95 730 */
phungductung 0:e87aa4c49e95 731 static __INLINE q31_t __QSUB8(
phungductung 0:e87aa4c49e95 732 q31_t x,
phungductung 0:e87aa4c49e95 733 q31_t y)
phungductung 0:e87aa4c49e95 734 {
phungductung 0:e87aa4c49e95 735
phungductung 0:e87aa4c49e95 736 q31_t sum;
phungductung 0:e87aa4c49e95 737 q31_t r, s, t, u;
phungductung 0:e87aa4c49e95 738
phungductung 0:e87aa4c49e95 739 r = (q7_t) x;
phungductung 0:e87aa4c49e95 740 s = (q7_t) y;
phungductung 0:e87aa4c49e95 741
phungductung 0:e87aa4c49e95 742 r = __SSAT((r - s), 8);
phungductung 0:e87aa4c49e95 743 s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
phungductung 0:e87aa4c49e95 744 t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
phungductung 0:e87aa4c49e95 745 u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
phungductung 0:e87aa4c49e95 746
phungductung 0:e87aa4c49e95 747 sum =
phungductung 0:e87aa4c49e95 748 (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
phungductung 0:e87aa4c49e95 749 0x000000FF);
phungductung 0:e87aa4c49e95 750
phungductung 0:e87aa4c49e95 751 return sum;
phungductung 0:e87aa4c49e95 752 }
phungductung 0:e87aa4c49e95 753
phungductung 0:e87aa4c49e95 754 /*
phungductung 0:e87aa4c49e95 755 * @brief C custom defined QADD16 for M3 and M0 processors
phungductung 0:e87aa4c49e95 756 */
phungductung 0:e87aa4c49e95 757
phungductung 0:e87aa4c49e95 758 /*
phungductung 0:e87aa4c49e95 759 * @brief C custom defined QADD16 for M3 and M0 processors
phungductung 0:e87aa4c49e95 760 */
phungductung 0:e87aa4c49e95 761 static __INLINE q31_t __QADD16(
phungductung 0:e87aa4c49e95 762 q31_t x,
phungductung 0:e87aa4c49e95 763 q31_t y)
phungductung 0:e87aa4c49e95 764 {
phungductung 0:e87aa4c49e95 765
phungductung 0:e87aa4c49e95 766 q31_t sum;
phungductung 0:e87aa4c49e95 767 q31_t r, s;
phungductung 0:e87aa4c49e95 768
phungductung 0:e87aa4c49e95 769 r = (q15_t) x;
phungductung 0:e87aa4c49e95 770 s = (q15_t) y;
phungductung 0:e87aa4c49e95 771
phungductung 0:e87aa4c49e95 772 r = __SSAT(r + s, 16);
phungductung 0:e87aa4c49e95 773 s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
phungductung 0:e87aa4c49e95 774
phungductung 0:e87aa4c49e95 775 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
phungductung 0:e87aa4c49e95 776
phungductung 0:e87aa4c49e95 777 return sum;
phungductung 0:e87aa4c49e95 778
phungductung 0:e87aa4c49e95 779 }
phungductung 0:e87aa4c49e95 780
phungductung 0:e87aa4c49e95 781 /*
phungductung 0:e87aa4c49e95 782 * @brief C custom defined SHADD16 for M3 and M0 processors
phungductung 0:e87aa4c49e95 783 */
phungductung 0:e87aa4c49e95 784 static __INLINE q31_t __SHADD16(
phungductung 0:e87aa4c49e95 785 q31_t x,
phungductung 0:e87aa4c49e95 786 q31_t y)
phungductung 0:e87aa4c49e95 787 {
phungductung 0:e87aa4c49e95 788
phungductung 0:e87aa4c49e95 789 q31_t sum;
phungductung 0:e87aa4c49e95 790 q31_t r, s;
phungductung 0:e87aa4c49e95 791
phungductung 0:e87aa4c49e95 792 r = (q15_t) x;
phungductung 0:e87aa4c49e95 793 s = (q15_t) y;
phungductung 0:e87aa4c49e95 794
phungductung 0:e87aa4c49e95 795 r = ((r >> 1) + (s >> 1));
phungductung 0:e87aa4c49e95 796 s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
phungductung 0:e87aa4c49e95 797
phungductung 0:e87aa4c49e95 798 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
phungductung 0:e87aa4c49e95 799
phungductung 0:e87aa4c49e95 800 return sum;
phungductung 0:e87aa4c49e95 801
phungductung 0:e87aa4c49e95 802 }
phungductung 0:e87aa4c49e95 803
phungductung 0:e87aa4c49e95 804 /*
phungductung 0:e87aa4c49e95 805 * @brief C custom defined QSUB16 for M3 and M0 processors
phungductung 0:e87aa4c49e95 806 */
phungductung 0:e87aa4c49e95 807 static __INLINE q31_t __QSUB16(
phungductung 0:e87aa4c49e95 808 q31_t x,
phungductung 0:e87aa4c49e95 809 q31_t y)
phungductung 0:e87aa4c49e95 810 {
phungductung 0:e87aa4c49e95 811
phungductung 0:e87aa4c49e95 812 q31_t sum;
phungductung 0:e87aa4c49e95 813 q31_t r, s;
phungductung 0:e87aa4c49e95 814
phungductung 0:e87aa4c49e95 815 r = (q15_t) x;
phungductung 0:e87aa4c49e95 816 s = (q15_t) y;
phungductung 0:e87aa4c49e95 817
phungductung 0:e87aa4c49e95 818 r = __SSAT(r - s, 16);
phungductung 0:e87aa4c49e95 819 s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
phungductung 0:e87aa4c49e95 820
phungductung 0:e87aa4c49e95 821 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
phungductung 0:e87aa4c49e95 822
phungductung 0:e87aa4c49e95 823 return sum;
phungductung 0:e87aa4c49e95 824 }
phungductung 0:e87aa4c49e95 825
phungductung 0:e87aa4c49e95 826 /*
phungductung 0:e87aa4c49e95 827 * @brief C custom defined SHSUB16 for M3 and M0 processors
phungductung 0:e87aa4c49e95 828 */
phungductung 0:e87aa4c49e95 829 static __INLINE q31_t __SHSUB16(
phungductung 0:e87aa4c49e95 830 q31_t x,
phungductung 0:e87aa4c49e95 831 q31_t y)
phungductung 0:e87aa4c49e95 832 {
phungductung 0:e87aa4c49e95 833
phungductung 0:e87aa4c49e95 834 q31_t diff;
phungductung 0:e87aa4c49e95 835 q31_t r, s;
phungductung 0:e87aa4c49e95 836
phungductung 0:e87aa4c49e95 837 r = (q15_t) x;
phungductung 0:e87aa4c49e95 838 s = (q15_t) y;
phungductung 0:e87aa4c49e95 839
phungductung 0:e87aa4c49e95 840 r = ((r >> 1) - (s >> 1));
phungductung 0:e87aa4c49e95 841 s = (((x >> 17) - (y >> 17)) << 16);
phungductung 0:e87aa4c49e95 842
phungductung 0:e87aa4c49e95 843 diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
phungductung 0:e87aa4c49e95 844
phungductung 0:e87aa4c49e95 845 return diff;
phungductung 0:e87aa4c49e95 846 }
phungductung 0:e87aa4c49e95 847
phungductung 0:e87aa4c49e95 848 /*
phungductung 0:e87aa4c49e95 849 * @brief C custom defined QASX for M3 and M0 processors
phungductung 0:e87aa4c49e95 850 */
phungductung 0:e87aa4c49e95 851 static __INLINE q31_t __QASX(
phungductung 0:e87aa4c49e95 852 q31_t x,
phungductung 0:e87aa4c49e95 853 q31_t y)
phungductung 0:e87aa4c49e95 854 {
phungductung 0:e87aa4c49e95 855
phungductung 0:e87aa4c49e95 856 q31_t sum = 0;
phungductung 0:e87aa4c49e95 857
phungductung 0:e87aa4c49e95 858 sum =
phungductung 0:e87aa4c49e95 859 ((sum +
phungductung 0:e87aa4c49e95 860 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
phungductung 0:e87aa4c49e95 861 clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
phungductung 0:e87aa4c49e95 862
phungductung 0:e87aa4c49e95 863 return sum;
phungductung 0:e87aa4c49e95 864 }
phungductung 0:e87aa4c49e95 865
phungductung 0:e87aa4c49e95 866 /*
phungductung 0:e87aa4c49e95 867 * @brief C custom defined SHASX for M3 and M0 processors
phungductung 0:e87aa4c49e95 868 */
phungductung 0:e87aa4c49e95 869 static __INLINE q31_t __SHASX(
phungductung 0:e87aa4c49e95 870 q31_t x,
phungductung 0:e87aa4c49e95 871 q31_t y)
phungductung 0:e87aa4c49e95 872 {
phungductung 0:e87aa4c49e95 873
phungductung 0:e87aa4c49e95 874 q31_t sum;
phungductung 0:e87aa4c49e95 875 q31_t r, s;
phungductung 0:e87aa4c49e95 876
phungductung 0:e87aa4c49e95 877 r = (q15_t) x;
phungductung 0:e87aa4c49e95 878 s = (q15_t) y;
phungductung 0:e87aa4c49e95 879
phungductung 0:e87aa4c49e95 880 r = ((r >> 1) - (y >> 17));
phungductung 0:e87aa4c49e95 881 s = (((x >> 17) + (s >> 1)) << 16);
phungductung 0:e87aa4c49e95 882
phungductung 0:e87aa4c49e95 883 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
phungductung 0:e87aa4c49e95 884
phungductung 0:e87aa4c49e95 885 return sum;
phungductung 0:e87aa4c49e95 886 }
phungductung 0:e87aa4c49e95 887
phungductung 0:e87aa4c49e95 888
phungductung 0:e87aa4c49e95 889 /*
phungductung 0:e87aa4c49e95 890 * @brief C custom defined QSAX for M3 and M0 processors
phungductung 0:e87aa4c49e95 891 */
phungductung 0:e87aa4c49e95 892 static __INLINE q31_t __QSAX(
phungductung 0:e87aa4c49e95 893 q31_t x,
phungductung 0:e87aa4c49e95 894 q31_t y)
phungductung 0:e87aa4c49e95 895 {
phungductung 0:e87aa4c49e95 896
phungductung 0:e87aa4c49e95 897 q31_t sum = 0;
phungductung 0:e87aa4c49e95 898
phungductung 0:e87aa4c49e95 899 sum =
phungductung 0:e87aa4c49e95 900 ((sum +
phungductung 0:e87aa4c49e95 901 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
phungductung 0:e87aa4c49e95 902 clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
phungductung 0:e87aa4c49e95 903
phungductung 0:e87aa4c49e95 904 return sum;
phungductung 0:e87aa4c49e95 905 }
phungductung 0:e87aa4c49e95 906
phungductung 0:e87aa4c49e95 907 /*
phungductung 0:e87aa4c49e95 908 * @brief C custom defined SHSAX for M3 and M0 processors
phungductung 0:e87aa4c49e95 909 */
phungductung 0:e87aa4c49e95 910 static __INLINE q31_t __SHSAX(
phungductung 0:e87aa4c49e95 911 q31_t x,
phungductung 0:e87aa4c49e95 912 q31_t y)
phungductung 0:e87aa4c49e95 913 {
phungductung 0:e87aa4c49e95 914
phungductung 0:e87aa4c49e95 915 q31_t sum;
phungductung 0:e87aa4c49e95 916 q31_t r, s;
phungductung 0:e87aa4c49e95 917
phungductung 0:e87aa4c49e95 918 r = (q15_t) x;
phungductung 0:e87aa4c49e95 919 s = (q15_t) y;
phungductung 0:e87aa4c49e95 920
phungductung 0:e87aa4c49e95 921 r = ((r >> 1) + (y >> 17));
phungductung 0:e87aa4c49e95 922 s = (((x >> 17) - (s >> 1)) << 16);
phungductung 0:e87aa4c49e95 923
phungductung 0:e87aa4c49e95 924 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
phungductung 0:e87aa4c49e95 925
phungductung 0:e87aa4c49e95 926 return sum;
phungductung 0:e87aa4c49e95 927 }
phungductung 0:e87aa4c49e95 928
phungductung 0:e87aa4c49e95 929 /*
phungductung 0:e87aa4c49e95 930 * @brief C custom defined SMUSDX for M3 and M0 processors
phungductung 0:e87aa4c49e95 931 */
phungductung 0:e87aa4c49e95 932 static __INLINE q31_t __SMUSDX(
phungductung 0:e87aa4c49e95 933 q31_t x,
phungductung 0:e87aa4c49e95 934 q31_t y)
phungductung 0:e87aa4c49e95 935 {
phungductung 0:e87aa4c49e95 936
phungductung 0:e87aa4c49e95 937 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
phungductung 0:e87aa4c49e95 938 ((q15_t) (x >> 16) * (q15_t) y)));
phungductung 0:e87aa4c49e95 939 }
phungductung 0:e87aa4c49e95 940
phungductung 0:e87aa4c49e95 941 /*
phungductung 0:e87aa4c49e95 942 * @brief C custom defined SMUADX for M3 and M0 processors
phungductung 0:e87aa4c49e95 943 */
phungductung 0:e87aa4c49e95 944 static __INLINE q31_t __SMUADX(
phungductung 0:e87aa4c49e95 945 q31_t x,
phungductung 0:e87aa4c49e95 946 q31_t y)
phungductung 0:e87aa4c49e95 947 {
phungductung 0:e87aa4c49e95 948
phungductung 0:e87aa4c49e95 949 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
phungductung 0:e87aa4c49e95 950 ((q15_t) (x >> 16) * (q15_t) y)));
phungductung 0:e87aa4c49e95 951 }
phungductung 0:e87aa4c49e95 952
phungductung 0:e87aa4c49e95 953 /*
phungductung 0:e87aa4c49e95 954 * @brief C custom defined QADD for M3 and M0 processors
phungductung 0:e87aa4c49e95 955 */
phungductung 0:e87aa4c49e95 956 static __INLINE q31_t __QADD(
phungductung 0:e87aa4c49e95 957 q31_t x,
phungductung 0:e87aa4c49e95 958 q31_t y)
phungductung 0:e87aa4c49e95 959 {
phungductung 0:e87aa4c49e95 960 return clip_q63_to_q31((q63_t) x + y);
phungductung 0:e87aa4c49e95 961 }
phungductung 0:e87aa4c49e95 962
phungductung 0:e87aa4c49e95 963 /*
phungductung 0:e87aa4c49e95 964 * @brief C custom defined QSUB for M3 and M0 processors
phungductung 0:e87aa4c49e95 965 */
phungductung 0:e87aa4c49e95 966 static __INLINE q31_t __QSUB(
phungductung 0:e87aa4c49e95 967 q31_t x,
phungductung 0:e87aa4c49e95 968 q31_t y)
phungductung 0:e87aa4c49e95 969 {
phungductung 0:e87aa4c49e95 970 return clip_q63_to_q31((q63_t) x - y);
phungductung 0:e87aa4c49e95 971 }
phungductung 0:e87aa4c49e95 972
phungductung 0:e87aa4c49e95 973 /*
phungductung 0:e87aa4c49e95 974 * @brief C custom defined SMLAD for M3 and M0 processors
phungductung 0:e87aa4c49e95 975 */
phungductung 0:e87aa4c49e95 976 static __INLINE q31_t __SMLAD(
phungductung 0:e87aa4c49e95 977 q31_t x,
phungductung 0:e87aa4c49e95 978 q31_t y,
phungductung 0:e87aa4c49e95 979 q31_t sum)
phungductung 0:e87aa4c49e95 980 {
phungductung 0:e87aa4c49e95 981
phungductung 0:e87aa4c49e95 982 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
phungductung 0:e87aa4c49e95 983 ((q15_t) x * (q15_t) y));
phungductung 0:e87aa4c49e95 984 }
phungductung 0:e87aa4c49e95 985
phungductung 0:e87aa4c49e95 986 /*
phungductung 0:e87aa4c49e95 987 * @brief C custom defined SMLADX for M3 and M0 processors
phungductung 0:e87aa4c49e95 988 */
phungductung 0:e87aa4c49e95 989 static __INLINE q31_t __SMLADX(
phungductung 0:e87aa4c49e95 990 q31_t x,
phungductung 0:e87aa4c49e95 991 q31_t y,
phungductung 0:e87aa4c49e95 992 q31_t sum)
phungductung 0:e87aa4c49e95 993 {
phungductung 0:e87aa4c49e95 994
phungductung 0:e87aa4c49e95 995 return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
phungductung 0:e87aa4c49e95 996 ((q15_t) x * (q15_t) (y >> 16)));
phungductung 0:e87aa4c49e95 997 }
phungductung 0:e87aa4c49e95 998
phungductung 0:e87aa4c49e95 999 /*
phungductung 0:e87aa4c49e95 1000 * @brief C custom defined SMLSDX for M3 and M0 processors
phungductung 0:e87aa4c49e95 1001 */
phungductung 0:e87aa4c49e95 1002 static __INLINE q31_t __SMLSDX(
phungductung 0:e87aa4c49e95 1003 q31_t x,
phungductung 0:e87aa4c49e95 1004 q31_t y,
phungductung 0:e87aa4c49e95 1005 q31_t sum)
phungductung 0:e87aa4c49e95 1006 {
phungductung 0:e87aa4c49e95 1007
phungductung 0:e87aa4c49e95 1008 return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
phungductung 0:e87aa4c49e95 1009 ((q15_t) x * (q15_t) (y >> 16)));
phungductung 0:e87aa4c49e95 1010 }
phungductung 0:e87aa4c49e95 1011
phungductung 0:e87aa4c49e95 1012 /*
phungductung 0:e87aa4c49e95 1013 * @brief C custom defined SMLALD for M3 and M0 processors
phungductung 0:e87aa4c49e95 1014 */
phungductung 0:e87aa4c49e95 1015 static __INLINE q63_t __SMLALD(
phungductung 0:e87aa4c49e95 1016 q31_t x,
phungductung 0:e87aa4c49e95 1017 q31_t y,
phungductung 0:e87aa4c49e95 1018 q63_t sum)
phungductung 0:e87aa4c49e95 1019 {
phungductung 0:e87aa4c49e95 1020
phungductung 0:e87aa4c49e95 1021 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
phungductung 0:e87aa4c49e95 1022 ((q15_t) x * (q15_t) y));
phungductung 0:e87aa4c49e95 1023 }
phungductung 0:e87aa4c49e95 1024
phungductung 0:e87aa4c49e95 1025 /*
phungductung 0:e87aa4c49e95 1026 * @brief C custom defined SMLALDX for M3 and M0 processors
phungductung 0:e87aa4c49e95 1027 */
phungductung 0:e87aa4c49e95 1028 static __INLINE q63_t __SMLALDX(
phungductung 0:e87aa4c49e95 1029 q31_t x,
phungductung 0:e87aa4c49e95 1030 q31_t y,
phungductung 0:e87aa4c49e95 1031 q63_t sum)
phungductung 0:e87aa4c49e95 1032 {
phungductung 0:e87aa4c49e95 1033
phungductung 0:e87aa4c49e95 1034 return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
phungductung 0:e87aa4c49e95 1035 ((q15_t) x * (q15_t) (y >> 16));
phungductung 0:e87aa4c49e95 1036 }
phungductung 0:e87aa4c49e95 1037
phungductung 0:e87aa4c49e95 1038 /*
phungductung 0:e87aa4c49e95 1039 * @brief C custom defined SMUAD for M3 and M0 processors
phungductung 0:e87aa4c49e95 1040 */
phungductung 0:e87aa4c49e95 1041 static __INLINE q31_t __SMUAD(
phungductung 0:e87aa4c49e95 1042 q31_t x,
phungductung 0:e87aa4c49e95 1043 q31_t y)
phungductung 0:e87aa4c49e95 1044 {
phungductung 0:e87aa4c49e95 1045
phungductung 0:e87aa4c49e95 1046 return (((x >> 16) * (y >> 16)) +
phungductung 0:e87aa4c49e95 1047 (((x << 16) >> 16) * ((y << 16) >> 16)));
phungductung 0:e87aa4c49e95 1048 }
phungductung 0:e87aa4c49e95 1049
phungductung 0:e87aa4c49e95 1050 /*
phungductung 0:e87aa4c49e95 1051 * @brief C custom defined SMUSD for M3 and M0 processors
phungductung 0:e87aa4c49e95 1052 */
phungductung 0:e87aa4c49e95 1053 static __INLINE q31_t __SMUSD(
phungductung 0:e87aa4c49e95 1054 q31_t x,
phungductung 0:e87aa4c49e95 1055 q31_t y)
phungductung 0:e87aa4c49e95 1056 {
phungductung 0:e87aa4c49e95 1057
phungductung 0:e87aa4c49e95 1058 return (-((x >> 16) * (y >> 16)) +
phungductung 0:e87aa4c49e95 1059 (((x << 16) >> 16) * ((y << 16) >> 16)));
phungductung 0:e87aa4c49e95 1060 }
phungductung 0:e87aa4c49e95 1061
phungductung 0:e87aa4c49e95 1062
phungductung 0:e87aa4c49e95 1063 /*
phungductung 0:e87aa4c49e95 1064 * @brief C custom defined SXTB16 for M3 and M0 processors
phungductung 0:e87aa4c49e95 1065 */
phungductung 0:e87aa4c49e95 1066 static __INLINE q31_t __SXTB16(
phungductung 0:e87aa4c49e95 1067 q31_t x)
phungductung 0:e87aa4c49e95 1068 {
phungductung 0:e87aa4c49e95 1069
phungductung 0:e87aa4c49e95 1070 return ((((x << 24) >> 24) & 0x0000FFFF) |
phungductung 0:e87aa4c49e95 1071 (((x << 8) >> 8) & 0xFFFF0000));
phungductung 0:e87aa4c49e95 1072 }
phungductung 0:e87aa4c49e95 1073
phungductung 0:e87aa4c49e95 1074
phungductung 0:e87aa4c49e95 1075 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
phungductung 0:e87aa4c49e95 1076
phungductung 0:e87aa4c49e95 1077
phungductung 0:e87aa4c49e95 1078 /**
phungductung 0:e87aa4c49e95 1079 * @brief Instance structure for the Q7 FIR filter.
phungductung 0:e87aa4c49e95 1080 */
phungductung 0:e87aa4c49e95 1081 typedef struct
phungductung 0:e87aa4c49e95 1082 {
phungductung 0:e87aa4c49e95 1083 uint16_t numTaps; /**< number of filter coefficients in the filter. */
phungductung 0:e87aa4c49e95 1084 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 1085 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
phungductung 0:e87aa4c49e95 1086 } arm_fir_instance_q7;
phungductung 0:e87aa4c49e95 1087
phungductung 0:e87aa4c49e95 1088 /**
phungductung 0:e87aa4c49e95 1089 * @brief Instance structure for the Q15 FIR filter.
phungductung 0:e87aa4c49e95 1090 */
phungductung 0:e87aa4c49e95 1091 typedef struct
phungductung 0:e87aa4c49e95 1092 {
phungductung 0:e87aa4c49e95 1093 uint16_t numTaps; /**< number of filter coefficients in the filter. */
phungductung 0:e87aa4c49e95 1094 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 1095 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
phungductung 0:e87aa4c49e95 1096 } arm_fir_instance_q15;
phungductung 0:e87aa4c49e95 1097
phungductung 0:e87aa4c49e95 1098 /**
phungductung 0:e87aa4c49e95 1099 * @brief Instance structure for the Q31 FIR filter.
phungductung 0:e87aa4c49e95 1100 */
phungductung 0:e87aa4c49e95 1101 typedef struct
phungductung 0:e87aa4c49e95 1102 {
phungductung 0:e87aa4c49e95 1103 uint16_t numTaps; /**< number of filter coefficients in the filter. */
phungductung 0:e87aa4c49e95 1104 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 1105 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 1106 } arm_fir_instance_q31;
phungductung 0:e87aa4c49e95 1107
phungductung 0:e87aa4c49e95 1108 /**
phungductung 0:e87aa4c49e95 1109 * @brief Instance structure for the floating-point FIR filter.
phungductung 0:e87aa4c49e95 1110 */
phungductung 0:e87aa4c49e95 1111 typedef struct
phungductung 0:e87aa4c49e95 1112 {
phungductung 0:e87aa4c49e95 1113 uint16_t numTaps; /**< number of filter coefficients in the filter. */
phungductung 0:e87aa4c49e95 1114 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 1115 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 1116 } arm_fir_instance_f32;
phungductung 0:e87aa4c49e95 1117
phungductung 0:e87aa4c49e95 1118
phungductung 0:e87aa4c49e95 1119 /**
phungductung 0:e87aa4c49e95 1120 * @brief Processing function for the Q7 FIR filter.
phungductung 0:e87aa4c49e95 1121 * @param[in] *S points to an instance of the Q7 FIR filter structure.
phungductung 0:e87aa4c49e95 1122 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1123 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1124 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1125 * @return none.
phungductung 0:e87aa4c49e95 1126 */
phungductung 0:e87aa4c49e95 1127 void arm_fir_q7(
phungductung 0:e87aa4c49e95 1128 const arm_fir_instance_q7 * S,
phungductung 0:e87aa4c49e95 1129 q7_t * pSrc,
phungductung 0:e87aa4c49e95 1130 q7_t * pDst,
phungductung 0:e87aa4c49e95 1131 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1132
phungductung 0:e87aa4c49e95 1133
phungductung 0:e87aa4c49e95 1134 /**
phungductung 0:e87aa4c49e95 1135 * @brief Initialization function for the Q7 FIR filter.
phungductung 0:e87aa4c49e95 1136 * @param[in,out] *S points to an instance of the Q7 FIR structure.
phungductung 0:e87aa4c49e95 1137 * @param[in] numTaps Number of filter coefficients in the filter.
phungductung 0:e87aa4c49e95 1138 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 1139 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 1140 * @param[in] blockSize number of samples that are processed.
phungductung 0:e87aa4c49e95 1141 * @return none
phungductung 0:e87aa4c49e95 1142 */
phungductung 0:e87aa4c49e95 1143 void arm_fir_init_q7(
phungductung 0:e87aa4c49e95 1144 arm_fir_instance_q7 * S,
phungductung 0:e87aa4c49e95 1145 uint16_t numTaps,
phungductung 0:e87aa4c49e95 1146 q7_t * pCoeffs,
phungductung 0:e87aa4c49e95 1147 q7_t * pState,
phungductung 0:e87aa4c49e95 1148 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1149
phungductung 0:e87aa4c49e95 1150
phungductung 0:e87aa4c49e95 1151 /**
phungductung 0:e87aa4c49e95 1152 * @brief Processing function for the Q15 FIR filter.
phungductung 0:e87aa4c49e95 1153 * @param[in] *S points to an instance of the Q15 FIR structure.
phungductung 0:e87aa4c49e95 1154 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1155 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1156 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1157 * @return none.
phungductung 0:e87aa4c49e95 1158 */
phungductung 0:e87aa4c49e95 1159 void arm_fir_q15(
phungductung 0:e87aa4c49e95 1160 const arm_fir_instance_q15 * S,
phungductung 0:e87aa4c49e95 1161 q15_t * pSrc,
phungductung 0:e87aa4c49e95 1162 q15_t * pDst,
phungductung 0:e87aa4c49e95 1163 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1164
phungductung 0:e87aa4c49e95 1165 /**
phungductung 0:e87aa4c49e95 1166 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
phungductung 0:e87aa4c49e95 1167 * @param[in] *S points to an instance of the Q15 FIR filter structure.
phungductung 0:e87aa4c49e95 1168 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1169 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1170 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1171 * @return none.
phungductung 0:e87aa4c49e95 1172 */
phungductung 0:e87aa4c49e95 1173 void arm_fir_fast_q15(
phungductung 0:e87aa4c49e95 1174 const arm_fir_instance_q15 * S,
phungductung 0:e87aa4c49e95 1175 q15_t * pSrc,
phungductung 0:e87aa4c49e95 1176 q15_t * pDst,
phungductung 0:e87aa4c49e95 1177 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1178
phungductung 0:e87aa4c49e95 1179 /**
phungductung 0:e87aa4c49e95 1180 * @brief Initialization function for the Q15 FIR filter.
phungductung 0:e87aa4c49e95 1181 * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
phungductung 0:e87aa4c49e95 1182 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
phungductung 0:e87aa4c49e95 1183 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 1184 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 1185 * @param[in] blockSize number of samples that are processed at a time.
phungductung 0:e87aa4c49e95 1186 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
phungductung 0:e87aa4c49e95 1187 * <code>numTaps</code> is not a supported value.
phungductung 0:e87aa4c49e95 1188 */
phungductung 0:e87aa4c49e95 1189
phungductung 0:e87aa4c49e95 1190 arm_status arm_fir_init_q15(
phungductung 0:e87aa4c49e95 1191 arm_fir_instance_q15 * S,
phungductung 0:e87aa4c49e95 1192 uint16_t numTaps,
phungductung 0:e87aa4c49e95 1193 q15_t * pCoeffs,
phungductung 0:e87aa4c49e95 1194 q15_t * pState,
phungductung 0:e87aa4c49e95 1195 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1196
phungductung 0:e87aa4c49e95 1197 /**
phungductung 0:e87aa4c49e95 1198 * @brief Processing function for the Q31 FIR filter.
phungductung 0:e87aa4c49e95 1199 * @param[in] *S points to an instance of the Q31 FIR filter structure.
phungductung 0:e87aa4c49e95 1200 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1201 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1202 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1203 * @return none.
phungductung 0:e87aa4c49e95 1204 */
phungductung 0:e87aa4c49e95 1205 void arm_fir_q31(
phungductung 0:e87aa4c49e95 1206 const arm_fir_instance_q31 * S,
phungductung 0:e87aa4c49e95 1207 q31_t * pSrc,
phungductung 0:e87aa4c49e95 1208 q31_t * pDst,
phungductung 0:e87aa4c49e95 1209 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1210
phungductung 0:e87aa4c49e95 1211 /**
phungductung 0:e87aa4c49e95 1212 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
phungductung 0:e87aa4c49e95 1213 * @param[in] *S points to an instance of the Q31 FIR structure.
phungductung 0:e87aa4c49e95 1214 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1215 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1216 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1217 * @return none.
phungductung 0:e87aa4c49e95 1218 */
phungductung 0:e87aa4c49e95 1219 void arm_fir_fast_q31(
phungductung 0:e87aa4c49e95 1220 const arm_fir_instance_q31 * S,
phungductung 0:e87aa4c49e95 1221 q31_t * pSrc,
phungductung 0:e87aa4c49e95 1222 q31_t * pDst,
phungductung 0:e87aa4c49e95 1223 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1224
phungductung 0:e87aa4c49e95 1225 /**
phungductung 0:e87aa4c49e95 1226 * @brief Initialization function for the Q31 FIR filter.
phungductung 0:e87aa4c49e95 1227 * @param[in,out] *S points to an instance of the Q31 FIR structure.
phungductung 0:e87aa4c49e95 1228 * @param[in] numTaps Number of filter coefficients in the filter.
phungductung 0:e87aa4c49e95 1229 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 1230 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 1231 * @param[in] blockSize number of samples that are processed at a time.
phungductung 0:e87aa4c49e95 1232 * @return none.
phungductung 0:e87aa4c49e95 1233 */
phungductung 0:e87aa4c49e95 1234 void arm_fir_init_q31(
phungductung 0:e87aa4c49e95 1235 arm_fir_instance_q31 * S,
phungductung 0:e87aa4c49e95 1236 uint16_t numTaps,
phungductung 0:e87aa4c49e95 1237 q31_t * pCoeffs,
phungductung 0:e87aa4c49e95 1238 q31_t * pState,
phungductung 0:e87aa4c49e95 1239 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1240
phungductung 0:e87aa4c49e95 1241 /**
phungductung 0:e87aa4c49e95 1242 * @brief Processing function for the floating-point FIR filter.
phungductung 0:e87aa4c49e95 1243 * @param[in] *S points to an instance of the floating-point FIR structure.
phungductung 0:e87aa4c49e95 1244 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1245 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1246 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1247 * @return none.
phungductung 0:e87aa4c49e95 1248 */
phungductung 0:e87aa4c49e95 1249 void arm_fir_f32(
phungductung 0:e87aa4c49e95 1250 const arm_fir_instance_f32 * S,
phungductung 0:e87aa4c49e95 1251 float32_t * pSrc,
phungductung 0:e87aa4c49e95 1252 float32_t * pDst,
phungductung 0:e87aa4c49e95 1253 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1254
phungductung 0:e87aa4c49e95 1255 /**
phungductung 0:e87aa4c49e95 1256 * @brief Initialization function for the floating-point FIR filter.
phungductung 0:e87aa4c49e95 1257 * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
phungductung 0:e87aa4c49e95 1258 * @param[in] numTaps Number of filter coefficients in the filter.
phungductung 0:e87aa4c49e95 1259 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 1260 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 1261 * @param[in] blockSize number of samples that are processed at a time.
phungductung 0:e87aa4c49e95 1262 * @return none.
phungductung 0:e87aa4c49e95 1263 */
phungductung 0:e87aa4c49e95 1264 void arm_fir_init_f32(
phungductung 0:e87aa4c49e95 1265 arm_fir_instance_f32 * S,
phungductung 0:e87aa4c49e95 1266 uint16_t numTaps,
phungductung 0:e87aa4c49e95 1267 float32_t * pCoeffs,
phungductung 0:e87aa4c49e95 1268 float32_t * pState,
phungductung 0:e87aa4c49e95 1269 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1270
phungductung 0:e87aa4c49e95 1271
phungductung 0:e87aa4c49e95 1272 /**
phungductung 0:e87aa4c49e95 1273 * @brief Instance structure for the Q15 Biquad cascade filter.
phungductung 0:e87aa4c49e95 1274 */
phungductung 0:e87aa4c49e95 1275 typedef struct
phungductung 0:e87aa4c49e95 1276 {
phungductung 0:e87aa4c49e95 1277 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
phungductung 0:e87aa4c49e95 1278 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
phungductung 0:e87aa4c49e95 1279 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
phungductung 0:e87aa4c49e95 1280 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
phungductung 0:e87aa4c49e95 1281
phungductung 0:e87aa4c49e95 1282 } arm_biquad_casd_df1_inst_q15;
phungductung 0:e87aa4c49e95 1283
phungductung 0:e87aa4c49e95 1284
phungductung 0:e87aa4c49e95 1285 /**
phungductung 0:e87aa4c49e95 1286 * @brief Instance structure for the Q31 Biquad cascade filter.
phungductung 0:e87aa4c49e95 1287 */
phungductung 0:e87aa4c49e95 1288 typedef struct
phungductung 0:e87aa4c49e95 1289 {
phungductung 0:e87aa4c49e95 1290 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
phungductung 0:e87aa4c49e95 1291 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
phungductung 0:e87aa4c49e95 1292 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
phungductung 0:e87aa4c49e95 1293 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
phungductung 0:e87aa4c49e95 1294
phungductung 0:e87aa4c49e95 1295 } arm_biquad_casd_df1_inst_q31;
phungductung 0:e87aa4c49e95 1296
phungductung 0:e87aa4c49e95 1297 /**
phungductung 0:e87aa4c49e95 1298 * @brief Instance structure for the floating-point Biquad cascade filter.
phungductung 0:e87aa4c49e95 1299 */
phungductung 0:e87aa4c49e95 1300 typedef struct
phungductung 0:e87aa4c49e95 1301 {
phungductung 0:e87aa4c49e95 1302 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
phungductung 0:e87aa4c49e95 1303 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
phungductung 0:e87aa4c49e95 1304 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
phungductung 0:e87aa4c49e95 1305
phungductung 0:e87aa4c49e95 1306
phungductung 0:e87aa4c49e95 1307 } arm_biquad_casd_df1_inst_f32;
phungductung 0:e87aa4c49e95 1308
phungductung 0:e87aa4c49e95 1309
phungductung 0:e87aa4c49e95 1310
phungductung 0:e87aa4c49e95 1311 /**
phungductung 0:e87aa4c49e95 1312 * @brief Processing function for the Q15 Biquad cascade filter.
phungductung 0:e87aa4c49e95 1313 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
phungductung 0:e87aa4c49e95 1314 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1315 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1316 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1317 * @return none.
phungductung 0:e87aa4c49e95 1318 */
phungductung 0:e87aa4c49e95 1319
phungductung 0:e87aa4c49e95 1320 void arm_biquad_cascade_df1_q15(
phungductung 0:e87aa4c49e95 1321 const arm_biquad_casd_df1_inst_q15 * S,
phungductung 0:e87aa4c49e95 1322 q15_t * pSrc,
phungductung 0:e87aa4c49e95 1323 q15_t * pDst,
phungductung 0:e87aa4c49e95 1324 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1325
phungductung 0:e87aa4c49e95 1326 /**
phungductung 0:e87aa4c49e95 1327 * @brief Initialization function for the Q15 Biquad cascade filter.
phungductung 0:e87aa4c49e95 1328 * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
phungductung 0:e87aa4c49e95 1329 * @param[in] numStages number of 2nd order stages in the filter.
phungductung 0:e87aa4c49e95 1330 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 1331 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 1332 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
phungductung 0:e87aa4c49e95 1333 * @return none
phungductung 0:e87aa4c49e95 1334 */
phungductung 0:e87aa4c49e95 1335
phungductung 0:e87aa4c49e95 1336 void arm_biquad_cascade_df1_init_q15(
phungductung 0:e87aa4c49e95 1337 arm_biquad_casd_df1_inst_q15 * S,
phungductung 0:e87aa4c49e95 1338 uint8_t numStages,
phungductung 0:e87aa4c49e95 1339 q15_t * pCoeffs,
phungductung 0:e87aa4c49e95 1340 q15_t * pState,
phungductung 0:e87aa4c49e95 1341 int8_t postShift);
phungductung 0:e87aa4c49e95 1342
phungductung 0:e87aa4c49e95 1343
phungductung 0:e87aa4c49e95 1344 /**
phungductung 0:e87aa4c49e95 1345 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
phungductung 0:e87aa4c49e95 1346 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
phungductung 0:e87aa4c49e95 1347 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1348 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1349 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1350 * @return none.
phungductung 0:e87aa4c49e95 1351 */
phungductung 0:e87aa4c49e95 1352
phungductung 0:e87aa4c49e95 1353 void arm_biquad_cascade_df1_fast_q15(
phungductung 0:e87aa4c49e95 1354 const arm_biquad_casd_df1_inst_q15 * S,
phungductung 0:e87aa4c49e95 1355 q15_t * pSrc,
phungductung 0:e87aa4c49e95 1356 q15_t * pDst,
phungductung 0:e87aa4c49e95 1357 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1358
phungductung 0:e87aa4c49e95 1359
phungductung 0:e87aa4c49e95 1360 /**
phungductung 0:e87aa4c49e95 1361 * @brief Processing function for the Q31 Biquad cascade filter
phungductung 0:e87aa4c49e95 1362 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
phungductung 0:e87aa4c49e95 1363 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1364 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1365 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1366 * @return none.
phungductung 0:e87aa4c49e95 1367 */
phungductung 0:e87aa4c49e95 1368
phungductung 0:e87aa4c49e95 1369 void arm_biquad_cascade_df1_q31(
phungductung 0:e87aa4c49e95 1370 const arm_biquad_casd_df1_inst_q31 * S,
phungductung 0:e87aa4c49e95 1371 q31_t * pSrc,
phungductung 0:e87aa4c49e95 1372 q31_t * pDst,
phungductung 0:e87aa4c49e95 1373 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1374
phungductung 0:e87aa4c49e95 1375 /**
phungductung 0:e87aa4c49e95 1376 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
phungductung 0:e87aa4c49e95 1377 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
phungductung 0:e87aa4c49e95 1378 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1379 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1380 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1381 * @return none.
phungductung 0:e87aa4c49e95 1382 */
phungductung 0:e87aa4c49e95 1383
phungductung 0:e87aa4c49e95 1384 void arm_biquad_cascade_df1_fast_q31(
phungductung 0:e87aa4c49e95 1385 const arm_biquad_casd_df1_inst_q31 * S,
phungductung 0:e87aa4c49e95 1386 q31_t * pSrc,
phungductung 0:e87aa4c49e95 1387 q31_t * pDst,
phungductung 0:e87aa4c49e95 1388 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1389
phungductung 0:e87aa4c49e95 1390 /**
phungductung 0:e87aa4c49e95 1391 * @brief Initialization function for the Q31 Biquad cascade filter.
phungductung 0:e87aa4c49e95 1392 * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
phungductung 0:e87aa4c49e95 1393 * @param[in] numStages number of 2nd order stages in the filter.
phungductung 0:e87aa4c49e95 1394 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 1395 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 1396 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
phungductung 0:e87aa4c49e95 1397 * @return none
phungductung 0:e87aa4c49e95 1398 */
phungductung 0:e87aa4c49e95 1399
phungductung 0:e87aa4c49e95 1400 void arm_biquad_cascade_df1_init_q31(
phungductung 0:e87aa4c49e95 1401 arm_biquad_casd_df1_inst_q31 * S,
phungductung 0:e87aa4c49e95 1402 uint8_t numStages,
phungductung 0:e87aa4c49e95 1403 q31_t * pCoeffs,
phungductung 0:e87aa4c49e95 1404 q31_t * pState,
phungductung 0:e87aa4c49e95 1405 int8_t postShift);
phungductung 0:e87aa4c49e95 1406
phungductung 0:e87aa4c49e95 1407 /**
phungductung 0:e87aa4c49e95 1408 * @brief Processing function for the floating-point Biquad cascade filter.
phungductung 0:e87aa4c49e95 1409 * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
phungductung 0:e87aa4c49e95 1410 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 1411 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 1412 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 1413 * @return none.
phungductung 0:e87aa4c49e95 1414 */
phungductung 0:e87aa4c49e95 1415
phungductung 0:e87aa4c49e95 1416 void arm_biquad_cascade_df1_f32(
phungductung 0:e87aa4c49e95 1417 const arm_biquad_casd_df1_inst_f32 * S,
phungductung 0:e87aa4c49e95 1418 float32_t * pSrc,
phungductung 0:e87aa4c49e95 1419 float32_t * pDst,
phungductung 0:e87aa4c49e95 1420 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1421
phungductung 0:e87aa4c49e95 1422 /**
phungductung 0:e87aa4c49e95 1423 * @brief Initialization function for the floating-point Biquad cascade filter.
phungductung 0:e87aa4c49e95 1424 * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
phungductung 0:e87aa4c49e95 1425 * @param[in] numStages number of 2nd order stages in the filter.
phungductung 0:e87aa4c49e95 1426 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 1427 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 1428 * @return none
phungductung 0:e87aa4c49e95 1429 */
phungductung 0:e87aa4c49e95 1430
phungductung 0:e87aa4c49e95 1431 void arm_biquad_cascade_df1_init_f32(
phungductung 0:e87aa4c49e95 1432 arm_biquad_casd_df1_inst_f32 * S,
phungductung 0:e87aa4c49e95 1433 uint8_t numStages,
phungductung 0:e87aa4c49e95 1434 float32_t * pCoeffs,
phungductung 0:e87aa4c49e95 1435 float32_t * pState);
phungductung 0:e87aa4c49e95 1436
phungductung 0:e87aa4c49e95 1437
phungductung 0:e87aa4c49e95 1438 /**
phungductung 0:e87aa4c49e95 1439 * @brief Instance structure for the floating-point matrix structure.
phungductung 0:e87aa4c49e95 1440 */
phungductung 0:e87aa4c49e95 1441
phungductung 0:e87aa4c49e95 1442 typedef struct
phungductung 0:e87aa4c49e95 1443 {
phungductung 0:e87aa4c49e95 1444 uint16_t numRows; /**< number of rows of the matrix. */
phungductung 0:e87aa4c49e95 1445 uint16_t numCols; /**< number of columns of the matrix. */
phungductung 0:e87aa4c49e95 1446 float32_t *pData; /**< points to the data of the matrix. */
phungductung 0:e87aa4c49e95 1447 } arm_matrix_instance_f32;
phungductung 0:e87aa4c49e95 1448
phungductung 0:e87aa4c49e95 1449
phungductung 0:e87aa4c49e95 1450 /**
phungductung 0:e87aa4c49e95 1451 * @brief Instance structure for the floating-point matrix structure.
phungductung 0:e87aa4c49e95 1452 */
phungductung 0:e87aa4c49e95 1453
phungductung 0:e87aa4c49e95 1454 typedef struct
phungductung 0:e87aa4c49e95 1455 {
phungductung 0:e87aa4c49e95 1456 uint16_t numRows; /**< number of rows of the matrix. */
phungductung 0:e87aa4c49e95 1457 uint16_t numCols; /**< number of columns of the matrix. */
phungductung 0:e87aa4c49e95 1458 float64_t *pData; /**< points to the data of the matrix. */
phungductung 0:e87aa4c49e95 1459 } arm_matrix_instance_f64;
phungductung 0:e87aa4c49e95 1460
phungductung 0:e87aa4c49e95 1461 /**
phungductung 0:e87aa4c49e95 1462 * @brief Instance structure for the Q15 matrix structure.
phungductung 0:e87aa4c49e95 1463 */
phungductung 0:e87aa4c49e95 1464
phungductung 0:e87aa4c49e95 1465 typedef struct
phungductung 0:e87aa4c49e95 1466 {
phungductung 0:e87aa4c49e95 1467 uint16_t numRows; /**< number of rows of the matrix. */
phungductung 0:e87aa4c49e95 1468 uint16_t numCols; /**< number of columns of the matrix. */
phungductung 0:e87aa4c49e95 1469 q15_t *pData; /**< points to the data of the matrix. */
phungductung 0:e87aa4c49e95 1470
phungductung 0:e87aa4c49e95 1471 } arm_matrix_instance_q15;
phungductung 0:e87aa4c49e95 1472
phungductung 0:e87aa4c49e95 1473 /**
phungductung 0:e87aa4c49e95 1474 * @brief Instance structure for the Q31 matrix structure.
phungductung 0:e87aa4c49e95 1475 */
phungductung 0:e87aa4c49e95 1476
phungductung 0:e87aa4c49e95 1477 typedef struct
phungductung 0:e87aa4c49e95 1478 {
phungductung 0:e87aa4c49e95 1479 uint16_t numRows; /**< number of rows of the matrix. */
phungductung 0:e87aa4c49e95 1480 uint16_t numCols; /**< number of columns of the matrix. */
phungductung 0:e87aa4c49e95 1481 q31_t *pData; /**< points to the data of the matrix. */
phungductung 0:e87aa4c49e95 1482
phungductung 0:e87aa4c49e95 1483 } arm_matrix_instance_q31;
phungductung 0:e87aa4c49e95 1484
phungductung 0:e87aa4c49e95 1485
phungductung 0:e87aa4c49e95 1486
phungductung 0:e87aa4c49e95 1487 /**
phungductung 0:e87aa4c49e95 1488 * @brief Floating-point matrix addition.
phungductung 0:e87aa4c49e95 1489 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1490 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1491 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1492 * @return The function returns either
phungductung 0:e87aa4c49e95 1493 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1494 */
phungductung 0:e87aa4c49e95 1495
phungductung 0:e87aa4c49e95 1496 arm_status arm_mat_add_f32(
phungductung 0:e87aa4c49e95 1497 const arm_matrix_instance_f32 * pSrcA,
phungductung 0:e87aa4c49e95 1498 const arm_matrix_instance_f32 * pSrcB,
phungductung 0:e87aa4c49e95 1499 arm_matrix_instance_f32 * pDst);
phungductung 0:e87aa4c49e95 1500
phungductung 0:e87aa4c49e95 1501 /**
phungductung 0:e87aa4c49e95 1502 * @brief Q15 matrix addition.
phungductung 0:e87aa4c49e95 1503 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1504 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1505 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1506 * @return The function returns either
phungductung 0:e87aa4c49e95 1507 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1508 */
phungductung 0:e87aa4c49e95 1509
phungductung 0:e87aa4c49e95 1510 arm_status arm_mat_add_q15(
phungductung 0:e87aa4c49e95 1511 const arm_matrix_instance_q15 * pSrcA,
phungductung 0:e87aa4c49e95 1512 const arm_matrix_instance_q15 * pSrcB,
phungductung 0:e87aa4c49e95 1513 arm_matrix_instance_q15 * pDst);
phungductung 0:e87aa4c49e95 1514
phungductung 0:e87aa4c49e95 1515 /**
phungductung 0:e87aa4c49e95 1516 * @brief Q31 matrix addition.
phungductung 0:e87aa4c49e95 1517 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1518 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1519 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1520 * @return The function returns either
phungductung 0:e87aa4c49e95 1521 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1522 */
phungductung 0:e87aa4c49e95 1523
phungductung 0:e87aa4c49e95 1524 arm_status arm_mat_add_q31(
phungductung 0:e87aa4c49e95 1525 const arm_matrix_instance_q31 * pSrcA,
phungductung 0:e87aa4c49e95 1526 const arm_matrix_instance_q31 * pSrcB,
phungductung 0:e87aa4c49e95 1527 arm_matrix_instance_q31 * pDst);
phungductung 0:e87aa4c49e95 1528
phungductung 0:e87aa4c49e95 1529 /**
phungductung 0:e87aa4c49e95 1530 * @brief Floating-point, complex, matrix multiplication.
phungductung 0:e87aa4c49e95 1531 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1532 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1533 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1534 * @return The function returns either
phungductung 0:e87aa4c49e95 1535 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1536 */
phungductung 0:e87aa4c49e95 1537
phungductung 0:e87aa4c49e95 1538 arm_status arm_mat_cmplx_mult_f32(
phungductung 0:e87aa4c49e95 1539 const arm_matrix_instance_f32 * pSrcA,
phungductung 0:e87aa4c49e95 1540 const arm_matrix_instance_f32 * pSrcB,
phungductung 0:e87aa4c49e95 1541 arm_matrix_instance_f32 * pDst);
phungductung 0:e87aa4c49e95 1542
phungductung 0:e87aa4c49e95 1543 /**
phungductung 0:e87aa4c49e95 1544 * @brief Q15, complex, matrix multiplication.
phungductung 0:e87aa4c49e95 1545 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1546 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1547 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1548 * @return The function returns either
phungductung 0:e87aa4c49e95 1549 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1550 */
phungductung 0:e87aa4c49e95 1551
phungductung 0:e87aa4c49e95 1552 arm_status arm_mat_cmplx_mult_q15(
phungductung 0:e87aa4c49e95 1553 const arm_matrix_instance_q15 * pSrcA,
phungductung 0:e87aa4c49e95 1554 const arm_matrix_instance_q15 * pSrcB,
phungductung 0:e87aa4c49e95 1555 arm_matrix_instance_q15 * pDst,
phungductung 0:e87aa4c49e95 1556 q15_t * pScratch);
phungductung 0:e87aa4c49e95 1557
phungductung 0:e87aa4c49e95 1558 /**
phungductung 0:e87aa4c49e95 1559 * @brief Q31, complex, matrix multiplication.
phungductung 0:e87aa4c49e95 1560 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1561 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1562 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1563 * @return The function returns either
phungductung 0:e87aa4c49e95 1564 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1565 */
phungductung 0:e87aa4c49e95 1566
phungductung 0:e87aa4c49e95 1567 arm_status arm_mat_cmplx_mult_q31(
phungductung 0:e87aa4c49e95 1568 const arm_matrix_instance_q31 * pSrcA,
phungductung 0:e87aa4c49e95 1569 const arm_matrix_instance_q31 * pSrcB,
phungductung 0:e87aa4c49e95 1570 arm_matrix_instance_q31 * pDst);
phungductung 0:e87aa4c49e95 1571
phungductung 0:e87aa4c49e95 1572
phungductung 0:e87aa4c49e95 1573 /**
phungductung 0:e87aa4c49e95 1574 * @brief Floating-point matrix transpose.
phungductung 0:e87aa4c49e95 1575 * @param[in] *pSrc points to the input matrix
phungductung 0:e87aa4c49e95 1576 * @param[out] *pDst points to the output matrix
phungductung 0:e87aa4c49e95 1577 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
phungductung 0:e87aa4c49e95 1578 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1579 */
phungductung 0:e87aa4c49e95 1580
phungductung 0:e87aa4c49e95 1581 arm_status arm_mat_trans_f32(
phungductung 0:e87aa4c49e95 1582 const arm_matrix_instance_f32 * pSrc,
phungductung 0:e87aa4c49e95 1583 arm_matrix_instance_f32 * pDst);
phungductung 0:e87aa4c49e95 1584
phungductung 0:e87aa4c49e95 1585
phungductung 0:e87aa4c49e95 1586 /**
phungductung 0:e87aa4c49e95 1587 * @brief Q15 matrix transpose.
phungductung 0:e87aa4c49e95 1588 * @param[in] *pSrc points to the input matrix
phungductung 0:e87aa4c49e95 1589 * @param[out] *pDst points to the output matrix
phungductung 0:e87aa4c49e95 1590 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
phungductung 0:e87aa4c49e95 1591 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1592 */
phungductung 0:e87aa4c49e95 1593
phungductung 0:e87aa4c49e95 1594 arm_status arm_mat_trans_q15(
phungductung 0:e87aa4c49e95 1595 const arm_matrix_instance_q15 * pSrc,
phungductung 0:e87aa4c49e95 1596 arm_matrix_instance_q15 * pDst);
phungductung 0:e87aa4c49e95 1597
phungductung 0:e87aa4c49e95 1598 /**
phungductung 0:e87aa4c49e95 1599 * @brief Q31 matrix transpose.
phungductung 0:e87aa4c49e95 1600 * @param[in] *pSrc points to the input matrix
phungductung 0:e87aa4c49e95 1601 * @param[out] *pDst points to the output matrix
phungductung 0:e87aa4c49e95 1602 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
phungductung 0:e87aa4c49e95 1603 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1604 */
phungductung 0:e87aa4c49e95 1605
phungductung 0:e87aa4c49e95 1606 arm_status arm_mat_trans_q31(
phungductung 0:e87aa4c49e95 1607 const arm_matrix_instance_q31 * pSrc,
phungductung 0:e87aa4c49e95 1608 arm_matrix_instance_q31 * pDst);
phungductung 0:e87aa4c49e95 1609
phungductung 0:e87aa4c49e95 1610
phungductung 0:e87aa4c49e95 1611 /**
phungductung 0:e87aa4c49e95 1612 * @brief Floating-point matrix multiplication
phungductung 0:e87aa4c49e95 1613 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1614 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1615 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1616 * @return The function returns either
phungductung 0:e87aa4c49e95 1617 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1618 */
phungductung 0:e87aa4c49e95 1619
phungductung 0:e87aa4c49e95 1620 arm_status arm_mat_mult_f32(
phungductung 0:e87aa4c49e95 1621 const arm_matrix_instance_f32 * pSrcA,
phungductung 0:e87aa4c49e95 1622 const arm_matrix_instance_f32 * pSrcB,
phungductung 0:e87aa4c49e95 1623 arm_matrix_instance_f32 * pDst);
phungductung 0:e87aa4c49e95 1624
phungductung 0:e87aa4c49e95 1625 /**
phungductung 0:e87aa4c49e95 1626 * @brief Q15 matrix multiplication
phungductung 0:e87aa4c49e95 1627 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1628 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1629 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1630 * @param[in] *pState points to the array for storing intermediate results
phungductung 0:e87aa4c49e95 1631 * @return The function returns either
phungductung 0:e87aa4c49e95 1632 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1633 */
phungductung 0:e87aa4c49e95 1634
phungductung 0:e87aa4c49e95 1635 arm_status arm_mat_mult_q15(
phungductung 0:e87aa4c49e95 1636 const arm_matrix_instance_q15 * pSrcA,
phungductung 0:e87aa4c49e95 1637 const arm_matrix_instance_q15 * pSrcB,
phungductung 0:e87aa4c49e95 1638 arm_matrix_instance_q15 * pDst,
phungductung 0:e87aa4c49e95 1639 q15_t * pState);
phungductung 0:e87aa4c49e95 1640
phungductung 0:e87aa4c49e95 1641 /**
phungductung 0:e87aa4c49e95 1642 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
phungductung 0:e87aa4c49e95 1643 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1644 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1645 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1646 * @param[in] *pState points to the array for storing intermediate results
phungductung 0:e87aa4c49e95 1647 * @return The function returns either
phungductung 0:e87aa4c49e95 1648 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1649 */
phungductung 0:e87aa4c49e95 1650
phungductung 0:e87aa4c49e95 1651 arm_status arm_mat_mult_fast_q15(
phungductung 0:e87aa4c49e95 1652 const arm_matrix_instance_q15 * pSrcA,
phungductung 0:e87aa4c49e95 1653 const arm_matrix_instance_q15 * pSrcB,
phungductung 0:e87aa4c49e95 1654 arm_matrix_instance_q15 * pDst,
phungductung 0:e87aa4c49e95 1655 q15_t * pState);
phungductung 0:e87aa4c49e95 1656
phungductung 0:e87aa4c49e95 1657 /**
phungductung 0:e87aa4c49e95 1658 * @brief Q31 matrix multiplication
phungductung 0:e87aa4c49e95 1659 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1660 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1661 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1662 * @return The function returns either
phungductung 0:e87aa4c49e95 1663 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1664 */
phungductung 0:e87aa4c49e95 1665
phungductung 0:e87aa4c49e95 1666 arm_status arm_mat_mult_q31(
phungductung 0:e87aa4c49e95 1667 const arm_matrix_instance_q31 * pSrcA,
phungductung 0:e87aa4c49e95 1668 const arm_matrix_instance_q31 * pSrcB,
phungductung 0:e87aa4c49e95 1669 arm_matrix_instance_q31 * pDst);
phungductung 0:e87aa4c49e95 1670
phungductung 0:e87aa4c49e95 1671 /**
phungductung 0:e87aa4c49e95 1672 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
phungductung 0:e87aa4c49e95 1673 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1674 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1675 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1676 * @return The function returns either
phungductung 0:e87aa4c49e95 1677 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1678 */
phungductung 0:e87aa4c49e95 1679
phungductung 0:e87aa4c49e95 1680 arm_status arm_mat_mult_fast_q31(
phungductung 0:e87aa4c49e95 1681 const arm_matrix_instance_q31 * pSrcA,
phungductung 0:e87aa4c49e95 1682 const arm_matrix_instance_q31 * pSrcB,
phungductung 0:e87aa4c49e95 1683 arm_matrix_instance_q31 * pDst);
phungductung 0:e87aa4c49e95 1684
phungductung 0:e87aa4c49e95 1685
phungductung 0:e87aa4c49e95 1686 /**
phungductung 0:e87aa4c49e95 1687 * @brief Floating-point matrix subtraction
phungductung 0:e87aa4c49e95 1688 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1689 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1690 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1691 * @return The function returns either
phungductung 0:e87aa4c49e95 1692 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1693 */
phungductung 0:e87aa4c49e95 1694
phungductung 0:e87aa4c49e95 1695 arm_status arm_mat_sub_f32(
phungductung 0:e87aa4c49e95 1696 const arm_matrix_instance_f32 * pSrcA,
phungductung 0:e87aa4c49e95 1697 const arm_matrix_instance_f32 * pSrcB,
phungductung 0:e87aa4c49e95 1698 arm_matrix_instance_f32 * pDst);
phungductung 0:e87aa4c49e95 1699
phungductung 0:e87aa4c49e95 1700 /**
phungductung 0:e87aa4c49e95 1701 * @brief Q15 matrix subtraction
phungductung 0:e87aa4c49e95 1702 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1703 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1704 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1705 * @return The function returns either
phungductung 0:e87aa4c49e95 1706 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1707 */
phungductung 0:e87aa4c49e95 1708
phungductung 0:e87aa4c49e95 1709 arm_status arm_mat_sub_q15(
phungductung 0:e87aa4c49e95 1710 const arm_matrix_instance_q15 * pSrcA,
phungductung 0:e87aa4c49e95 1711 const arm_matrix_instance_q15 * pSrcB,
phungductung 0:e87aa4c49e95 1712 arm_matrix_instance_q15 * pDst);
phungductung 0:e87aa4c49e95 1713
phungductung 0:e87aa4c49e95 1714 /**
phungductung 0:e87aa4c49e95 1715 * @brief Q31 matrix subtraction
phungductung 0:e87aa4c49e95 1716 * @param[in] *pSrcA points to the first input matrix structure
phungductung 0:e87aa4c49e95 1717 * @param[in] *pSrcB points to the second input matrix structure
phungductung 0:e87aa4c49e95 1718 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1719 * @return The function returns either
phungductung 0:e87aa4c49e95 1720 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1721 */
phungductung 0:e87aa4c49e95 1722
phungductung 0:e87aa4c49e95 1723 arm_status arm_mat_sub_q31(
phungductung 0:e87aa4c49e95 1724 const arm_matrix_instance_q31 * pSrcA,
phungductung 0:e87aa4c49e95 1725 const arm_matrix_instance_q31 * pSrcB,
phungductung 0:e87aa4c49e95 1726 arm_matrix_instance_q31 * pDst);
phungductung 0:e87aa4c49e95 1727
phungductung 0:e87aa4c49e95 1728 /**
phungductung 0:e87aa4c49e95 1729 * @brief Floating-point matrix scaling.
phungductung 0:e87aa4c49e95 1730 * @param[in] *pSrc points to the input matrix
phungductung 0:e87aa4c49e95 1731 * @param[in] scale scale factor
phungductung 0:e87aa4c49e95 1732 * @param[out] *pDst points to the output matrix
phungductung 0:e87aa4c49e95 1733 * @return The function returns either
phungductung 0:e87aa4c49e95 1734 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1735 */
phungductung 0:e87aa4c49e95 1736
phungductung 0:e87aa4c49e95 1737 arm_status arm_mat_scale_f32(
phungductung 0:e87aa4c49e95 1738 const arm_matrix_instance_f32 * pSrc,
phungductung 0:e87aa4c49e95 1739 float32_t scale,
phungductung 0:e87aa4c49e95 1740 arm_matrix_instance_f32 * pDst);
phungductung 0:e87aa4c49e95 1741
phungductung 0:e87aa4c49e95 1742 /**
phungductung 0:e87aa4c49e95 1743 * @brief Q15 matrix scaling.
phungductung 0:e87aa4c49e95 1744 * @param[in] *pSrc points to input matrix
phungductung 0:e87aa4c49e95 1745 * @param[in] scaleFract fractional portion of the scale factor
phungductung 0:e87aa4c49e95 1746 * @param[in] shift number of bits to shift the result by
phungductung 0:e87aa4c49e95 1747 * @param[out] *pDst points to output matrix
phungductung 0:e87aa4c49e95 1748 * @return The function returns either
phungductung 0:e87aa4c49e95 1749 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1750 */
phungductung 0:e87aa4c49e95 1751
phungductung 0:e87aa4c49e95 1752 arm_status arm_mat_scale_q15(
phungductung 0:e87aa4c49e95 1753 const arm_matrix_instance_q15 * pSrc,
phungductung 0:e87aa4c49e95 1754 q15_t scaleFract,
phungductung 0:e87aa4c49e95 1755 int32_t shift,
phungductung 0:e87aa4c49e95 1756 arm_matrix_instance_q15 * pDst);
phungductung 0:e87aa4c49e95 1757
phungductung 0:e87aa4c49e95 1758 /**
phungductung 0:e87aa4c49e95 1759 * @brief Q31 matrix scaling.
phungductung 0:e87aa4c49e95 1760 * @param[in] *pSrc points to input matrix
phungductung 0:e87aa4c49e95 1761 * @param[in] scaleFract fractional portion of the scale factor
phungductung 0:e87aa4c49e95 1762 * @param[in] shift number of bits to shift the result by
phungductung 0:e87aa4c49e95 1763 * @param[out] *pDst points to output matrix structure
phungductung 0:e87aa4c49e95 1764 * @return The function returns either
phungductung 0:e87aa4c49e95 1765 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
phungductung 0:e87aa4c49e95 1766 */
phungductung 0:e87aa4c49e95 1767
phungductung 0:e87aa4c49e95 1768 arm_status arm_mat_scale_q31(
phungductung 0:e87aa4c49e95 1769 const arm_matrix_instance_q31 * pSrc,
phungductung 0:e87aa4c49e95 1770 q31_t scaleFract,
phungductung 0:e87aa4c49e95 1771 int32_t shift,
phungductung 0:e87aa4c49e95 1772 arm_matrix_instance_q31 * pDst);
phungductung 0:e87aa4c49e95 1773
phungductung 0:e87aa4c49e95 1774
phungductung 0:e87aa4c49e95 1775 /**
phungductung 0:e87aa4c49e95 1776 * @brief Q31 matrix initialization.
phungductung 0:e87aa4c49e95 1777 * @param[in,out] *S points to an instance of the floating-point matrix structure.
phungductung 0:e87aa4c49e95 1778 * @param[in] nRows number of rows in the matrix.
phungductung 0:e87aa4c49e95 1779 * @param[in] nColumns number of columns in the matrix.
phungductung 0:e87aa4c49e95 1780 * @param[in] *pData points to the matrix data array.
phungductung 0:e87aa4c49e95 1781 * @return none
phungductung 0:e87aa4c49e95 1782 */
phungductung 0:e87aa4c49e95 1783
phungductung 0:e87aa4c49e95 1784 void arm_mat_init_q31(
phungductung 0:e87aa4c49e95 1785 arm_matrix_instance_q31 * S,
phungductung 0:e87aa4c49e95 1786 uint16_t nRows,
phungductung 0:e87aa4c49e95 1787 uint16_t nColumns,
phungductung 0:e87aa4c49e95 1788 q31_t * pData);
phungductung 0:e87aa4c49e95 1789
phungductung 0:e87aa4c49e95 1790 /**
phungductung 0:e87aa4c49e95 1791 * @brief Q15 matrix initialization.
phungductung 0:e87aa4c49e95 1792 * @param[in,out] *S points to an instance of the floating-point matrix structure.
phungductung 0:e87aa4c49e95 1793 * @param[in] nRows number of rows in the matrix.
phungductung 0:e87aa4c49e95 1794 * @param[in] nColumns number of columns in the matrix.
phungductung 0:e87aa4c49e95 1795 * @param[in] *pData points to the matrix data array.
phungductung 0:e87aa4c49e95 1796 * @return none
phungductung 0:e87aa4c49e95 1797 */
phungductung 0:e87aa4c49e95 1798
phungductung 0:e87aa4c49e95 1799 void arm_mat_init_q15(
phungductung 0:e87aa4c49e95 1800 arm_matrix_instance_q15 * S,
phungductung 0:e87aa4c49e95 1801 uint16_t nRows,
phungductung 0:e87aa4c49e95 1802 uint16_t nColumns,
phungductung 0:e87aa4c49e95 1803 q15_t * pData);
phungductung 0:e87aa4c49e95 1804
phungductung 0:e87aa4c49e95 1805 /**
phungductung 0:e87aa4c49e95 1806 * @brief Floating-point matrix initialization.
phungductung 0:e87aa4c49e95 1807 * @param[in,out] *S points to an instance of the floating-point matrix structure.
phungductung 0:e87aa4c49e95 1808 * @param[in] nRows number of rows in the matrix.
phungductung 0:e87aa4c49e95 1809 * @param[in] nColumns number of columns in the matrix.
phungductung 0:e87aa4c49e95 1810 * @param[in] *pData points to the matrix data array.
phungductung 0:e87aa4c49e95 1811 * @return none
phungductung 0:e87aa4c49e95 1812 */
phungductung 0:e87aa4c49e95 1813
phungductung 0:e87aa4c49e95 1814 void arm_mat_init_f32(
phungductung 0:e87aa4c49e95 1815 arm_matrix_instance_f32 * S,
phungductung 0:e87aa4c49e95 1816 uint16_t nRows,
phungductung 0:e87aa4c49e95 1817 uint16_t nColumns,
phungductung 0:e87aa4c49e95 1818 float32_t * pData);
phungductung 0:e87aa4c49e95 1819
phungductung 0:e87aa4c49e95 1820
phungductung 0:e87aa4c49e95 1821
phungductung 0:e87aa4c49e95 1822 /**
phungductung 0:e87aa4c49e95 1823 * @brief Instance structure for the Q15 PID Control.
phungductung 0:e87aa4c49e95 1824 */
phungductung 0:e87aa4c49e95 1825 typedef struct
phungductung 0:e87aa4c49e95 1826 {
phungductung 0:e87aa4c49e95 1827 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
phungductung 0:e87aa4c49e95 1828 #ifdef ARM_MATH_CM0_FAMILY
phungductung 0:e87aa4c49e95 1829 q15_t A1;
phungductung 0:e87aa4c49e95 1830 q15_t A2;
phungductung 0:e87aa4c49e95 1831 #else
phungductung 0:e87aa4c49e95 1832 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
phungductung 0:e87aa4c49e95 1833 #endif
phungductung 0:e87aa4c49e95 1834 q15_t state[3]; /**< The state array of length 3. */
phungductung 0:e87aa4c49e95 1835 q15_t Kp; /**< The proportional gain. */
phungductung 0:e87aa4c49e95 1836 q15_t Ki; /**< The integral gain. */
phungductung 0:e87aa4c49e95 1837 q15_t Kd; /**< The derivative gain. */
phungductung 0:e87aa4c49e95 1838 } arm_pid_instance_q15;
phungductung 0:e87aa4c49e95 1839
phungductung 0:e87aa4c49e95 1840 /**
phungductung 0:e87aa4c49e95 1841 * @brief Instance structure for the Q31 PID Control.
phungductung 0:e87aa4c49e95 1842 */
phungductung 0:e87aa4c49e95 1843 typedef struct
phungductung 0:e87aa4c49e95 1844 {
phungductung 0:e87aa4c49e95 1845 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
phungductung 0:e87aa4c49e95 1846 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
phungductung 0:e87aa4c49e95 1847 q31_t A2; /**< The derived gain, A2 = Kd . */
phungductung 0:e87aa4c49e95 1848 q31_t state[3]; /**< The state array of length 3. */
phungductung 0:e87aa4c49e95 1849 q31_t Kp; /**< The proportional gain. */
phungductung 0:e87aa4c49e95 1850 q31_t Ki; /**< The integral gain. */
phungductung 0:e87aa4c49e95 1851 q31_t Kd; /**< The derivative gain. */
phungductung 0:e87aa4c49e95 1852
phungductung 0:e87aa4c49e95 1853 } arm_pid_instance_q31;
phungductung 0:e87aa4c49e95 1854
phungductung 0:e87aa4c49e95 1855 /**
phungductung 0:e87aa4c49e95 1856 * @brief Instance structure for the floating-point PID Control.
phungductung 0:e87aa4c49e95 1857 */
phungductung 0:e87aa4c49e95 1858 typedef struct
phungductung 0:e87aa4c49e95 1859 {
phungductung 0:e87aa4c49e95 1860 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
phungductung 0:e87aa4c49e95 1861 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
phungductung 0:e87aa4c49e95 1862 float32_t A2; /**< The derived gain, A2 = Kd . */
phungductung 0:e87aa4c49e95 1863 float32_t state[3]; /**< The state array of length 3. */
phungductung 0:e87aa4c49e95 1864 float32_t Kp; /**< The proportional gain. */
phungductung 0:e87aa4c49e95 1865 float32_t Ki; /**< The integral gain. */
phungductung 0:e87aa4c49e95 1866 float32_t Kd; /**< The derivative gain. */
phungductung 0:e87aa4c49e95 1867 } arm_pid_instance_f32;
phungductung 0:e87aa4c49e95 1868
phungductung 0:e87aa4c49e95 1869
phungductung 0:e87aa4c49e95 1870
phungductung 0:e87aa4c49e95 1871 /**
phungductung 0:e87aa4c49e95 1872 * @brief Initialization function for the floating-point PID Control.
phungductung 0:e87aa4c49e95 1873 * @param[in,out] *S points to an instance of the PID structure.
phungductung 0:e87aa4c49e95 1874 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
phungductung 0:e87aa4c49e95 1875 * @return none.
phungductung 0:e87aa4c49e95 1876 */
phungductung 0:e87aa4c49e95 1877 void arm_pid_init_f32(
phungductung 0:e87aa4c49e95 1878 arm_pid_instance_f32 * S,
phungductung 0:e87aa4c49e95 1879 int32_t resetStateFlag);
phungductung 0:e87aa4c49e95 1880
phungductung 0:e87aa4c49e95 1881 /**
phungductung 0:e87aa4c49e95 1882 * @brief Reset function for the floating-point PID Control.
phungductung 0:e87aa4c49e95 1883 * @param[in,out] *S is an instance of the floating-point PID Control structure
phungductung 0:e87aa4c49e95 1884 * @return none
phungductung 0:e87aa4c49e95 1885 */
phungductung 0:e87aa4c49e95 1886 void arm_pid_reset_f32(
phungductung 0:e87aa4c49e95 1887 arm_pid_instance_f32 * S);
phungductung 0:e87aa4c49e95 1888
phungductung 0:e87aa4c49e95 1889
phungductung 0:e87aa4c49e95 1890 /**
phungductung 0:e87aa4c49e95 1891 * @brief Initialization function for the Q31 PID Control.
phungductung 0:e87aa4c49e95 1892 * @param[in,out] *S points to an instance of the Q15 PID structure.
phungductung 0:e87aa4c49e95 1893 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
phungductung 0:e87aa4c49e95 1894 * @return none.
phungductung 0:e87aa4c49e95 1895 */
phungductung 0:e87aa4c49e95 1896 void arm_pid_init_q31(
phungductung 0:e87aa4c49e95 1897 arm_pid_instance_q31 * S,
phungductung 0:e87aa4c49e95 1898 int32_t resetStateFlag);
phungductung 0:e87aa4c49e95 1899
phungductung 0:e87aa4c49e95 1900
phungductung 0:e87aa4c49e95 1901 /**
phungductung 0:e87aa4c49e95 1902 * @brief Reset function for the Q31 PID Control.
phungductung 0:e87aa4c49e95 1903 * @param[in,out] *S points to an instance of the Q31 PID Control structure
phungductung 0:e87aa4c49e95 1904 * @return none
phungductung 0:e87aa4c49e95 1905 */
phungductung 0:e87aa4c49e95 1906
phungductung 0:e87aa4c49e95 1907 void arm_pid_reset_q31(
phungductung 0:e87aa4c49e95 1908 arm_pid_instance_q31 * S);
phungductung 0:e87aa4c49e95 1909
phungductung 0:e87aa4c49e95 1910 /**
phungductung 0:e87aa4c49e95 1911 * @brief Initialization function for the Q15 PID Control.
phungductung 0:e87aa4c49e95 1912 * @param[in,out] *S points to an instance of the Q15 PID structure.
phungductung 0:e87aa4c49e95 1913 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
phungductung 0:e87aa4c49e95 1914 * @return none.
phungductung 0:e87aa4c49e95 1915 */
phungductung 0:e87aa4c49e95 1916 void arm_pid_init_q15(
phungductung 0:e87aa4c49e95 1917 arm_pid_instance_q15 * S,
phungductung 0:e87aa4c49e95 1918 int32_t resetStateFlag);
phungductung 0:e87aa4c49e95 1919
phungductung 0:e87aa4c49e95 1920 /**
phungductung 0:e87aa4c49e95 1921 * @brief Reset function for the Q15 PID Control.
phungductung 0:e87aa4c49e95 1922 * @param[in,out] *S points to an instance of the q15 PID Control structure
phungductung 0:e87aa4c49e95 1923 * @return none
phungductung 0:e87aa4c49e95 1924 */
phungductung 0:e87aa4c49e95 1925 void arm_pid_reset_q15(
phungductung 0:e87aa4c49e95 1926 arm_pid_instance_q15 * S);
phungductung 0:e87aa4c49e95 1927
phungductung 0:e87aa4c49e95 1928
phungductung 0:e87aa4c49e95 1929 /**
phungductung 0:e87aa4c49e95 1930 * @brief Instance structure for the floating-point Linear Interpolate function.
phungductung 0:e87aa4c49e95 1931 */
phungductung 0:e87aa4c49e95 1932 typedef struct
phungductung 0:e87aa4c49e95 1933 {
phungductung 0:e87aa4c49e95 1934 uint32_t nValues; /**< nValues */
phungductung 0:e87aa4c49e95 1935 float32_t x1; /**< x1 */
phungductung 0:e87aa4c49e95 1936 float32_t xSpacing; /**< xSpacing */
phungductung 0:e87aa4c49e95 1937 float32_t *pYData; /**< pointer to the table of Y values */
phungductung 0:e87aa4c49e95 1938 } arm_linear_interp_instance_f32;
phungductung 0:e87aa4c49e95 1939
phungductung 0:e87aa4c49e95 1940 /**
phungductung 0:e87aa4c49e95 1941 * @brief Instance structure for the floating-point bilinear interpolation function.
phungductung 0:e87aa4c49e95 1942 */
phungductung 0:e87aa4c49e95 1943
phungductung 0:e87aa4c49e95 1944 typedef struct
phungductung 0:e87aa4c49e95 1945 {
phungductung 0:e87aa4c49e95 1946 uint16_t numRows; /**< number of rows in the data table. */
phungductung 0:e87aa4c49e95 1947 uint16_t numCols; /**< number of columns in the data table. */
phungductung 0:e87aa4c49e95 1948 float32_t *pData; /**< points to the data table. */
phungductung 0:e87aa4c49e95 1949 } arm_bilinear_interp_instance_f32;
phungductung 0:e87aa4c49e95 1950
phungductung 0:e87aa4c49e95 1951 /**
phungductung 0:e87aa4c49e95 1952 * @brief Instance structure for the Q31 bilinear interpolation function.
phungductung 0:e87aa4c49e95 1953 */
phungductung 0:e87aa4c49e95 1954
phungductung 0:e87aa4c49e95 1955 typedef struct
phungductung 0:e87aa4c49e95 1956 {
phungductung 0:e87aa4c49e95 1957 uint16_t numRows; /**< number of rows in the data table. */
phungductung 0:e87aa4c49e95 1958 uint16_t numCols; /**< number of columns in the data table. */
phungductung 0:e87aa4c49e95 1959 q31_t *pData; /**< points to the data table. */
phungductung 0:e87aa4c49e95 1960 } arm_bilinear_interp_instance_q31;
phungductung 0:e87aa4c49e95 1961
phungductung 0:e87aa4c49e95 1962 /**
phungductung 0:e87aa4c49e95 1963 * @brief Instance structure for the Q15 bilinear interpolation function.
phungductung 0:e87aa4c49e95 1964 */
phungductung 0:e87aa4c49e95 1965
phungductung 0:e87aa4c49e95 1966 typedef struct
phungductung 0:e87aa4c49e95 1967 {
phungductung 0:e87aa4c49e95 1968 uint16_t numRows; /**< number of rows in the data table. */
phungductung 0:e87aa4c49e95 1969 uint16_t numCols; /**< number of columns in the data table. */
phungductung 0:e87aa4c49e95 1970 q15_t *pData; /**< points to the data table. */
phungductung 0:e87aa4c49e95 1971 } arm_bilinear_interp_instance_q15;
phungductung 0:e87aa4c49e95 1972
phungductung 0:e87aa4c49e95 1973 /**
phungductung 0:e87aa4c49e95 1974 * @brief Instance structure for the Q15 bilinear interpolation function.
phungductung 0:e87aa4c49e95 1975 */
phungductung 0:e87aa4c49e95 1976
phungductung 0:e87aa4c49e95 1977 typedef struct
phungductung 0:e87aa4c49e95 1978 {
phungductung 0:e87aa4c49e95 1979 uint16_t numRows; /**< number of rows in the data table. */
phungductung 0:e87aa4c49e95 1980 uint16_t numCols; /**< number of columns in the data table. */
phungductung 0:e87aa4c49e95 1981 q7_t *pData; /**< points to the data table. */
phungductung 0:e87aa4c49e95 1982 } arm_bilinear_interp_instance_q7;
phungductung 0:e87aa4c49e95 1983
phungductung 0:e87aa4c49e95 1984
phungductung 0:e87aa4c49e95 1985 /**
phungductung 0:e87aa4c49e95 1986 * @brief Q7 vector multiplication.
phungductung 0:e87aa4c49e95 1987 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 1988 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 1989 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 1990 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 1991 * @return none.
phungductung 0:e87aa4c49e95 1992 */
phungductung 0:e87aa4c49e95 1993
phungductung 0:e87aa4c49e95 1994 void arm_mult_q7(
phungductung 0:e87aa4c49e95 1995 q7_t * pSrcA,
phungductung 0:e87aa4c49e95 1996 q7_t * pSrcB,
phungductung 0:e87aa4c49e95 1997 q7_t * pDst,
phungductung 0:e87aa4c49e95 1998 uint32_t blockSize);
phungductung 0:e87aa4c49e95 1999
phungductung 0:e87aa4c49e95 2000 /**
phungductung 0:e87aa4c49e95 2001 * @brief Q15 vector multiplication.
phungductung 0:e87aa4c49e95 2002 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2003 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2004 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2005 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2006 * @return none.
phungductung 0:e87aa4c49e95 2007 */
phungductung 0:e87aa4c49e95 2008
phungductung 0:e87aa4c49e95 2009 void arm_mult_q15(
phungductung 0:e87aa4c49e95 2010 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 2011 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 2012 q15_t * pDst,
phungductung 0:e87aa4c49e95 2013 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2014
phungductung 0:e87aa4c49e95 2015 /**
phungductung 0:e87aa4c49e95 2016 * @brief Q31 vector multiplication.
phungductung 0:e87aa4c49e95 2017 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2018 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2019 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2020 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2021 * @return none.
phungductung 0:e87aa4c49e95 2022 */
phungductung 0:e87aa4c49e95 2023
phungductung 0:e87aa4c49e95 2024 void arm_mult_q31(
phungductung 0:e87aa4c49e95 2025 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 2026 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 2027 q31_t * pDst,
phungductung 0:e87aa4c49e95 2028 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2029
phungductung 0:e87aa4c49e95 2030 /**
phungductung 0:e87aa4c49e95 2031 * @brief Floating-point vector multiplication.
phungductung 0:e87aa4c49e95 2032 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2033 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2034 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2035 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2036 * @return none.
phungductung 0:e87aa4c49e95 2037 */
phungductung 0:e87aa4c49e95 2038
phungductung 0:e87aa4c49e95 2039 void arm_mult_f32(
phungductung 0:e87aa4c49e95 2040 float32_t * pSrcA,
phungductung 0:e87aa4c49e95 2041 float32_t * pSrcB,
phungductung 0:e87aa4c49e95 2042 float32_t * pDst,
phungductung 0:e87aa4c49e95 2043 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2044
phungductung 0:e87aa4c49e95 2045
phungductung 0:e87aa4c49e95 2046
phungductung 0:e87aa4c49e95 2047
phungductung 0:e87aa4c49e95 2048
phungductung 0:e87aa4c49e95 2049
phungductung 0:e87aa4c49e95 2050 /**
phungductung 0:e87aa4c49e95 2051 * @brief Instance structure for the Q15 CFFT/CIFFT function.
phungductung 0:e87aa4c49e95 2052 */
phungductung 0:e87aa4c49e95 2053
phungductung 0:e87aa4c49e95 2054 typedef struct
phungductung 0:e87aa4c49e95 2055 {
phungductung 0:e87aa4c49e95 2056 uint16_t fftLen; /**< length of the FFT. */
phungductung 0:e87aa4c49e95 2057 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
phungductung 0:e87aa4c49e95 2058 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
phungductung 0:e87aa4c49e95 2059 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
phungductung 0:e87aa4c49e95 2060 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
phungductung 0:e87aa4c49e95 2061 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
phungductung 0:e87aa4c49e95 2062 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
phungductung 0:e87aa4c49e95 2063 } arm_cfft_radix2_instance_q15;
phungductung 0:e87aa4c49e95 2064
phungductung 0:e87aa4c49e95 2065 /* Deprecated */
phungductung 0:e87aa4c49e95 2066 arm_status arm_cfft_radix2_init_q15(
phungductung 0:e87aa4c49e95 2067 arm_cfft_radix2_instance_q15 * S,
phungductung 0:e87aa4c49e95 2068 uint16_t fftLen,
phungductung 0:e87aa4c49e95 2069 uint8_t ifftFlag,
phungductung 0:e87aa4c49e95 2070 uint8_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2071
phungductung 0:e87aa4c49e95 2072 /* Deprecated */
phungductung 0:e87aa4c49e95 2073 void arm_cfft_radix2_q15(
phungductung 0:e87aa4c49e95 2074 const arm_cfft_radix2_instance_q15 * S,
phungductung 0:e87aa4c49e95 2075 q15_t * pSrc);
phungductung 0:e87aa4c49e95 2076
phungductung 0:e87aa4c49e95 2077
phungductung 0:e87aa4c49e95 2078
phungductung 0:e87aa4c49e95 2079 /**
phungductung 0:e87aa4c49e95 2080 * @brief Instance structure for the Q15 CFFT/CIFFT function.
phungductung 0:e87aa4c49e95 2081 */
phungductung 0:e87aa4c49e95 2082
phungductung 0:e87aa4c49e95 2083 typedef struct
phungductung 0:e87aa4c49e95 2084 {
phungductung 0:e87aa4c49e95 2085 uint16_t fftLen; /**< length of the FFT. */
phungductung 0:e87aa4c49e95 2086 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
phungductung 0:e87aa4c49e95 2087 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
phungductung 0:e87aa4c49e95 2088 q15_t *pTwiddle; /**< points to the twiddle factor table. */
phungductung 0:e87aa4c49e95 2089 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
phungductung 0:e87aa4c49e95 2090 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
phungductung 0:e87aa4c49e95 2091 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
phungductung 0:e87aa4c49e95 2092 } arm_cfft_radix4_instance_q15;
phungductung 0:e87aa4c49e95 2093
phungductung 0:e87aa4c49e95 2094 /* Deprecated */
phungductung 0:e87aa4c49e95 2095 arm_status arm_cfft_radix4_init_q15(
phungductung 0:e87aa4c49e95 2096 arm_cfft_radix4_instance_q15 * S,
phungductung 0:e87aa4c49e95 2097 uint16_t fftLen,
phungductung 0:e87aa4c49e95 2098 uint8_t ifftFlag,
phungductung 0:e87aa4c49e95 2099 uint8_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2100
phungductung 0:e87aa4c49e95 2101 /* Deprecated */
phungductung 0:e87aa4c49e95 2102 void arm_cfft_radix4_q15(
phungductung 0:e87aa4c49e95 2103 const arm_cfft_radix4_instance_q15 * S,
phungductung 0:e87aa4c49e95 2104 q15_t * pSrc);
phungductung 0:e87aa4c49e95 2105
phungductung 0:e87aa4c49e95 2106 /**
phungductung 0:e87aa4c49e95 2107 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
phungductung 0:e87aa4c49e95 2108 */
phungductung 0:e87aa4c49e95 2109
phungductung 0:e87aa4c49e95 2110 typedef struct
phungductung 0:e87aa4c49e95 2111 {
phungductung 0:e87aa4c49e95 2112 uint16_t fftLen; /**< length of the FFT. */
phungductung 0:e87aa4c49e95 2113 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
phungductung 0:e87aa4c49e95 2114 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
phungductung 0:e87aa4c49e95 2115 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
phungductung 0:e87aa4c49e95 2116 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
phungductung 0:e87aa4c49e95 2117 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
phungductung 0:e87aa4c49e95 2118 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
phungductung 0:e87aa4c49e95 2119 } arm_cfft_radix2_instance_q31;
phungductung 0:e87aa4c49e95 2120
phungductung 0:e87aa4c49e95 2121 /* Deprecated */
phungductung 0:e87aa4c49e95 2122 arm_status arm_cfft_radix2_init_q31(
phungductung 0:e87aa4c49e95 2123 arm_cfft_radix2_instance_q31 * S,
phungductung 0:e87aa4c49e95 2124 uint16_t fftLen,
phungductung 0:e87aa4c49e95 2125 uint8_t ifftFlag,
phungductung 0:e87aa4c49e95 2126 uint8_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2127
phungductung 0:e87aa4c49e95 2128 /* Deprecated */
phungductung 0:e87aa4c49e95 2129 void arm_cfft_radix2_q31(
phungductung 0:e87aa4c49e95 2130 const arm_cfft_radix2_instance_q31 * S,
phungductung 0:e87aa4c49e95 2131 q31_t * pSrc);
phungductung 0:e87aa4c49e95 2132
phungductung 0:e87aa4c49e95 2133 /**
phungductung 0:e87aa4c49e95 2134 * @brief Instance structure for the Q31 CFFT/CIFFT function.
phungductung 0:e87aa4c49e95 2135 */
phungductung 0:e87aa4c49e95 2136
phungductung 0:e87aa4c49e95 2137 typedef struct
phungductung 0:e87aa4c49e95 2138 {
phungductung 0:e87aa4c49e95 2139 uint16_t fftLen; /**< length of the FFT. */
phungductung 0:e87aa4c49e95 2140 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
phungductung 0:e87aa4c49e95 2141 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
phungductung 0:e87aa4c49e95 2142 q31_t *pTwiddle; /**< points to the twiddle factor table. */
phungductung 0:e87aa4c49e95 2143 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
phungductung 0:e87aa4c49e95 2144 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
phungductung 0:e87aa4c49e95 2145 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
phungductung 0:e87aa4c49e95 2146 } arm_cfft_radix4_instance_q31;
phungductung 0:e87aa4c49e95 2147
phungductung 0:e87aa4c49e95 2148 /* Deprecated */
phungductung 0:e87aa4c49e95 2149 void arm_cfft_radix4_q31(
phungductung 0:e87aa4c49e95 2150 const arm_cfft_radix4_instance_q31 * S,
phungductung 0:e87aa4c49e95 2151 q31_t * pSrc);
phungductung 0:e87aa4c49e95 2152
phungductung 0:e87aa4c49e95 2153 /* Deprecated */
phungductung 0:e87aa4c49e95 2154 arm_status arm_cfft_radix4_init_q31(
phungductung 0:e87aa4c49e95 2155 arm_cfft_radix4_instance_q31 * S,
phungductung 0:e87aa4c49e95 2156 uint16_t fftLen,
phungductung 0:e87aa4c49e95 2157 uint8_t ifftFlag,
phungductung 0:e87aa4c49e95 2158 uint8_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2159
phungductung 0:e87aa4c49e95 2160 /**
phungductung 0:e87aa4c49e95 2161 * @brief Instance structure for the floating-point CFFT/CIFFT function.
phungductung 0:e87aa4c49e95 2162 */
phungductung 0:e87aa4c49e95 2163
phungductung 0:e87aa4c49e95 2164 typedef struct
phungductung 0:e87aa4c49e95 2165 {
phungductung 0:e87aa4c49e95 2166 uint16_t fftLen; /**< length of the FFT. */
phungductung 0:e87aa4c49e95 2167 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
phungductung 0:e87aa4c49e95 2168 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
phungductung 0:e87aa4c49e95 2169 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
phungductung 0:e87aa4c49e95 2170 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
phungductung 0:e87aa4c49e95 2171 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
phungductung 0:e87aa4c49e95 2172 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
phungductung 0:e87aa4c49e95 2173 float32_t onebyfftLen; /**< value of 1/fftLen. */
phungductung 0:e87aa4c49e95 2174 } arm_cfft_radix2_instance_f32;
phungductung 0:e87aa4c49e95 2175
phungductung 0:e87aa4c49e95 2176 /* Deprecated */
phungductung 0:e87aa4c49e95 2177 arm_status arm_cfft_radix2_init_f32(
phungductung 0:e87aa4c49e95 2178 arm_cfft_radix2_instance_f32 * S,
phungductung 0:e87aa4c49e95 2179 uint16_t fftLen,
phungductung 0:e87aa4c49e95 2180 uint8_t ifftFlag,
phungductung 0:e87aa4c49e95 2181 uint8_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2182
phungductung 0:e87aa4c49e95 2183 /* Deprecated */
phungductung 0:e87aa4c49e95 2184 void arm_cfft_radix2_f32(
phungductung 0:e87aa4c49e95 2185 const arm_cfft_radix2_instance_f32 * S,
phungductung 0:e87aa4c49e95 2186 float32_t * pSrc);
phungductung 0:e87aa4c49e95 2187
phungductung 0:e87aa4c49e95 2188 /**
phungductung 0:e87aa4c49e95 2189 * @brief Instance structure for the floating-point CFFT/CIFFT function.
phungductung 0:e87aa4c49e95 2190 */
phungductung 0:e87aa4c49e95 2191
phungductung 0:e87aa4c49e95 2192 typedef struct
phungductung 0:e87aa4c49e95 2193 {
phungductung 0:e87aa4c49e95 2194 uint16_t fftLen; /**< length of the FFT. */
phungductung 0:e87aa4c49e95 2195 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
phungductung 0:e87aa4c49e95 2196 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
phungductung 0:e87aa4c49e95 2197 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
phungductung 0:e87aa4c49e95 2198 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
phungductung 0:e87aa4c49e95 2199 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
phungductung 0:e87aa4c49e95 2200 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
phungductung 0:e87aa4c49e95 2201 float32_t onebyfftLen; /**< value of 1/fftLen. */
phungductung 0:e87aa4c49e95 2202 } arm_cfft_radix4_instance_f32;
phungductung 0:e87aa4c49e95 2203
phungductung 0:e87aa4c49e95 2204 /* Deprecated */
phungductung 0:e87aa4c49e95 2205 arm_status arm_cfft_radix4_init_f32(
phungductung 0:e87aa4c49e95 2206 arm_cfft_radix4_instance_f32 * S,
phungductung 0:e87aa4c49e95 2207 uint16_t fftLen,
phungductung 0:e87aa4c49e95 2208 uint8_t ifftFlag,
phungductung 0:e87aa4c49e95 2209 uint8_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2210
phungductung 0:e87aa4c49e95 2211 /* Deprecated */
phungductung 0:e87aa4c49e95 2212 void arm_cfft_radix4_f32(
phungductung 0:e87aa4c49e95 2213 const arm_cfft_radix4_instance_f32 * S,
phungductung 0:e87aa4c49e95 2214 float32_t * pSrc);
phungductung 0:e87aa4c49e95 2215
phungductung 0:e87aa4c49e95 2216 /**
phungductung 0:e87aa4c49e95 2217 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
phungductung 0:e87aa4c49e95 2218 */
phungductung 0:e87aa4c49e95 2219
phungductung 0:e87aa4c49e95 2220 typedef struct
phungductung 0:e87aa4c49e95 2221 {
phungductung 0:e87aa4c49e95 2222 uint16_t fftLen; /**< length of the FFT. */
phungductung 0:e87aa4c49e95 2223 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
phungductung 0:e87aa4c49e95 2224 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
phungductung 0:e87aa4c49e95 2225 uint16_t bitRevLength; /**< bit reversal table length. */
phungductung 0:e87aa4c49e95 2226 } arm_cfft_instance_q15;
phungductung 0:e87aa4c49e95 2227
phungductung 0:e87aa4c49e95 2228 void arm_cfft_q15(
phungductung 0:e87aa4c49e95 2229 const arm_cfft_instance_q15 * S,
phungductung 0:e87aa4c49e95 2230 q15_t * p1,
phungductung 0:e87aa4c49e95 2231 uint8_t ifftFlag,
phungductung 0:e87aa4c49e95 2232 uint8_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2233
phungductung 0:e87aa4c49e95 2234 /**
phungductung 0:e87aa4c49e95 2235 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
phungductung 0:e87aa4c49e95 2236 */
phungductung 0:e87aa4c49e95 2237
phungductung 0:e87aa4c49e95 2238 typedef struct
phungductung 0:e87aa4c49e95 2239 {
phungductung 0:e87aa4c49e95 2240 uint16_t fftLen; /**< length of the FFT. */
phungductung 0:e87aa4c49e95 2241 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
phungductung 0:e87aa4c49e95 2242 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
phungductung 0:e87aa4c49e95 2243 uint16_t bitRevLength; /**< bit reversal table length. */
phungductung 0:e87aa4c49e95 2244 } arm_cfft_instance_q31;
phungductung 0:e87aa4c49e95 2245
phungductung 0:e87aa4c49e95 2246 void arm_cfft_q31(
phungductung 0:e87aa4c49e95 2247 const arm_cfft_instance_q31 * S,
phungductung 0:e87aa4c49e95 2248 q31_t * p1,
phungductung 0:e87aa4c49e95 2249 uint8_t ifftFlag,
phungductung 0:e87aa4c49e95 2250 uint8_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2251
phungductung 0:e87aa4c49e95 2252 /**
phungductung 0:e87aa4c49e95 2253 * @brief Instance structure for the floating-point CFFT/CIFFT function.
phungductung 0:e87aa4c49e95 2254 */
phungductung 0:e87aa4c49e95 2255
phungductung 0:e87aa4c49e95 2256 typedef struct
phungductung 0:e87aa4c49e95 2257 {
phungductung 0:e87aa4c49e95 2258 uint16_t fftLen; /**< length of the FFT. */
phungductung 0:e87aa4c49e95 2259 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
phungductung 0:e87aa4c49e95 2260 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
phungductung 0:e87aa4c49e95 2261 uint16_t bitRevLength; /**< bit reversal table length. */
phungductung 0:e87aa4c49e95 2262 } arm_cfft_instance_f32;
phungductung 0:e87aa4c49e95 2263
phungductung 0:e87aa4c49e95 2264 void arm_cfft_f32(
phungductung 0:e87aa4c49e95 2265 const arm_cfft_instance_f32 * S,
phungductung 0:e87aa4c49e95 2266 float32_t * p1,
phungductung 0:e87aa4c49e95 2267 uint8_t ifftFlag,
phungductung 0:e87aa4c49e95 2268 uint8_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2269
phungductung 0:e87aa4c49e95 2270 /**
phungductung 0:e87aa4c49e95 2271 * @brief Instance structure for the Q15 RFFT/RIFFT function.
phungductung 0:e87aa4c49e95 2272 */
phungductung 0:e87aa4c49e95 2273
phungductung 0:e87aa4c49e95 2274 typedef struct
phungductung 0:e87aa4c49e95 2275 {
phungductung 0:e87aa4c49e95 2276 uint32_t fftLenReal; /**< length of the real FFT. */
phungductung 0:e87aa4c49e95 2277 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
phungductung 0:e87aa4c49e95 2278 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
phungductung 0:e87aa4c49e95 2279 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
phungductung 0:e87aa4c49e95 2280 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
phungductung 0:e87aa4c49e95 2281 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
phungductung 0:e87aa4c49e95 2282 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
phungductung 0:e87aa4c49e95 2283 } arm_rfft_instance_q15;
phungductung 0:e87aa4c49e95 2284
phungductung 0:e87aa4c49e95 2285 arm_status arm_rfft_init_q15(
phungductung 0:e87aa4c49e95 2286 arm_rfft_instance_q15 * S,
phungductung 0:e87aa4c49e95 2287 uint32_t fftLenReal,
phungductung 0:e87aa4c49e95 2288 uint32_t ifftFlagR,
phungductung 0:e87aa4c49e95 2289 uint32_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2290
phungductung 0:e87aa4c49e95 2291 void arm_rfft_q15(
phungductung 0:e87aa4c49e95 2292 const arm_rfft_instance_q15 * S,
phungductung 0:e87aa4c49e95 2293 q15_t * pSrc,
phungductung 0:e87aa4c49e95 2294 q15_t * pDst);
phungductung 0:e87aa4c49e95 2295
phungductung 0:e87aa4c49e95 2296 /**
phungductung 0:e87aa4c49e95 2297 * @brief Instance structure for the Q31 RFFT/RIFFT function.
phungductung 0:e87aa4c49e95 2298 */
phungductung 0:e87aa4c49e95 2299
phungductung 0:e87aa4c49e95 2300 typedef struct
phungductung 0:e87aa4c49e95 2301 {
phungductung 0:e87aa4c49e95 2302 uint32_t fftLenReal; /**< length of the real FFT. */
phungductung 0:e87aa4c49e95 2303 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
phungductung 0:e87aa4c49e95 2304 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
phungductung 0:e87aa4c49e95 2305 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
phungductung 0:e87aa4c49e95 2306 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
phungductung 0:e87aa4c49e95 2307 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
phungductung 0:e87aa4c49e95 2308 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
phungductung 0:e87aa4c49e95 2309 } arm_rfft_instance_q31;
phungductung 0:e87aa4c49e95 2310
phungductung 0:e87aa4c49e95 2311 arm_status arm_rfft_init_q31(
phungductung 0:e87aa4c49e95 2312 arm_rfft_instance_q31 * S,
phungductung 0:e87aa4c49e95 2313 uint32_t fftLenReal,
phungductung 0:e87aa4c49e95 2314 uint32_t ifftFlagR,
phungductung 0:e87aa4c49e95 2315 uint32_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2316
phungductung 0:e87aa4c49e95 2317 void arm_rfft_q31(
phungductung 0:e87aa4c49e95 2318 const arm_rfft_instance_q31 * S,
phungductung 0:e87aa4c49e95 2319 q31_t * pSrc,
phungductung 0:e87aa4c49e95 2320 q31_t * pDst);
phungductung 0:e87aa4c49e95 2321
phungductung 0:e87aa4c49e95 2322 /**
phungductung 0:e87aa4c49e95 2323 * @brief Instance structure for the floating-point RFFT/RIFFT function.
phungductung 0:e87aa4c49e95 2324 */
phungductung 0:e87aa4c49e95 2325
phungductung 0:e87aa4c49e95 2326 typedef struct
phungductung 0:e87aa4c49e95 2327 {
phungductung 0:e87aa4c49e95 2328 uint32_t fftLenReal; /**< length of the real FFT. */
phungductung 0:e87aa4c49e95 2329 uint16_t fftLenBy2; /**< length of the complex FFT. */
phungductung 0:e87aa4c49e95 2330 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
phungductung 0:e87aa4c49e95 2331 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
phungductung 0:e87aa4c49e95 2332 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
phungductung 0:e87aa4c49e95 2333 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
phungductung 0:e87aa4c49e95 2334 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
phungductung 0:e87aa4c49e95 2335 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
phungductung 0:e87aa4c49e95 2336 } arm_rfft_instance_f32;
phungductung 0:e87aa4c49e95 2337
phungductung 0:e87aa4c49e95 2338 arm_status arm_rfft_init_f32(
phungductung 0:e87aa4c49e95 2339 arm_rfft_instance_f32 * S,
phungductung 0:e87aa4c49e95 2340 arm_cfft_radix4_instance_f32 * S_CFFT,
phungductung 0:e87aa4c49e95 2341 uint32_t fftLenReal,
phungductung 0:e87aa4c49e95 2342 uint32_t ifftFlagR,
phungductung 0:e87aa4c49e95 2343 uint32_t bitReverseFlag);
phungductung 0:e87aa4c49e95 2344
phungductung 0:e87aa4c49e95 2345 void arm_rfft_f32(
phungductung 0:e87aa4c49e95 2346 const arm_rfft_instance_f32 * S,
phungductung 0:e87aa4c49e95 2347 float32_t * pSrc,
phungductung 0:e87aa4c49e95 2348 float32_t * pDst);
phungductung 0:e87aa4c49e95 2349
phungductung 0:e87aa4c49e95 2350 /**
phungductung 0:e87aa4c49e95 2351 * @brief Instance structure for the floating-point RFFT/RIFFT function.
phungductung 0:e87aa4c49e95 2352 */
phungductung 0:e87aa4c49e95 2353
phungductung 0:e87aa4c49e95 2354 typedef struct
phungductung 0:e87aa4c49e95 2355 {
phungductung 0:e87aa4c49e95 2356 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
phungductung 0:e87aa4c49e95 2357 uint16_t fftLenRFFT; /**< length of the real sequence */
phungductung 0:e87aa4c49e95 2358 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
phungductung 0:e87aa4c49e95 2359 } arm_rfft_fast_instance_f32 ;
phungductung 0:e87aa4c49e95 2360
phungductung 0:e87aa4c49e95 2361 arm_status arm_rfft_fast_init_f32 (
phungductung 0:e87aa4c49e95 2362 arm_rfft_fast_instance_f32 * S,
phungductung 0:e87aa4c49e95 2363 uint16_t fftLen);
phungductung 0:e87aa4c49e95 2364
phungductung 0:e87aa4c49e95 2365 void arm_rfft_fast_f32(
phungductung 0:e87aa4c49e95 2366 arm_rfft_fast_instance_f32 * S,
phungductung 0:e87aa4c49e95 2367 float32_t * p, float32_t * pOut,
phungductung 0:e87aa4c49e95 2368 uint8_t ifftFlag);
phungductung 0:e87aa4c49e95 2369
phungductung 0:e87aa4c49e95 2370 /**
phungductung 0:e87aa4c49e95 2371 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
phungductung 0:e87aa4c49e95 2372 */
phungductung 0:e87aa4c49e95 2373
phungductung 0:e87aa4c49e95 2374 typedef struct
phungductung 0:e87aa4c49e95 2375 {
phungductung 0:e87aa4c49e95 2376 uint16_t N; /**< length of the DCT4. */
phungductung 0:e87aa4c49e95 2377 uint16_t Nby2; /**< half of the length of the DCT4. */
phungductung 0:e87aa4c49e95 2378 float32_t normalize; /**< normalizing factor. */
phungductung 0:e87aa4c49e95 2379 float32_t *pTwiddle; /**< points to the twiddle factor table. */
phungductung 0:e87aa4c49e95 2380 float32_t *pCosFactor; /**< points to the cosFactor table. */
phungductung 0:e87aa4c49e95 2381 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
phungductung 0:e87aa4c49e95 2382 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
phungductung 0:e87aa4c49e95 2383 } arm_dct4_instance_f32;
phungductung 0:e87aa4c49e95 2384
phungductung 0:e87aa4c49e95 2385 /**
phungductung 0:e87aa4c49e95 2386 * @brief Initialization function for the floating-point DCT4/IDCT4.
phungductung 0:e87aa4c49e95 2387 * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
phungductung 0:e87aa4c49e95 2388 * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
phungductung 0:e87aa4c49e95 2389 * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
phungductung 0:e87aa4c49e95 2390 * @param[in] N length of the DCT4.
phungductung 0:e87aa4c49e95 2391 * @param[in] Nby2 half of the length of the DCT4.
phungductung 0:e87aa4c49e95 2392 * @param[in] normalize normalizing factor.
phungductung 0:e87aa4c49e95 2393 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
phungductung 0:e87aa4c49e95 2394 */
phungductung 0:e87aa4c49e95 2395
phungductung 0:e87aa4c49e95 2396 arm_status arm_dct4_init_f32(
phungductung 0:e87aa4c49e95 2397 arm_dct4_instance_f32 * S,
phungductung 0:e87aa4c49e95 2398 arm_rfft_instance_f32 * S_RFFT,
phungductung 0:e87aa4c49e95 2399 arm_cfft_radix4_instance_f32 * S_CFFT,
phungductung 0:e87aa4c49e95 2400 uint16_t N,
phungductung 0:e87aa4c49e95 2401 uint16_t Nby2,
phungductung 0:e87aa4c49e95 2402 float32_t normalize);
phungductung 0:e87aa4c49e95 2403
phungductung 0:e87aa4c49e95 2404 /**
phungductung 0:e87aa4c49e95 2405 * @brief Processing function for the floating-point DCT4/IDCT4.
phungductung 0:e87aa4c49e95 2406 * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
phungductung 0:e87aa4c49e95 2407 * @param[in] *pState points to state buffer.
phungductung 0:e87aa4c49e95 2408 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
phungductung 0:e87aa4c49e95 2409 * @return none.
phungductung 0:e87aa4c49e95 2410 */
phungductung 0:e87aa4c49e95 2411
phungductung 0:e87aa4c49e95 2412 void arm_dct4_f32(
phungductung 0:e87aa4c49e95 2413 const arm_dct4_instance_f32 * S,
phungductung 0:e87aa4c49e95 2414 float32_t * pState,
phungductung 0:e87aa4c49e95 2415 float32_t * pInlineBuffer);
phungductung 0:e87aa4c49e95 2416
phungductung 0:e87aa4c49e95 2417 /**
phungductung 0:e87aa4c49e95 2418 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
phungductung 0:e87aa4c49e95 2419 */
phungductung 0:e87aa4c49e95 2420
phungductung 0:e87aa4c49e95 2421 typedef struct
phungductung 0:e87aa4c49e95 2422 {
phungductung 0:e87aa4c49e95 2423 uint16_t N; /**< length of the DCT4. */
phungductung 0:e87aa4c49e95 2424 uint16_t Nby2; /**< half of the length of the DCT4. */
phungductung 0:e87aa4c49e95 2425 q31_t normalize; /**< normalizing factor. */
phungductung 0:e87aa4c49e95 2426 q31_t *pTwiddle; /**< points to the twiddle factor table. */
phungductung 0:e87aa4c49e95 2427 q31_t *pCosFactor; /**< points to the cosFactor table. */
phungductung 0:e87aa4c49e95 2428 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
phungductung 0:e87aa4c49e95 2429 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
phungductung 0:e87aa4c49e95 2430 } arm_dct4_instance_q31;
phungductung 0:e87aa4c49e95 2431
phungductung 0:e87aa4c49e95 2432 /**
phungductung 0:e87aa4c49e95 2433 * @brief Initialization function for the Q31 DCT4/IDCT4.
phungductung 0:e87aa4c49e95 2434 * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
phungductung 0:e87aa4c49e95 2435 * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
phungductung 0:e87aa4c49e95 2436 * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
phungductung 0:e87aa4c49e95 2437 * @param[in] N length of the DCT4.
phungductung 0:e87aa4c49e95 2438 * @param[in] Nby2 half of the length of the DCT4.
phungductung 0:e87aa4c49e95 2439 * @param[in] normalize normalizing factor.
phungductung 0:e87aa4c49e95 2440 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
phungductung 0:e87aa4c49e95 2441 */
phungductung 0:e87aa4c49e95 2442
phungductung 0:e87aa4c49e95 2443 arm_status arm_dct4_init_q31(
phungductung 0:e87aa4c49e95 2444 arm_dct4_instance_q31 * S,
phungductung 0:e87aa4c49e95 2445 arm_rfft_instance_q31 * S_RFFT,
phungductung 0:e87aa4c49e95 2446 arm_cfft_radix4_instance_q31 * S_CFFT,
phungductung 0:e87aa4c49e95 2447 uint16_t N,
phungductung 0:e87aa4c49e95 2448 uint16_t Nby2,
phungductung 0:e87aa4c49e95 2449 q31_t normalize);
phungductung 0:e87aa4c49e95 2450
phungductung 0:e87aa4c49e95 2451 /**
phungductung 0:e87aa4c49e95 2452 * @brief Processing function for the Q31 DCT4/IDCT4.
phungductung 0:e87aa4c49e95 2453 * @param[in] *S points to an instance of the Q31 DCT4 structure.
phungductung 0:e87aa4c49e95 2454 * @param[in] *pState points to state buffer.
phungductung 0:e87aa4c49e95 2455 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
phungductung 0:e87aa4c49e95 2456 * @return none.
phungductung 0:e87aa4c49e95 2457 */
phungductung 0:e87aa4c49e95 2458
phungductung 0:e87aa4c49e95 2459 void arm_dct4_q31(
phungductung 0:e87aa4c49e95 2460 const arm_dct4_instance_q31 * S,
phungductung 0:e87aa4c49e95 2461 q31_t * pState,
phungductung 0:e87aa4c49e95 2462 q31_t * pInlineBuffer);
phungductung 0:e87aa4c49e95 2463
phungductung 0:e87aa4c49e95 2464 /**
phungductung 0:e87aa4c49e95 2465 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
phungductung 0:e87aa4c49e95 2466 */
phungductung 0:e87aa4c49e95 2467
phungductung 0:e87aa4c49e95 2468 typedef struct
phungductung 0:e87aa4c49e95 2469 {
phungductung 0:e87aa4c49e95 2470 uint16_t N; /**< length of the DCT4. */
phungductung 0:e87aa4c49e95 2471 uint16_t Nby2; /**< half of the length of the DCT4. */
phungductung 0:e87aa4c49e95 2472 q15_t normalize; /**< normalizing factor. */
phungductung 0:e87aa4c49e95 2473 q15_t *pTwiddle; /**< points to the twiddle factor table. */
phungductung 0:e87aa4c49e95 2474 q15_t *pCosFactor; /**< points to the cosFactor table. */
phungductung 0:e87aa4c49e95 2475 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
phungductung 0:e87aa4c49e95 2476 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
phungductung 0:e87aa4c49e95 2477 } arm_dct4_instance_q15;
phungductung 0:e87aa4c49e95 2478
phungductung 0:e87aa4c49e95 2479 /**
phungductung 0:e87aa4c49e95 2480 * @brief Initialization function for the Q15 DCT4/IDCT4.
phungductung 0:e87aa4c49e95 2481 * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
phungductung 0:e87aa4c49e95 2482 * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
phungductung 0:e87aa4c49e95 2483 * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
phungductung 0:e87aa4c49e95 2484 * @param[in] N length of the DCT4.
phungductung 0:e87aa4c49e95 2485 * @param[in] Nby2 half of the length of the DCT4.
phungductung 0:e87aa4c49e95 2486 * @param[in] normalize normalizing factor.
phungductung 0:e87aa4c49e95 2487 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
phungductung 0:e87aa4c49e95 2488 */
phungductung 0:e87aa4c49e95 2489
phungductung 0:e87aa4c49e95 2490 arm_status arm_dct4_init_q15(
phungductung 0:e87aa4c49e95 2491 arm_dct4_instance_q15 * S,
phungductung 0:e87aa4c49e95 2492 arm_rfft_instance_q15 * S_RFFT,
phungductung 0:e87aa4c49e95 2493 arm_cfft_radix4_instance_q15 * S_CFFT,
phungductung 0:e87aa4c49e95 2494 uint16_t N,
phungductung 0:e87aa4c49e95 2495 uint16_t Nby2,
phungductung 0:e87aa4c49e95 2496 q15_t normalize);
phungductung 0:e87aa4c49e95 2497
phungductung 0:e87aa4c49e95 2498 /**
phungductung 0:e87aa4c49e95 2499 * @brief Processing function for the Q15 DCT4/IDCT4.
phungductung 0:e87aa4c49e95 2500 * @param[in] *S points to an instance of the Q15 DCT4 structure.
phungductung 0:e87aa4c49e95 2501 * @param[in] *pState points to state buffer.
phungductung 0:e87aa4c49e95 2502 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
phungductung 0:e87aa4c49e95 2503 * @return none.
phungductung 0:e87aa4c49e95 2504 */
phungductung 0:e87aa4c49e95 2505
phungductung 0:e87aa4c49e95 2506 void arm_dct4_q15(
phungductung 0:e87aa4c49e95 2507 const arm_dct4_instance_q15 * S,
phungductung 0:e87aa4c49e95 2508 q15_t * pState,
phungductung 0:e87aa4c49e95 2509 q15_t * pInlineBuffer);
phungductung 0:e87aa4c49e95 2510
phungductung 0:e87aa4c49e95 2511 /**
phungductung 0:e87aa4c49e95 2512 * @brief Floating-point vector addition.
phungductung 0:e87aa4c49e95 2513 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2514 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2515 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2516 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2517 * @return none.
phungductung 0:e87aa4c49e95 2518 */
phungductung 0:e87aa4c49e95 2519
phungductung 0:e87aa4c49e95 2520 void arm_add_f32(
phungductung 0:e87aa4c49e95 2521 float32_t * pSrcA,
phungductung 0:e87aa4c49e95 2522 float32_t * pSrcB,
phungductung 0:e87aa4c49e95 2523 float32_t * pDst,
phungductung 0:e87aa4c49e95 2524 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2525
phungductung 0:e87aa4c49e95 2526 /**
phungductung 0:e87aa4c49e95 2527 * @brief Q7 vector addition.
phungductung 0:e87aa4c49e95 2528 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2529 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2530 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2531 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2532 * @return none.
phungductung 0:e87aa4c49e95 2533 */
phungductung 0:e87aa4c49e95 2534
phungductung 0:e87aa4c49e95 2535 void arm_add_q7(
phungductung 0:e87aa4c49e95 2536 q7_t * pSrcA,
phungductung 0:e87aa4c49e95 2537 q7_t * pSrcB,
phungductung 0:e87aa4c49e95 2538 q7_t * pDst,
phungductung 0:e87aa4c49e95 2539 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2540
phungductung 0:e87aa4c49e95 2541 /**
phungductung 0:e87aa4c49e95 2542 * @brief Q15 vector addition.
phungductung 0:e87aa4c49e95 2543 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2544 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2545 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2546 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2547 * @return none.
phungductung 0:e87aa4c49e95 2548 */
phungductung 0:e87aa4c49e95 2549
phungductung 0:e87aa4c49e95 2550 void arm_add_q15(
phungductung 0:e87aa4c49e95 2551 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 2552 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 2553 q15_t * pDst,
phungductung 0:e87aa4c49e95 2554 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2555
phungductung 0:e87aa4c49e95 2556 /**
phungductung 0:e87aa4c49e95 2557 * @brief Q31 vector addition.
phungductung 0:e87aa4c49e95 2558 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2559 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2560 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2561 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2562 * @return none.
phungductung 0:e87aa4c49e95 2563 */
phungductung 0:e87aa4c49e95 2564
phungductung 0:e87aa4c49e95 2565 void arm_add_q31(
phungductung 0:e87aa4c49e95 2566 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 2567 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 2568 q31_t * pDst,
phungductung 0:e87aa4c49e95 2569 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2570
phungductung 0:e87aa4c49e95 2571 /**
phungductung 0:e87aa4c49e95 2572 * @brief Floating-point vector subtraction.
phungductung 0:e87aa4c49e95 2573 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2574 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2575 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2576 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2577 * @return none.
phungductung 0:e87aa4c49e95 2578 */
phungductung 0:e87aa4c49e95 2579
phungductung 0:e87aa4c49e95 2580 void arm_sub_f32(
phungductung 0:e87aa4c49e95 2581 float32_t * pSrcA,
phungductung 0:e87aa4c49e95 2582 float32_t * pSrcB,
phungductung 0:e87aa4c49e95 2583 float32_t * pDst,
phungductung 0:e87aa4c49e95 2584 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2585
phungductung 0:e87aa4c49e95 2586 /**
phungductung 0:e87aa4c49e95 2587 * @brief Q7 vector subtraction.
phungductung 0:e87aa4c49e95 2588 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2589 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2590 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2591 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2592 * @return none.
phungductung 0:e87aa4c49e95 2593 */
phungductung 0:e87aa4c49e95 2594
phungductung 0:e87aa4c49e95 2595 void arm_sub_q7(
phungductung 0:e87aa4c49e95 2596 q7_t * pSrcA,
phungductung 0:e87aa4c49e95 2597 q7_t * pSrcB,
phungductung 0:e87aa4c49e95 2598 q7_t * pDst,
phungductung 0:e87aa4c49e95 2599 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2600
phungductung 0:e87aa4c49e95 2601 /**
phungductung 0:e87aa4c49e95 2602 * @brief Q15 vector subtraction.
phungductung 0:e87aa4c49e95 2603 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2604 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2605 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2606 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2607 * @return none.
phungductung 0:e87aa4c49e95 2608 */
phungductung 0:e87aa4c49e95 2609
phungductung 0:e87aa4c49e95 2610 void arm_sub_q15(
phungductung 0:e87aa4c49e95 2611 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 2612 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 2613 q15_t * pDst,
phungductung 0:e87aa4c49e95 2614 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2615
phungductung 0:e87aa4c49e95 2616 /**
phungductung 0:e87aa4c49e95 2617 * @brief Q31 vector subtraction.
phungductung 0:e87aa4c49e95 2618 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2619 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2620 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2621 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2622 * @return none.
phungductung 0:e87aa4c49e95 2623 */
phungductung 0:e87aa4c49e95 2624
phungductung 0:e87aa4c49e95 2625 void arm_sub_q31(
phungductung 0:e87aa4c49e95 2626 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 2627 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 2628 q31_t * pDst,
phungductung 0:e87aa4c49e95 2629 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2630
phungductung 0:e87aa4c49e95 2631 /**
phungductung 0:e87aa4c49e95 2632 * @brief Multiplies a floating-point vector by a scalar.
phungductung 0:e87aa4c49e95 2633 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2634 * @param[in] scale scale factor to be applied
phungductung 0:e87aa4c49e95 2635 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2636 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2637 * @return none.
phungductung 0:e87aa4c49e95 2638 */
phungductung 0:e87aa4c49e95 2639
phungductung 0:e87aa4c49e95 2640 void arm_scale_f32(
phungductung 0:e87aa4c49e95 2641 float32_t * pSrc,
phungductung 0:e87aa4c49e95 2642 float32_t scale,
phungductung 0:e87aa4c49e95 2643 float32_t * pDst,
phungductung 0:e87aa4c49e95 2644 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2645
phungductung 0:e87aa4c49e95 2646 /**
phungductung 0:e87aa4c49e95 2647 * @brief Multiplies a Q7 vector by a scalar.
phungductung 0:e87aa4c49e95 2648 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2649 * @param[in] scaleFract fractional portion of the scale value
phungductung 0:e87aa4c49e95 2650 * @param[in] shift number of bits to shift the result by
phungductung 0:e87aa4c49e95 2651 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2652 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2653 * @return none.
phungductung 0:e87aa4c49e95 2654 */
phungductung 0:e87aa4c49e95 2655
phungductung 0:e87aa4c49e95 2656 void arm_scale_q7(
phungductung 0:e87aa4c49e95 2657 q7_t * pSrc,
phungductung 0:e87aa4c49e95 2658 q7_t scaleFract,
phungductung 0:e87aa4c49e95 2659 int8_t shift,
phungductung 0:e87aa4c49e95 2660 q7_t * pDst,
phungductung 0:e87aa4c49e95 2661 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2662
phungductung 0:e87aa4c49e95 2663 /**
phungductung 0:e87aa4c49e95 2664 * @brief Multiplies a Q15 vector by a scalar.
phungductung 0:e87aa4c49e95 2665 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2666 * @param[in] scaleFract fractional portion of the scale value
phungductung 0:e87aa4c49e95 2667 * @param[in] shift number of bits to shift the result by
phungductung 0:e87aa4c49e95 2668 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2669 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2670 * @return none.
phungductung 0:e87aa4c49e95 2671 */
phungductung 0:e87aa4c49e95 2672
phungductung 0:e87aa4c49e95 2673 void arm_scale_q15(
phungductung 0:e87aa4c49e95 2674 q15_t * pSrc,
phungductung 0:e87aa4c49e95 2675 q15_t scaleFract,
phungductung 0:e87aa4c49e95 2676 int8_t shift,
phungductung 0:e87aa4c49e95 2677 q15_t * pDst,
phungductung 0:e87aa4c49e95 2678 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2679
phungductung 0:e87aa4c49e95 2680 /**
phungductung 0:e87aa4c49e95 2681 * @brief Multiplies a Q31 vector by a scalar.
phungductung 0:e87aa4c49e95 2682 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2683 * @param[in] scaleFract fractional portion of the scale value
phungductung 0:e87aa4c49e95 2684 * @param[in] shift number of bits to shift the result by
phungductung 0:e87aa4c49e95 2685 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2686 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2687 * @return none.
phungductung 0:e87aa4c49e95 2688 */
phungductung 0:e87aa4c49e95 2689
phungductung 0:e87aa4c49e95 2690 void arm_scale_q31(
phungductung 0:e87aa4c49e95 2691 q31_t * pSrc,
phungductung 0:e87aa4c49e95 2692 q31_t scaleFract,
phungductung 0:e87aa4c49e95 2693 int8_t shift,
phungductung 0:e87aa4c49e95 2694 q31_t * pDst,
phungductung 0:e87aa4c49e95 2695 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2696
phungductung 0:e87aa4c49e95 2697 /**
phungductung 0:e87aa4c49e95 2698 * @brief Q7 vector absolute value.
phungductung 0:e87aa4c49e95 2699 * @param[in] *pSrc points to the input buffer
phungductung 0:e87aa4c49e95 2700 * @param[out] *pDst points to the output buffer
phungductung 0:e87aa4c49e95 2701 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2702 * @return none.
phungductung 0:e87aa4c49e95 2703 */
phungductung 0:e87aa4c49e95 2704
phungductung 0:e87aa4c49e95 2705 void arm_abs_q7(
phungductung 0:e87aa4c49e95 2706 q7_t * pSrc,
phungductung 0:e87aa4c49e95 2707 q7_t * pDst,
phungductung 0:e87aa4c49e95 2708 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2709
phungductung 0:e87aa4c49e95 2710 /**
phungductung 0:e87aa4c49e95 2711 * @brief Floating-point vector absolute value.
phungductung 0:e87aa4c49e95 2712 * @param[in] *pSrc points to the input buffer
phungductung 0:e87aa4c49e95 2713 * @param[out] *pDst points to the output buffer
phungductung 0:e87aa4c49e95 2714 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2715 * @return none.
phungductung 0:e87aa4c49e95 2716 */
phungductung 0:e87aa4c49e95 2717
phungductung 0:e87aa4c49e95 2718 void arm_abs_f32(
phungductung 0:e87aa4c49e95 2719 float32_t * pSrc,
phungductung 0:e87aa4c49e95 2720 float32_t * pDst,
phungductung 0:e87aa4c49e95 2721 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2722
phungductung 0:e87aa4c49e95 2723 /**
phungductung 0:e87aa4c49e95 2724 * @brief Q15 vector absolute value.
phungductung 0:e87aa4c49e95 2725 * @param[in] *pSrc points to the input buffer
phungductung 0:e87aa4c49e95 2726 * @param[out] *pDst points to the output buffer
phungductung 0:e87aa4c49e95 2727 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2728 * @return none.
phungductung 0:e87aa4c49e95 2729 */
phungductung 0:e87aa4c49e95 2730
phungductung 0:e87aa4c49e95 2731 void arm_abs_q15(
phungductung 0:e87aa4c49e95 2732 q15_t * pSrc,
phungductung 0:e87aa4c49e95 2733 q15_t * pDst,
phungductung 0:e87aa4c49e95 2734 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2735
phungductung 0:e87aa4c49e95 2736 /**
phungductung 0:e87aa4c49e95 2737 * @brief Q31 vector absolute value.
phungductung 0:e87aa4c49e95 2738 * @param[in] *pSrc points to the input buffer
phungductung 0:e87aa4c49e95 2739 * @param[out] *pDst points to the output buffer
phungductung 0:e87aa4c49e95 2740 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2741 * @return none.
phungductung 0:e87aa4c49e95 2742 */
phungductung 0:e87aa4c49e95 2743
phungductung 0:e87aa4c49e95 2744 void arm_abs_q31(
phungductung 0:e87aa4c49e95 2745 q31_t * pSrc,
phungductung 0:e87aa4c49e95 2746 q31_t * pDst,
phungductung 0:e87aa4c49e95 2747 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2748
phungductung 0:e87aa4c49e95 2749 /**
phungductung 0:e87aa4c49e95 2750 * @brief Dot product of floating-point vectors.
phungductung 0:e87aa4c49e95 2751 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2752 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2753 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2754 * @param[out] *result output result returned here
phungductung 0:e87aa4c49e95 2755 * @return none.
phungductung 0:e87aa4c49e95 2756 */
phungductung 0:e87aa4c49e95 2757
phungductung 0:e87aa4c49e95 2758 void arm_dot_prod_f32(
phungductung 0:e87aa4c49e95 2759 float32_t * pSrcA,
phungductung 0:e87aa4c49e95 2760 float32_t * pSrcB,
phungductung 0:e87aa4c49e95 2761 uint32_t blockSize,
phungductung 0:e87aa4c49e95 2762 float32_t * result);
phungductung 0:e87aa4c49e95 2763
phungductung 0:e87aa4c49e95 2764 /**
phungductung 0:e87aa4c49e95 2765 * @brief Dot product of Q7 vectors.
phungductung 0:e87aa4c49e95 2766 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2767 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2768 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2769 * @param[out] *result output result returned here
phungductung 0:e87aa4c49e95 2770 * @return none.
phungductung 0:e87aa4c49e95 2771 */
phungductung 0:e87aa4c49e95 2772
phungductung 0:e87aa4c49e95 2773 void arm_dot_prod_q7(
phungductung 0:e87aa4c49e95 2774 q7_t * pSrcA,
phungductung 0:e87aa4c49e95 2775 q7_t * pSrcB,
phungductung 0:e87aa4c49e95 2776 uint32_t blockSize,
phungductung 0:e87aa4c49e95 2777 q31_t * result);
phungductung 0:e87aa4c49e95 2778
phungductung 0:e87aa4c49e95 2779 /**
phungductung 0:e87aa4c49e95 2780 * @brief Dot product of Q15 vectors.
phungductung 0:e87aa4c49e95 2781 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2782 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2783 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2784 * @param[out] *result output result returned here
phungductung 0:e87aa4c49e95 2785 * @return none.
phungductung 0:e87aa4c49e95 2786 */
phungductung 0:e87aa4c49e95 2787
phungductung 0:e87aa4c49e95 2788 void arm_dot_prod_q15(
phungductung 0:e87aa4c49e95 2789 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 2790 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 2791 uint32_t blockSize,
phungductung 0:e87aa4c49e95 2792 q63_t * result);
phungductung 0:e87aa4c49e95 2793
phungductung 0:e87aa4c49e95 2794 /**
phungductung 0:e87aa4c49e95 2795 * @brief Dot product of Q31 vectors.
phungductung 0:e87aa4c49e95 2796 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 2797 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 2798 * @param[in] blockSize number of samples in each vector
phungductung 0:e87aa4c49e95 2799 * @param[out] *result output result returned here
phungductung 0:e87aa4c49e95 2800 * @return none.
phungductung 0:e87aa4c49e95 2801 */
phungductung 0:e87aa4c49e95 2802
phungductung 0:e87aa4c49e95 2803 void arm_dot_prod_q31(
phungductung 0:e87aa4c49e95 2804 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 2805 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 2806 uint32_t blockSize,
phungductung 0:e87aa4c49e95 2807 q63_t * result);
phungductung 0:e87aa4c49e95 2808
phungductung 0:e87aa4c49e95 2809 /**
phungductung 0:e87aa4c49e95 2810 * @brief Shifts the elements of a Q7 vector a specified number of bits.
phungductung 0:e87aa4c49e95 2811 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2812 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
phungductung 0:e87aa4c49e95 2813 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2814 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2815 * @return none.
phungductung 0:e87aa4c49e95 2816 */
phungductung 0:e87aa4c49e95 2817
phungductung 0:e87aa4c49e95 2818 void arm_shift_q7(
phungductung 0:e87aa4c49e95 2819 q7_t * pSrc,
phungductung 0:e87aa4c49e95 2820 int8_t shiftBits,
phungductung 0:e87aa4c49e95 2821 q7_t * pDst,
phungductung 0:e87aa4c49e95 2822 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2823
phungductung 0:e87aa4c49e95 2824 /**
phungductung 0:e87aa4c49e95 2825 * @brief Shifts the elements of a Q15 vector a specified number of bits.
phungductung 0:e87aa4c49e95 2826 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2827 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
phungductung 0:e87aa4c49e95 2828 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2829 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2830 * @return none.
phungductung 0:e87aa4c49e95 2831 */
phungductung 0:e87aa4c49e95 2832
phungductung 0:e87aa4c49e95 2833 void arm_shift_q15(
phungductung 0:e87aa4c49e95 2834 q15_t * pSrc,
phungductung 0:e87aa4c49e95 2835 int8_t shiftBits,
phungductung 0:e87aa4c49e95 2836 q15_t * pDst,
phungductung 0:e87aa4c49e95 2837 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2838
phungductung 0:e87aa4c49e95 2839 /**
phungductung 0:e87aa4c49e95 2840 * @brief Shifts the elements of a Q31 vector a specified number of bits.
phungductung 0:e87aa4c49e95 2841 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2842 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
phungductung 0:e87aa4c49e95 2843 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2844 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2845 * @return none.
phungductung 0:e87aa4c49e95 2846 */
phungductung 0:e87aa4c49e95 2847
phungductung 0:e87aa4c49e95 2848 void arm_shift_q31(
phungductung 0:e87aa4c49e95 2849 q31_t * pSrc,
phungductung 0:e87aa4c49e95 2850 int8_t shiftBits,
phungductung 0:e87aa4c49e95 2851 q31_t * pDst,
phungductung 0:e87aa4c49e95 2852 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2853
phungductung 0:e87aa4c49e95 2854 /**
phungductung 0:e87aa4c49e95 2855 * @brief Adds a constant offset to a floating-point vector.
phungductung 0:e87aa4c49e95 2856 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2857 * @param[in] offset is the offset to be added
phungductung 0:e87aa4c49e95 2858 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2859 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2860 * @return none.
phungductung 0:e87aa4c49e95 2861 */
phungductung 0:e87aa4c49e95 2862
phungductung 0:e87aa4c49e95 2863 void arm_offset_f32(
phungductung 0:e87aa4c49e95 2864 float32_t * pSrc,
phungductung 0:e87aa4c49e95 2865 float32_t offset,
phungductung 0:e87aa4c49e95 2866 float32_t * pDst,
phungductung 0:e87aa4c49e95 2867 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2868
phungductung 0:e87aa4c49e95 2869 /**
phungductung 0:e87aa4c49e95 2870 * @brief Adds a constant offset to a Q7 vector.
phungductung 0:e87aa4c49e95 2871 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2872 * @param[in] offset is the offset to be added
phungductung 0:e87aa4c49e95 2873 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2874 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2875 * @return none.
phungductung 0:e87aa4c49e95 2876 */
phungductung 0:e87aa4c49e95 2877
phungductung 0:e87aa4c49e95 2878 void arm_offset_q7(
phungductung 0:e87aa4c49e95 2879 q7_t * pSrc,
phungductung 0:e87aa4c49e95 2880 q7_t offset,
phungductung 0:e87aa4c49e95 2881 q7_t * pDst,
phungductung 0:e87aa4c49e95 2882 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2883
phungductung 0:e87aa4c49e95 2884 /**
phungductung 0:e87aa4c49e95 2885 * @brief Adds a constant offset to a Q15 vector.
phungductung 0:e87aa4c49e95 2886 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2887 * @param[in] offset is the offset to be added
phungductung 0:e87aa4c49e95 2888 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2889 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2890 * @return none.
phungductung 0:e87aa4c49e95 2891 */
phungductung 0:e87aa4c49e95 2892
phungductung 0:e87aa4c49e95 2893 void arm_offset_q15(
phungductung 0:e87aa4c49e95 2894 q15_t * pSrc,
phungductung 0:e87aa4c49e95 2895 q15_t offset,
phungductung 0:e87aa4c49e95 2896 q15_t * pDst,
phungductung 0:e87aa4c49e95 2897 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2898
phungductung 0:e87aa4c49e95 2899 /**
phungductung 0:e87aa4c49e95 2900 * @brief Adds a constant offset to a Q31 vector.
phungductung 0:e87aa4c49e95 2901 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2902 * @param[in] offset is the offset to be added
phungductung 0:e87aa4c49e95 2903 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2904 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2905 * @return none.
phungductung 0:e87aa4c49e95 2906 */
phungductung 0:e87aa4c49e95 2907
phungductung 0:e87aa4c49e95 2908 void arm_offset_q31(
phungductung 0:e87aa4c49e95 2909 q31_t * pSrc,
phungductung 0:e87aa4c49e95 2910 q31_t offset,
phungductung 0:e87aa4c49e95 2911 q31_t * pDst,
phungductung 0:e87aa4c49e95 2912 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2913
phungductung 0:e87aa4c49e95 2914 /**
phungductung 0:e87aa4c49e95 2915 * @brief Negates the elements of a floating-point vector.
phungductung 0:e87aa4c49e95 2916 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2917 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2918 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2919 * @return none.
phungductung 0:e87aa4c49e95 2920 */
phungductung 0:e87aa4c49e95 2921
phungductung 0:e87aa4c49e95 2922 void arm_negate_f32(
phungductung 0:e87aa4c49e95 2923 float32_t * pSrc,
phungductung 0:e87aa4c49e95 2924 float32_t * pDst,
phungductung 0:e87aa4c49e95 2925 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2926
phungductung 0:e87aa4c49e95 2927 /**
phungductung 0:e87aa4c49e95 2928 * @brief Negates the elements of a Q7 vector.
phungductung 0:e87aa4c49e95 2929 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2930 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2931 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2932 * @return none.
phungductung 0:e87aa4c49e95 2933 */
phungductung 0:e87aa4c49e95 2934
phungductung 0:e87aa4c49e95 2935 void arm_negate_q7(
phungductung 0:e87aa4c49e95 2936 q7_t * pSrc,
phungductung 0:e87aa4c49e95 2937 q7_t * pDst,
phungductung 0:e87aa4c49e95 2938 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2939
phungductung 0:e87aa4c49e95 2940 /**
phungductung 0:e87aa4c49e95 2941 * @brief Negates the elements of a Q15 vector.
phungductung 0:e87aa4c49e95 2942 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2943 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2944 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2945 * @return none.
phungductung 0:e87aa4c49e95 2946 */
phungductung 0:e87aa4c49e95 2947
phungductung 0:e87aa4c49e95 2948 void arm_negate_q15(
phungductung 0:e87aa4c49e95 2949 q15_t * pSrc,
phungductung 0:e87aa4c49e95 2950 q15_t * pDst,
phungductung 0:e87aa4c49e95 2951 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2952
phungductung 0:e87aa4c49e95 2953 /**
phungductung 0:e87aa4c49e95 2954 * @brief Negates the elements of a Q31 vector.
phungductung 0:e87aa4c49e95 2955 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 2956 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 2957 * @param[in] blockSize number of samples in the vector
phungductung 0:e87aa4c49e95 2958 * @return none.
phungductung 0:e87aa4c49e95 2959 */
phungductung 0:e87aa4c49e95 2960
phungductung 0:e87aa4c49e95 2961 void arm_negate_q31(
phungductung 0:e87aa4c49e95 2962 q31_t * pSrc,
phungductung 0:e87aa4c49e95 2963 q31_t * pDst,
phungductung 0:e87aa4c49e95 2964 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2965 /**
phungductung 0:e87aa4c49e95 2966 * @brief Copies the elements of a floating-point vector.
phungductung 0:e87aa4c49e95 2967 * @param[in] *pSrc input pointer
phungductung 0:e87aa4c49e95 2968 * @param[out] *pDst output pointer
phungductung 0:e87aa4c49e95 2969 * @param[in] blockSize number of samples to process
phungductung 0:e87aa4c49e95 2970 * @return none.
phungductung 0:e87aa4c49e95 2971 */
phungductung 0:e87aa4c49e95 2972 void arm_copy_f32(
phungductung 0:e87aa4c49e95 2973 float32_t * pSrc,
phungductung 0:e87aa4c49e95 2974 float32_t * pDst,
phungductung 0:e87aa4c49e95 2975 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2976
phungductung 0:e87aa4c49e95 2977 /**
phungductung 0:e87aa4c49e95 2978 * @brief Copies the elements of a Q7 vector.
phungductung 0:e87aa4c49e95 2979 * @param[in] *pSrc input pointer
phungductung 0:e87aa4c49e95 2980 * @param[out] *pDst output pointer
phungductung 0:e87aa4c49e95 2981 * @param[in] blockSize number of samples to process
phungductung 0:e87aa4c49e95 2982 * @return none.
phungductung 0:e87aa4c49e95 2983 */
phungductung 0:e87aa4c49e95 2984 void arm_copy_q7(
phungductung 0:e87aa4c49e95 2985 q7_t * pSrc,
phungductung 0:e87aa4c49e95 2986 q7_t * pDst,
phungductung 0:e87aa4c49e95 2987 uint32_t blockSize);
phungductung 0:e87aa4c49e95 2988
phungductung 0:e87aa4c49e95 2989 /**
phungductung 0:e87aa4c49e95 2990 * @brief Copies the elements of a Q15 vector.
phungductung 0:e87aa4c49e95 2991 * @param[in] *pSrc input pointer
phungductung 0:e87aa4c49e95 2992 * @param[out] *pDst output pointer
phungductung 0:e87aa4c49e95 2993 * @param[in] blockSize number of samples to process
phungductung 0:e87aa4c49e95 2994 * @return none.
phungductung 0:e87aa4c49e95 2995 */
phungductung 0:e87aa4c49e95 2996 void arm_copy_q15(
phungductung 0:e87aa4c49e95 2997 q15_t * pSrc,
phungductung 0:e87aa4c49e95 2998 q15_t * pDst,
phungductung 0:e87aa4c49e95 2999 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3000
phungductung 0:e87aa4c49e95 3001 /**
phungductung 0:e87aa4c49e95 3002 * @brief Copies the elements of a Q31 vector.
phungductung 0:e87aa4c49e95 3003 * @param[in] *pSrc input pointer
phungductung 0:e87aa4c49e95 3004 * @param[out] *pDst output pointer
phungductung 0:e87aa4c49e95 3005 * @param[in] blockSize number of samples to process
phungductung 0:e87aa4c49e95 3006 * @return none.
phungductung 0:e87aa4c49e95 3007 */
phungductung 0:e87aa4c49e95 3008 void arm_copy_q31(
phungductung 0:e87aa4c49e95 3009 q31_t * pSrc,
phungductung 0:e87aa4c49e95 3010 q31_t * pDst,
phungductung 0:e87aa4c49e95 3011 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3012 /**
phungductung 0:e87aa4c49e95 3013 * @brief Fills a constant value into a floating-point vector.
phungductung 0:e87aa4c49e95 3014 * @param[in] value input value to be filled
phungductung 0:e87aa4c49e95 3015 * @param[out] *pDst output pointer
phungductung 0:e87aa4c49e95 3016 * @param[in] blockSize number of samples to process
phungductung 0:e87aa4c49e95 3017 * @return none.
phungductung 0:e87aa4c49e95 3018 */
phungductung 0:e87aa4c49e95 3019 void arm_fill_f32(
phungductung 0:e87aa4c49e95 3020 float32_t value,
phungductung 0:e87aa4c49e95 3021 float32_t * pDst,
phungductung 0:e87aa4c49e95 3022 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3023
phungductung 0:e87aa4c49e95 3024 /**
phungductung 0:e87aa4c49e95 3025 * @brief Fills a constant value into a Q7 vector.
phungductung 0:e87aa4c49e95 3026 * @param[in] value input value to be filled
phungductung 0:e87aa4c49e95 3027 * @param[out] *pDst output pointer
phungductung 0:e87aa4c49e95 3028 * @param[in] blockSize number of samples to process
phungductung 0:e87aa4c49e95 3029 * @return none.
phungductung 0:e87aa4c49e95 3030 */
phungductung 0:e87aa4c49e95 3031 void arm_fill_q7(
phungductung 0:e87aa4c49e95 3032 q7_t value,
phungductung 0:e87aa4c49e95 3033 q7_t * pDst,
phungductung 0:e87aa4c49e95 3034 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3035
phungductung 0:e87aa4c49e95 3036 /**
phungductung 0:e87aa4c49e95 3037 * @brief Fills a constant value into a Q15 vector.
phungductung 0:e87aa4c49e95 3038 * @param[in] value input value to be filled
phungductung 0:e87aa4c49e95 3039 * @param[out] *pDst output pointer
phungductung 0:e87aa4c49e95 3040 * @param[in] blockSize number of samples to process
phungductung 0:e87aa4c49e95 3041 * @return none.
phungductung 0:e87aa4c49e95 3042 */
phungductung 0:e87aa4c49e95 3043 void arm_fill_q15(
phungductung 0:e87aa4c49e95 3044 q15_t value,
phungductung 0:e87aa4c49e95 3045 q15_t * pDst,
phungductung 0:e87aa4c49e95 3046 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3047
phungductung 0:e87aa4c49e95 3048 /**
phungductung 0:e87aa4c49e95 3049 * @brief Fills a constant value into a Q31 vector.
phungductung 0:e87aa4c49e95 3050 * @param[in] value input value to be filled
phungductung 0:e87aa4c49e95 3051 * @param[out] *pDst output pointer
phungductung 0:e87aa4c49e95 3052 * @param[in] blockSize number of samples to process
phungductung 0:e87aa4c49e95 3053 * @return none.
phungductung 0:e87aa4c49e95 3054 */
phungductung 0:e87aa4c49e95 3055 void arm_fill_q31(
phungductung 0:e87aa4c49e95 3056 q31_t value,
phungductung 0:e87aa4c49e95 3057 q31_t * pDst,
phungductung 0:e87aa4c49e95 3058 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3059
phungductung 0:e87aa4c49e95 3060 /**
phungductung 0:e87aa4c49e95 3061 * @brief Convolution of floating-point sequences.
phungductung 0:e87aa4c49e95 3062 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3063 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3064 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3065 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3066 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
phungductung 0:e87aa4c49e95 3067 * @return none.
phungductung 0:e87aa4c49e95 3068 */
phungductung 0:e87aa4c49e95 3069
phungductung 0:e87aa4c49e95 3070 void arm_conv_f32(
phungductung 0:e87aa4c49e95 3071 float32_t * pSrcA,
phungductung 0:e87aa4c49e95 3072 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3073 float32_t * pSrcB,
phungductung 0:e87aa4c49e95 3074 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3075 float32_t * pDst);
phungductung 0:e87aa4c49e95 3076
phungductung 0:e87aa4c49e95 3077
phungductung 0:e87aa4c49e95 3078 /**
phungductung 0:e87aa4c49e95 3079 * @brief Convolution of Q15 sequences.
phungductung 0:e87aa4c49e95 3080 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3081 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3082 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3083 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3084 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
phungductung 0:e87aa4c49e95 3085 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
phungductung 0:e87aa4c49e95 3086 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
phungductung 0:e87aa4c49e95 3087 * @return none.
phungductung 0:e87aa4c49e95 3088 */
phungductung 0:e87aa4c49e95 3089
phungductung 0:e87aa4c49e95 3090
phungductung 0:e87aa4c49e95 3091 void arm_conv_opt_q15(
phungductung 0:e87aa4c49e95 3092 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 3093 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3094 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 3095 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3096 q15_t * pDst,
phungductung 0:e87aa4c49e95 3097 q15_t * pScratch1,
phungductung 0:e87aa4c49e95 3098 q15_t * pScratch2);
phungductung 0:e87aa4c49e95 3099
phungductung 0:e87aa4c49e95 3100
phungductung 0:e87aa4c49e95 3101 /**
phungductung 0:e87aa4c49e95 3102 * @brief Convolution of Q15 sequences.
phungductung 0:e87aa4c49e95 3103 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3104 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3105 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3106 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3107 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
phungductung 0:e87aa4c49e95 3108 * @return none.
phungductung 0:e87aa4c49e95 3109 */
phungductung 0:e87aa4c49e95 3110
phungductung 0:e87aa4c49e95 3111 void arm_conv_q15(
phungductung 0:e87aa4c49e95 3112 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 3113 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3114 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 3115 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3116 q15_t * pDst);
phungductung 0:e87aa4c49e95 3117
phungductung 0:e87aa4c49e95 3118 /**
phungductung 0:e87aa4c49e95 3119 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
phungductung 0:e87aa4c49e95 3120 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3121 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3122 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3123 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3124 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
phungductung 0:e87aa4c49e95 3125 * @return none.
phungductung 0:e87aa4c49e95 3126 */
phungductung 0:e87aa4c49e95 3127
phungductung 0:e87aa4c49e95 3128 void arm_conv_fast_q15(
phungductung 0:e87aa4c49e95 3129 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 3130 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3131 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 3132 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3133 q15_t * pDst);
phungductung 0:e87aa4c49e95 3134
phungductung 0:e87aa4c49e95 3135 /**
phungductung 0:e87aa4c49e95 3136 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
phungductung 0:e87aa4c49e95 3137 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3138 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3139 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3140 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3141 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
phungductung 0:e87aa4c49e95 3142 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
phungductung 0:e87aa4c49e95 3143 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
phungductung 0:e87aa4c49e95 3144 * @return none.
phungductung 0:e87aa4c49e95 3145 */
phungductung 0:e87aa4c49e95 3146
phungductung 0:e87aa4c49e95 3147 void arm_conv_fast_opt_q15(
phungductung 0:e87aa4c49e95 3148 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 3149 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3150 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 3151 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3152 q15_t * pDst,
phungductung 0:e87aa4c49e95 3153 q15_t * pScratch1,
phungductung 0:e87aa4c49e95 3154 q15_t * pScratch2);
phungductung 0:e87aa4c49e95 3155
phungductung 0:e87aa4c49e95 3156
phungductung 0:e87aa4c49e95 3157
phungductung 0:e87aa4c49e95 3158 /**
phungductung 0:e87aa4c49e95 3159 * @brief Convolution of Q31 sequences.
phungductung 0:e87aa4c49e95 3160 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3161 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3162 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3163 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3164 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
phungductung 0:e87aa4c49e95 3165 * @return none.
phungductung 0:e87aa4c49e95 3166 */
phungductung 0:e87aa4c49e95 3167
phungductung 0:e87aa4c49e95 3168 void arm_conv_q31(
phungductung 0:e87aa4c49e95 3169 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 3170 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3171 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 3172 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3173 q31_t * pDst);
phungductung 0:e87aa4c49e95 3174
phungductung 0:e87aa4c49e95 3175 /**
phungductung 0:e87aa4c49e95 3176 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
phungductung 0:e87aa4c49e95 3177 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3178 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3179 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3180 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3181 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
phungductung 0:e87aa4c49e95 3182 * @return none.
phungductung 0:e87aa4c49e95 3183 */
phungductung 0:e87aa4c49e95 3184
phungductung 0:e87aa4c49e95 3185 void arm_conv_fast_q31(
phungductung 0:e87aa4c49e95 3186 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 3187 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3188 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 3189 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3190 q31_t * pDst);
phungductung 0:e87aa4c49e95 3191
phungductung 0:e87aa4c49e95 3192
phungductung 0:e87aa4c49e95 3193 /**
phungductung 0:e87aa4c49e95 3194 * @brief Convolution of Q7 sequences.
phungductung 0:e87aa4c49e95 3195 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3196 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3197 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3198 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3199 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
phungductung 0:e87aa4c49e95 3200 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
phungductung 0:e87aa4c49e95 3201 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
phungductung 0:e87aa4c49e95 3202 * @return none.
phungductung 0:e87aa4c49e95 3203 */
phungductung 0:e87aa4c49e95 3204
phungductung 0:e87aa4c49e95 3205 void arm_conv_opt_q7(
phungductung 0:e87aa4c49e95 3206 q7_t * pSrcA,
phungductung 0:e87aa4c49e95 3207 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3208 q7_t * pSrcB,
phungductung 0:e87aa4c49e95 3209 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3210 q7_t * pDst,
phungductung 0:e87aa4c49e95 3211 q15_t * pScratch1,
phungductung 0:e87aa4c49e95 3212 q15_t * pScratch2);
phungductung 0:e87aa4c49e95 3213
phungductung 0:e87aa4c49e95 3214
phungductung 0:e87aa4c49e95 3215
phungductung 0:e87aa4c49e95 3216 /**
phungductung 0:e87aa4c49e95 3217 * @brief Convolution of Q7 sequences.
phungductung 0:e87aa4c49e95 3218 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3219 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3220 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3221 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3222 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
phungductung 0:e87aa4c49e95 3223 * @return none.
phungductung 0:e87aa4c49e95 3224 */
phungductung 0:e87aa4c49e95 3225
phungductung 0:e87aa4c49e95 3226 void arm_conv_q7(
phungductung 0:e87aa4c49e95 3227 q7_t * pSrcA,
phungductung 0:e87aa4c49e95 3228 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3229 q7_t * pSrcB,
phungductung 0:e87aa4c49e95 3230 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3231 q7_t * pDst);
phungductung 0:e87aa4c49e95 3232
phungductung 0:e87aa4c49e95 3233
phungductung 0:e87aa4c49e95 3234 /**
phungductung 0:e87aa4c49e95 3235 * @brief Partial convolution of floating-point sequences.
phungductung 0:e87aa4c49e95 3236 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3237 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3238 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3239 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3240 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3241 * @param[in] firstIndex is the first output sample to start with.
phungductung 0:e87aa4c49e95 3242 * @param[in] numPoints is the number of output points to be computed.
phungductung 0:e87aa4c49e95 3243 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
phungductung 0:e87aa4c49e95 3244 */
phungductung 0:e87aa4c49e95 3245
phungductung 0:e87aa4c49e95 3246 arm_status arm_conv_partial_f32(
phungductung 0:e87aa4c49e95 3247 float32_t * pSrcA,
phungductung 0:e87aa4c49e95 3248 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3249 float32_t * pSrcB,
phungductung 0:e87aa4c49e95 3250 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3251 float32_t * pDst,
phungductung 0:e87aa4c49e95 3252 uint32_t firstIndex,
phungductung 0:e87aa4c49e95 3253 uint32_t numPoints);
phungductung 0:e87aa4c49e95 3254
phungductung 0:e87aa4c49e95 3255 /**
phungductung 0:e87aa4c49e95 3256 * @brief Partial convolution of Q15 sequences.
phungductung 0:e87aa4c49e95 3257 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3258 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3259 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3260 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3261 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3262 * @param[in] firstIndex is the first output sample to start with.
phungductung 0:e87aa4c49e95 3263 * @param[in] numPoints is the number of output points to be computed.
phungductung 0:e87aa4c49e95 3264 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
phungductung 0:e87aa4c49e95 3265 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
phungductung 0:e87aa4c49e95 3266 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
phungductung 0:e87aa4c49e95 3267 */
phungductung 0:e87aa4c49e95 3268
phungductung 0:e87aa4c49e95 3269 arm_status arm_conv_partial_opt_q15(
phungductung 0:e87aa4c49e95 3270 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 3271 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3272 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 3273 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3274 q15_t * pDst,
phungductung 0:e87aa4c49e95 3275 uint32_t firstIndex,
phungductung 0:e87aa4c49e95 3276 uint32_t numPoints,
phungductung 0:e87aa4c49e95 3277 q15_t * pScratch1,
phungductung 0:e87aa4c49e95 3278 q15_t * pScratch2);
phungductung 0:e87aa4c49e95 3279
phungductung 0:e87aa4c49e95 3280
phungductung 0:e87aa4c49e95 3281 /**
phungductung 0:e87aa4c49e95 3282 * @brief Partial convolution of Q15 sequences.
phungductung 0:e87aa4c49e95 3283 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3284 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3285 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3286 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3287 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3288 * @param[in] firstIndex is the first output sample to start with.
phungductung 0:e87aa4c49e95 3289 * @param[in] numPoints is the number of output points to be computed.
phungductung 0:e87aa4c49e95 3290 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
phungductung 0:e87aa4c49e95 3291 */
phungductung 0:e87aa4c49e95 3292
phungductung 0:e87aa4c49e95 3293 arm_status arm_conv_partial_q15(
phungductung 0:e87aa4c49e95 3294 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 3295 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3296 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 3297 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3298 q15_t * pDst,
phungductung 0:e87aa4c49e95 3299 uint32_t firstIndex,
phungductung 0:e87aa4c49e95 3300 uint32_t numPoints);
phungductung 0:e87aa4c49e95 3301
phungductung 0:e87aa4c49e95 3302 /**
phungductung 0:e87aa4c49e95 3303 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
phungductung 0:e87aa4c49e95 3304 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3305 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3306 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3307 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3308 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3309 * @param[in] firstIndex is the first output sample to start with.
phungductung 0:e87aa4c49e95 3310 * @param[in] numPoints is the number of output points to be computed.
phungductung 0:e87aa4c49e95 3311 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
phungductung 0:e87aa4c49e95 3312 */
phungductung 0:e87aa4c49e95 3313
phungductung 0:e87aa4c49e95 3314 arm_status arm_conv_partial_fast_q15(
phungductung 0:e87aa4c49e95 3315 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 3316 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3317 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 3318 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3319 q15_t * pDst,
phungductung 0:e87aa4c49e95 3320 uint32_t firstIndex,
phungductung 0:e87aa4c49e95 3321 uint32_t numPoints);
phungductung 0:e87aa4c49e95 3322
phungductung 0:e87aa4c49e95 3323
phungductung 0:e87aa4c49e95 3324 /**
phungductung 0:e87aa4c49e95 3325 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
phungductung 0:e87aa4c49e95 3326 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3327 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3328 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3329 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3330 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3331 * @param[in] firstIndex is the first output sample to start with.
phungductung 0:e87aa4c49e95 3332 * @param[in] numPoints is the number of output points to be computed.
phungductung 0:e87aa4c49e95 3333 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
phungductung 0:e87aa4c49e95 3334 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
phungductung 0:e87aa4c49e95 3335 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
phungductung 0:e87aa4c49e95 3336 */
phungductung 0:e87aa4c49e95 3337
phungductung 0:e87aa4c49e95 3338 arm_status arm_conv_partial_fast_opt_q15(
phungductung 0:e87aa4c49e95 3339 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 3340 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3341 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 3342 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3343 q15_t * pDst,
phungductung 0:e87aa4c49e95 3344 uint32_t firstIndex,
phungductung 0:e87aa4c49e95 3345 uint32_t numPoints,
phungductung 0:e87aa4c49e95 3346 q15_t * pScratch1,
phungductung 0:e87aa4c49e95 3347 q15_t * pScratch2);
phungductung 0:e87aa4c49e95 3348
phungductung 0:e87aa4c49e95 3349
phungductung 0:e87aa4c49e95 3350 /**
phungductung 0:e87aa4c49e95 3351 * @brief Partial convolution of Q31 sequences.
phungductung 0:e87aa4c49e95 3352 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3353 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3354 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3355 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3356 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3357 * @param[in] firstIndex is the first output sample to start with.
phungductung 0:e87aa4c49e95 3358 * @param[in] numPoints is the number of output points to be computed.
phungductung 0:e87aa4c49e95 3359 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
phungductung 0:e87aa4c49e95 3360 */
phungductung 0:e87aa4c49e95 3361
phungductung 0:e87aa4c49e95 3362 arm_status arm_conv_partial_q31(
phungductung 0:e87aa4c49e95 3363 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 3364 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3365 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 3366 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3367 q31_t * pDst,
phungductung 0:e87aa4c49e95 3368 uint32_t firstIndex,
phungductung 0:e87aa4c49e95 3369 uint32_t numPoints);
phungductung 0:e87aa4c49e95 3370
phungductung 0:e87aa4c49e95 3371
phungductung 0:e87aa4c49e95 3372 /**
phungductung 0:e87aa4c49e95 3373 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
phungductung 0:e87aa4c49e95 3374 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3375 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3376 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3377 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3378 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3379 * @param[in] firstIndex is the first output sample to start with.
phungductung 0:e87aa4c49e95 3380 * @param[in] numPoints is the number of output points to be computed.
phungductung 0:e87aa4c49e95 3381 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
phungductung 0:e87aa4c49e95 3382 */
phungductung 0:e87aa4c49e95 3383
phungductung 0:e87aa4c49e95 3384 arm_status arm_conv_partial_fast_q31(
phungductung 0:e87aa4c49e95 3385 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 3386 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3387 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 3388 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3389 q31_t * pDst,
phungductung 0:e87aa4c49e95 3390 uint32_t firstIndex,
phungductung 0:e87aa4c49e95 3391 uint32_t numPoints);
phungductung 0:e87aa4c49e95 3392
phungductung 0:e87aa4c49e95 3393
phungductung 0:e87aa4c49e95 3394 /**
phungductung 0:e87aa4c49e95 3395 * @brief Partial convolution of Q7 sequences
phungductung 0:e87aa4c49e95 3396 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3397 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3398 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3399 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3400 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3401 * @param[in] firstIndex is the first output sample to start with.
phungductung 0:e87aa4c49e95 3402 * @param[in] numPoints is the number of output points to be computed.
phungductung 0:e87aa4c49e95 3403 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
phungductung 0:e87aa4c49e95 3404 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
phungductung 0:e87aa4c49e95 3405 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
phungductung 0:e87aa4c49e95 3406 */
phungductung 0:e87aa4c49e95 3407
phungductung 0:e87aa4c49e95 3408 arm_status arm_conv_partial_opt_q7(
phungductung 0:e87aa4c49e95 3409 q7_t * pSrcA,
phungductung 0:e87aa4c49e95 3410 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3411 q7_t * pSrcB,
phungductung 0:e87aa4c49e95 3412 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3413 q7_t * pDst,
phungductung 0:e87aa4c49e95 3414 uint32_t firstIndex,
phungductung 0:e87aa4c49e95 3415 uint32_t numPoints,
phungductung 0:e87aa4c49e95 3416 q15_t * pScratch1,
phungductung 0:e87aa4c49e95 3417 q15_t * pScratch2);
phungductung 0:e87aa4c49e95 3418
phungductung 0:e87aa4c49e95 3419
phungductung 0:e87aa4c49e95 3420 /**
phungductung 0:e87aa4c49e95 3421 * @brief Partial convolution of Q7 sequences.
phungductung 0:e87aa4c49e95 3422 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 3423 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 3424 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 3425 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 3426 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3427 * @param[in] firstIndex is the first output sample to start with.
phungductung 0:e87aa4c49e95 3428 * @param[in] numPoints is the number of output points to be computed.
phungductung 0:e87aa4c49e95 3429 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
phungductung 0:e87aa4c49e95 3430 */
phungductung 0:e87aa4c49e95 3431
phungductung 0:e87aa4c49e95 3432 arm_status arm_conv_partial_q7(
phungductung 0:e87aa4c49e95 3433 q7_t * pSrcA,
phungductung 0:e87aa4c49e95 3434 uint32_t srcALen,
phungductung 0:e87aa4c49e95 3435 q7_t * pSrcB,
phungductung 0:e87aa4c49e95 3436 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 3437 q7_t * pDst,
phungductung 0:e87aa4c49e95 3438 uint32_t firstIndex,
phungductung 0:e87aa4c49e95 3439 uint32_t numPoints);
phungductung 0:e87aa4c49e95 3440
phungductung 0:e87aa4c49e95 3441
phungductung 0:e87aa4c49e95 3442
phungductung 0:e87aa4c49e95 3443 /**
phungductung 0:e87aa4c49e95 3444 * @brief Instance structure for the Q15 FIR decimator.
phungductung 0:e87aa4c49e95 3445 */
phungductung 0:e87aa4c49e95 3446
phungductung 0:e87aa4c49e95 3447 typedef struct
phungductung 0:e87aa4c49e95 3448 {
phungductung 0:e87aa4c49e95 3449 uint8_t M; /**< decimation factor. */
phungductung 0:e87aa4c49e95 3450 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 3451 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
phungductung 0:e87aa4c49e95 3452 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 3453 } arm_fir_decimate_instance_q15;
phungductung 0:e87aa4c49e95 3454
phungductung 0:e87aa4c49e95 3455 /**
phungductung 0:e87aa4c49e95 3456 * @brief Instance structure for the Q31 FIR decimator.
phungductung 0:e87aa4c49e95 3457 */
phungductung 0:e87aa4c49e95 3458
phungductung 0:e87aa4c49e95 3459 typedef struct
phungductung 0:e87aa4c49e95 3460 {
phungductung 0:e87aa4c49e95 3461 uint8_t M; /**< decimation factor. */
phungductung 0:e87aa4c49e95 3462 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 3463 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
phungductung 0:e87aa4c49e95 3464 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 3465
phungductung 0:e87aa4c49e95 3466 } arm_fir_decimate_instance_q31;
phungductung 0:e87aa4c49e95 3467
phungductung 0:e87aa4c49e95 3468 /**
phungductung 0:e87aa4c49e95 3469 * @brief Instance structure for the floating-point FIR decimator.
phungductung 0:e87aa4c49e95 3470 */
phungductung 0:e87aa4c49e95 3471
phungductung 0:e87aa4c49e95 3472 typedef struct
phungductung 0:e87aa4c49e95 3473 {
phungductung 0:e87aa4c49e95 3474 uint8_t M; /**< decimation factor. */
phungductung 0:e87aa4c49e95 3475 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 3476 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
phungductung 0:e87aa4c49e95 3477 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 3478
phungductung 0:e87aa4c49e95 3479 } arm_fir_decimate_instance_f32;
phungductung 0:e87aa4c49e95 3480
phungductung 0:e87aa4c49e95 3481
phungductung 0:e87aa4c49e95 3482
phungductung 0:e87aa4c49e95 3483 /**
phungductung 0:e87aa4c49e95 3484 * @brief Processing function for the floating-point FIR decimator.
phungductung 0:e87aa4c49e95 3485 * @param[in] *S points to an instance of the floating-point FIR decimator structure.
phungductung 0:e87aa4c49e95 3486 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3487 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3488 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3489 * @return none
phungductung 0:e87aa4c49e95 3490 */
phungductung 0:e87aa4c49e95 3491
phungductung 0:e87aa4c49e95 3492 void arm_fir_decimate_f32(
phungductung 0:e87aa4c49e95 3493 const arm_fir_decimate_instance_f32 * S,
phungductung 0:e87aa4c49e95 3494 float32_t * pSrc,
phungductung 0:e87aa4c49e95 3495 float32_t * pDst,
phungductung 0:e87aa4c49e95 3496 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3497
phungductung 0:e87aa4c49e95 3498
phungductung 0:e87aa4c49e95 3499 /**
phungductung 0:e87aa4c49e95 3500 * @brief Initialization function for the floating-point FIR decimator.
phungductung 0:e87aa4c49e95 3501 * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
phungductung 0:e87aa4c49e95 3502 * @param[in] numTaps number of coefficients in the filter.
phungductung 0:e87aa4c49e95 3503 * @param[in] M decimation factor.
phungductung 0:e87aa4c49e95 3504 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 3505 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 3506 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3507 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
phungductung 0:e87aa4c49e95 3508 * <code>blockSize</code> is not a multiple of <code>M</code>.
phungductung 0:e87aa4c49e95 3509 */
phungductung 0:e87aa4c49e95 3510
phungductung 0:e87aa4c49e95 3511 arm_status arm_fir_decimate_init_f32(
phungductung 0:e87aa4c49e95 3512 arm_fir_decimate_instance_f32 * S,
phungductung 0:e87aa4c49e95 3513 uint16_t numTaps,
phungductung 0:e87aa4c49e95 3514 uint8_t M,
phungductung 0:e87aa4c49e95 3515 float32_t * pCoeffs,
phungductung 0:e87aa4c49e95 3516 float32_t * pState,
phungductung 0:e87aa4c49e95 3517 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3518
phungductung 0:e87aa4c49e95 3519 /**
phungductung 0:e87aa4c49e95 3520 * @brief Processing function for the Q15 FIR decimator.
phungductung 0:e87aa4c49e95 3521 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
phungductung 0:e87aa4c49e95 3522 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3523 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3524 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3525 * @return none
phungductung 0:e87aa4c49e95 3526 */
phungductung 0:e87aa4c49e95 3527
phungductung 0:e87aa4c49e95 3528 void arm_fir_decimate_q15(
phungductung 0:e87aa4c49e95 3529 const arm_fir_decimate_instance_q15 * S,
phungductung 0:e87aa4c49e95 3530 q15_t * pSrc,
phungductung 0:e87aa4c49e95 3531 q15_t * pDst,
phungductung 0:e87aa4c49e95 3532 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3533
phungductung 0:e87aa4c49e95 3534 /**
phungductung 0:e87aa4c49e95 3535 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
phungductung 0:e87aa4c49e95 3536 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
phungductung 0:e87aa4c49e95 3537 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3538 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3539 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3540 * @return none
phungductung 0:e87aa4c49e95 3541 */
phungductung 0:e87aa4c49e95 3542
phungductung 0:e87aa4c49e95 3543 void arm_fir_decimate_fast_q15(
phungductung 0:e87aa4c49e95 3544 const arm_fir_decimate_instance_q15 * S,
phungductung 0:e87aa4c49e95 3545 q15_t * pSrc,
phungductung 0:e87aa4c49e95 3546 q15_t * pDst,
phungductung 0:e87aa4c49e95 3547 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3548
phungductung 0:e87aa4c49e95 3549
phungductung 0:e87aa4c49e95 3550
phungductung 0:e87aa4c49e95 3551 /**
phungductung 0:e87aa4c49e95 3552 * @brief Initialization function for the Q15 FIR decimator.
phungductung 0:e87aa4c49e95 3553 * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
phungductung 0:e87aa4c49e95 3554 * @param[in] numTaps number of coefficients in the filter.
phungductung 0:e87aa4c49e95 3555 * @param[in] M decimation factor.
phungductung 0:e87aa4c49e95 3556 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 3557 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 3558 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3559 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
phungductung 0:e87aa4c49e95 3560 * <code>blockSize</code> is not a multiple of <code>M</code>.
phungductung 0:e87aa4c49e95 3561 */
phungductung 0:e87aa4c49e95 3562
phungductung 0:e87aa4c49e95 3563 arm_status arm_fir_decimate_init_q15(
phungductung 0:e87aa4c49e95 3564 arm_fir_decimate_instance_q15 * S,
phungductung 0:e87aa4c49e95 3565 uint16_t numTaps,
phungductung 0:e87aa4c49e95 3566 uint8_t M,
phungductung 0:e87aa4c49e95 3567 q15_t * pCoeffs,
phungductung 0:e87aa4c49e95 3568 q15_t * pState,
phungductung 0:e87aa4c49e95 3569 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3570
phungductung 0:e87aa4c49e95 3571 /**
phungductung 0:e87aa4c49e95 3572 * @brief Processing function for the Q31 FIR decimator.
phungductung 0:e87aa4c49e95 3573 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
phungductung 0:e87aa4c49e95 3574 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3575 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3576 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3577 * @return none
phungductung 0:e87aa4c49e95 3578 */
phungductung 0:e87aa4c49e95 3579
phungductung 0:e87aa4c49e95 3580 void arm_fir_decimate_q31(
phungductung 0:e87aa4c49e95 3581 const arm_fir_decimate_instance_q31 * S,
phungductung 0:e87aa4c49e95 3582 q31_t * pSrc,
phungductung 0:e87aa4c49e95 3583 q31_t * pDst,
phungductung 0:e87aa4c49e95 3584 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3585
phungductung 0:e87aa4c49e95 3586 /**
phungductung 0:e87aa4c49e95 3587 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
phungductung 0:e87aa4c49e95 3588 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
phungductung 0:e87aa4c49e95 3589 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3590 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3591 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3592 * @return none
phungductung 0:e87aa4c49e95 3593 */
phungductung 0:e87aa4c49e95 3594
phungductung 0:e87aa4c49e95 3595 void arm_fir_decimate_fast_q31(
phungductung 0:e87aa4c49e95 3596 arm_fir_decimate_instance_q31 * S,
phungductung 0:e87aa4c49e95 3597 q31_t * pSrc,
phungductung 0:e87aa4c49e95 3598 q31_t * pDst,
phungductung 0:e87aa4c49e95 3599 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3600
phungductung 0:e87aa4c49e95 3601
phungductung 0:e87aa4c49e95 3602 /**
phungductung 0:e87aa4c49e95 3603 * @brief Initialization function for the Q31 FIR decimator.
phungductung 0:e87aa4c49e95 3604 * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
phungductung 0:e87aa4c49e95 3605 * @param[in] numTaps number of coefficients in the filter.
phungductung 0:e87aa4c49e95 3606 * @param[in] M decimation factor.
phungductung 0:e87aa4c49e95 3607 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 3608 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 3609 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3610 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
phungductung 0:e87aa4c49e95 3611 * <code>blockSize</code> is not a multiple of <code>M</code>.
phungductung 0:e87aa4c49e95 3612 */
phungductung 0:e87aa4c49e95 3613
phungductung 0:e87aa4c49e95 3614 arm_status arm_fir_decimate_init_q31(
phungductung 0:e87aa4c49e95 3615 arm_fir_decimate_instance_q31 * S,
phungductung 0:e87aa4c49e95 3616 uint16_t numTaps,
phungductung 0:e87aa4c49e95 3617 uint8_t M,
phungductung 0:e87aa4c49e95 3618 q31_t * pCoeffs,
phungductung 0:e87aa4c49e95 3619 q31_t * pState,
phungductung 0:e87aa4c49e95 3620 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3621
phungductung 0:e87aa4c49e95 3622
phungductung 0:e87aa4c49e95 3623
phungductung 0:e87aa4c49e95 3624 /**
phungductung 0:e87aa4c49e95 3625 * @brief Instance structure for the Q15 FIR interpolator.
phungductung 0:e87aa4c49e95 3626 */
phungductung 0:e87aa4c49e95 3627
phungductung 0:e87aa4c49e95 3628 typedef struct
phungductung 0:e87aa4c49e95 3629 {
phungductung 0:e87aa4c49e95 3630 uint8_t L; /**< upsample factor. */
phungductung 0:e87aa4c49e95 3631 uint16_t phaseLength; /**< length of each polyphase filter component. */
phungductung 0:e87aa4c49e95 3632 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
phungductung 0:e87aa4c49e95 3633 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
phungductung 0:e87aa4c49e95 3634 } arm_fir_interpolate_instance_q15;
phungductung 0:e87aa4c49e95 3635
phungductung 0:e87aa4c49e95 3636 /**
phungductung 0:e87aa4c49e95 3637 * @brief Instance structure for the Q31 FIR interpolator.
phungductung 0:e87aa4c49e95 3638 */
phungductung 0:e87aa4c49e95 3639
phungductung 0:e87aa4c49e95 3640 typedef struct
phungductung 0:e87aa4c49e95 3641 {
phungductung 0:e87aa4c49e95 3642 uint8_t L; /**< upsample factor. */
phungductung 0:e87aa4c49e95 3643 uint16_t phaseLength; /**< length of each polyphase filter component. */
phungductung 0:e87aa4c49e95 3644 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
phungductung 0:e87aa4c49e95 3645 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
phungductung 0:e87aa4c49e95 3646 } arm_fir_interpolate_instance_q31;
phungductung 0:e87aa4c49e95 3647
phungductung 0:e87aa4c49e95 3648 /**
phungductung 0:e87aa4c49e95 3649 * @brief Instance structure for the floating-point FIR interpolator.
phungductung 0:e87aa4c49e95 3650 */
phungductung 0:e87aa4c49e95 3651
phungductung 0:e87aa4c49e95 3652 typedef struct
phungductung 0:e87aa4c49e95 3653 {
phungductung 0:e87aa4c49e95 3654 uint8_t L; /**< upsample factor. */
phungductung 0:e87aa4c49e95 3655 uint16_t phaseLength; /**< length of each polyphase filter component. */
phungductung 0:e87aa4c49e95 3656 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
phungductung 0:e87aa4c49e95 3657 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
phungductung 0:e87aa4c49e95 3658 } arm_fir_interpolate_instance_f32;
phungductung 0:e87aa4c49e95 3659
phungductung 0:e87aa4c49e95 3660
phungductung 0:e87aa4c49e95 3661 /**
phungductung 0:e87aa4c49e95 3662 * @brief Processing function for the Q15 FIR interpolator.
phungductung 0:e87aa4c49e95 3663 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
phungductung 0:e87aa4c49e95 3664 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3665 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 3666 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3667 * @return none.
phungductung 0:e87aa4c49e95 3668 */
phungductung 0:e87aa4c49e95 3669
phungductung 0:e87aa4c49e95 3670 void arm_fir_interpolate_q15(
phungductung 0:e87aa4c49e95 3671 const arm_fir_interpolate_instance_q15 * S,
phungductung 0:e87aa4c49e95 3672 q15_t * pSrc,
phungductung 0:e87aa4c49e95 3673 q15_t * pDst,
phungductung 0:e87aa4c49e95 3674 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3675
phungductung 0:e87aa4c49e95 3676
phungductung 0:e87aa4c49e95 3677 /**
phungductung 0:e87aa4c49e95 3678 * @brief Initialization function for the Q15 FIR interpolator.
phungductung 0:e87aa4c49e95 3679 * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
phungductung 0:e87aa4c49e95 3680 * @param[in] L upsample factor.
phungductung 0:e87aa4c49e95 3681 * @param[in] numTaps number of filter coefficients in the filter.
phungductung 0:e87aa4c49e95 3682 * @param[in] *pCoeffs points to the filter coefficient buffer.
phungductung 0:e87aa4c49e95 3683 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 3684 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3685 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
phungductung 0:e87aa4c49e95 3686 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
phungductung 0:e87aa4c49e95 3687 */
phungductung 0:e87aa4c49e95 3688
phungductung 0:e87aa4c49e95 3689 arm_status arm_fir_interpolate_init_q15(
phungductung 0:e87aa4c49e95 3690 arm_fir_interpolate_instance_q15 * S,
phungductung 0:e87aa4c49e95 3691 uint8_t L,
phungductung 0:e87aa4c49e95 3692 uint16_t numTaps,
phungductung 0:e87aa4c49e95 3693 q15_t * pCoeffs,
phungductung 0:e87aa4c49e95 3694 q15_t * pState,
phungductung 0:e87aa4c49e95 3695 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3696
phungductung 0:e87aa4c49e95 3697 /**
phungductung 0:e87aa4c49e95 3698 * @brief Processing function for the Q31 FIR interpolator.
phungductung 0:e87aa4c49e95 3699 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
phungductung 0:e87aa4c49e95 3700 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3701 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 3702 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3703 * @return none.
phungductung 0:e87aa4c49e95 3704 */
phungductung 0:e87aa4c49e95 3705
phungductung 0:e87aa4c49e95 3706 void arm_fir_interpolate_q31(
phungductung 0:e87aa4c49e95 3707 const arm_fir_interpolate_instance_q31 * S,
phungductung 0:e87aa4c49e95 3708 q31_t * pSrc,
phungductung 0:e87aa4c49e95 3709 q31_t * pDst,
phungductung 0:e87aa4c49e95 3710 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3711
phungductung 0:e87aa4c49e95 3712 /**
phungductung 0:e87aa4c49e95 3713 * @brief Initialization function for the Q31 FIR interpolator.
phungductung 0:e87aa4c49e95 3714 * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
phungductung 0:e87aa4c49e95 3715 * @param[in] L upsample factor.
phungductung 0:e87aa4c49e95 3716 * @param[in] numTaps number of filter coefficients in the filter.
phungductung 0:e87aa4c49e95 3717 * @param[in] *pCoeffs points to the filter coefficient buffer.
phungductung 0:e87aa4c49e95 3718 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 3719 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3720 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
phungductung 0:e87aa4c49e95 3721 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
phungductung 0:e87aa4c49e95 3722 */
phungductung 0:e87aa4c49e95 3723
phungductung 0:e87aa4c49e95 3724 arm_status arm_fir_interpolate_init_q31(
phungductung 0:e87aa4c49e95 3725 arm_fir_interpolate_instance_q31 * S,
phungductung 0:e87aa4c49e95 3726 uint8_t L,
phungductung 0:e87aa4c49e95 3727 uint16_t numTaps,
phungductung 0:e87aa4c49e95 3728 q31_t * pCoeffs,
phungductung 0:e87aa4c49e95 3729 q31_t * pState,
phungductung 0:e87aa4c49e95 3730 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3731
phungductung 0:e87aa4c49e95 3732
phungductung 0:e87aa4c49e95 3733 /**
phungductung 0:e87aa4c49e95 3734 * @brief Processing function for the floating-point FIR interpolator.
phungductung 0:e87aa4c49e95 3735 * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
phungductung 0:e87aa4c49e95 3736 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3737 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 3738 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3739 * @return none.
phungductung 0:e87aa4c49e95 3740 */
phungductung 0:e87aa4c49e95 3741
phungductung 0:e87aa4c49e95 3742 void arm_fir_interpolate_f32(
phungductung 0:e87aa4c49e95 3743 const arm_fir_interpolate_instance_f32 * S,
phungductung 0:e87aa4c49e95 3744 float32_t * pSrc,
phungductung 0:e87aa4c49e95 3745 float32_t * pDst,
phungductung 0:e87aa4c49e95 3746 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3747
phungductung 0:e87aa4c49e95 3748 /**
phungductung 0:e87aa4c49e95 3749 * @brief Initialization function for the floating-point FIR interpolator.
phungductung 0:e87aa4c49e95 3750 * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
phungductung 0:e87aa4c49e95 3751 * @param[in] L upsample factor.
phungductung 0:e87aa4c49e95 3752 * @param[in] numTaps number of filter coefficients in the filter.
phungductung 0:e87aa4c49e95 3753 * @param[in] *pCoeffs points to the filter coefficient buffer.
phungductung 0:e87aa4c49e95 3754 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 3755 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 3756 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
phungductung 0:e87aa4c49e95 3757 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
phungductung 0:e87aa4c49e95 3758 */
phungductung 0:e87aa4c49e95 3759
phungductung 0:e87aa4c49e95 3760 arm_status arm_fir_interpolate_init_f32(
phungductung 0:e87aa4c49e95 3761 arm_fir_interpolate_instance_f32 * S,
phungductung 0:e87aa4c49e95 3762 uint8_t L,
phungductung 0:e87aa4c49e95 3763 uint16_t numTaps,
phungductung 0:e87aa4c49e95 3764 float32_t * pCoeffs,
phungductung 0:e87aa4c49e95 3765 float32_t * pState,
phungductung 0:e87aa4c49e95 3766 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3767
phungductung 0:e87aa4c49e95 3768 /**
phungductung 0:e87aa4c49e95 3769 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
phungductung 0:e87aa4c49e95 3770 */
phungductung 0:e87aa4c49e95 3771
phungductung 0:e87aa4c49e95 3772 typedef struct
phungductung 0:e87aa4c49e95 3773 {
phungductung 0:e87aa4c49e95 3774 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
phungductung 0:e87aa4c49e95 3775 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
phungductung 0:e87aa4c49e95 3776 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
phungductung 0:e87aa4c49e95 3777 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
phungductung 0:e87aa4c49e95 3778
phungductung 0:e87aa4c49e95 3779 } arm_biquad_cas_df1_32x64_ins_q31;
phungductung 0:e87aa4c49e95 3780
phungductung 0:e87aa4c49e95 3781
phungductung 0:e87aa4c49e95 3782 /**
phungductung 0:e87aa4c49e95 3783 * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
phungductung 0:e87aa4c49e95 3784 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3785 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3786 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 3787 * @return none.
phungductung 0:e87aa4c49e95 3788 */
phungductung 0:e87aa4c49e95 3789
phungductung 0:e87aa4c49e95 3790 void arm_biquad_cas_df1_32x64_q31(
phungductung 0:e87aa4c49e95 3791 const arm_biquad_cas_df1_32x64_ins_q31 * S,
phungductung 0:e87aa4c49e95 3792 q31_t * pSrc,
phungductung 0:e87aa4c49e95 3793 q31_t * pDst,
phungductung 0:e87aa4c49e95 3794 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3795
phungductung 0:e87aa4c49e95 3796
phungductung 0:e87aa4c49e95 3797 /**
phungductung 0:e87aa4c49e95 3798 * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
phungductung 0:e87aa4c49e95 3799 * @param[in] numStages number of 2nd order stages in the filter.
phungductung 0:e87aa4c49e95 3800 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 3801 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 3802 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
phungductung 0:e87aa4c49e95 3803 * @return none
phungductung 0:e87aa4c49e95 3804 */
phungductung 0:e87aa4c49e95 3805
phungductung 0:e87aa4c49e95 3806 void arm_biquad_cas_df1_32x64_init_q31(
phungductung 0:e87aa4c49e95 3807 arm_biquad_cas_df1_32x64_ins_q31 * S,
phungductung 0:e87aa4c49e95 3808 uint8_t numStages,
phungductung 0:e87aa4c49e95 3809 q31_t * pCoeffs,
phungductung 0:e87aa4c49e95 3810 q63_t * pState,
phungductung 0:e87aa4c49e95 3811 uint8_t postShift);
phungductung 0:e87aa4c49e95 3812
phungductung 0:e87aa4c49e95 3813
phungductung 0:e87aa4c49e95 3814
phungductung 0:e87aa4c49e95 3815 /**
phungductung 0:e87aa4c49e95 3816 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
phungductung 0:e87aa4c49e95 3817 */
phungductung 0:e87aa4c49e95 3818
phungductung 0:e87aa4c49e95 3819 typedef struct
phungductung 0:e87aa4c49e95 3820 {
phungductung 0:e87aa4c49e95 3821 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
phungductung 0:e87aa4c49e95 3822 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
phungductung 0:e87aa4c49e95 3823 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
phungductung 0:e87aa4c49e95 3824 } arm_biquad_cascade_df2T_instance_f32;
phungductung 0:e87aa4c49e95 3825
phungductung 0:e87aa4c49e95 3826
phungductung 0:e87aa4c49e95 3827
phungductung 0:e87aa4c49e95 3828 /**
phungductung 0:e87aa4c49e95 3829 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
phungductung 0:e87aa4c49e95 3830 */
phungductung 0:e87aa4c49e95 3831
phungductung 0:e87aa4c49e95 3832 typedef struct
phungductung 0:e87aa4c49e95 3833 {
phungductung 0:e87aa4c49e95 3834 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
phungductung 0:e87aa4c49e95 3835 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
phungductung 0:e87aa4c49e95 3836 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
phungductung 0:e87aa4c49e95 3837 } arm_biquad_cascade_stereo_df2T_instance_f32;
phungductung 0:e87aa4c49e95 3838
phungductung 0:e87aa4c49e95 3839
phungductung 0:e87aa4c49e95 3840
phungductung 0:e87aa4c49e95 3841 /**
phungductung 0:e87aa4c49e95 3842 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
phungductung 0:e87aa4c49e95 3843 */
phungductung 0:e87aa4c49e95 3844
phungductung 0:e87aa4c49e95 3845 typedef struct
phungductung 0:e87aa4c49e95 3846 {
phungductung 0:e87aa4c49e95 3847 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
phungductung 0:e87aa4c49e95 3848 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
phungductung 0:e87aa4c49e95 3849 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
phungductung 0:e87aa4c49e95 3850 } arm_biquad_cascade_df2T_instance_f64;
phungductung 0:e87aa4c49e95 3851
phungductung 0:e87aa4c49e95 3852
phungductung 0:e87aa4c49e95 3853 /**
phungductung 0:e87aa4c49e95 3854 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
phungductung 0:e87aa4c49e95 3855 * @param[in] *S points to an instance of the filter data structure.
phungductung 0:e87aa4c49e95 3856 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3857 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3858 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 3859 * @return none.
phungductung 0:e87aa4c49e95 3860 */
phungductung 0:e87aa4c49e95 3861
phungductung 0:e87aa4c49e95 3862 void arm_biquad_cascade_df2T_f32(
phungductung 0:e87aa4c49e95 3863 const arm_biquad_cascade_df2T_instance_f32 * S,
phungductung 0:e87aa4c49e95 3864 float32_t * pSrc,
phungductung 0:e87aa4c49e95 3865 float32_t * pDst,
phungductung 0:e87aa4c49e95 3866 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3867
phungductung 0:e87aa4c49e95 3868
phungductung 0:e87aa4c49e95 3869 /**
phungductung 0:e87aa4c49e95 3870 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
phungductung 0:e87aa4c49e95 3871 * @param[in] *S points to an instance of the filter data structure.
phungductung 0:e87aa4c49e95 3872 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3873 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3874 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 3875 * @return none.
phungductung 0:e87aa4c49e95 3876 */
phungductung 0:e87aa4c49e95 3877
phungductung 0:e87aa4c49e95 3878 void arm_biquad_cascade_stereo_df2T_f32(
phungductung 0:e87aa4c49e95 3879 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
phungductung 0:e87aa4c49e95 3880 float32_t * pSrc,
phungductung 0:e87aa4c49e95 3881 float32_t * pDst,
phungductung 0:e87aa4c49e95 3882 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3883
phungductung 0:e87aa4c49e95 3884 /**
phungductung 0:e87aa4c49e95 3885 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
phungductung 0:e87aa4c49e95 3886 * @param[in] *S points to an instance of the filter data structure.
phungductung 0:e87aa4c49e95 3887 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 3888 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 3889 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 3890 * @return none.
phungductung 0:e87aa4c49e95 3891 */
phungductung 0:e87aa4c49e95 3892
phungductung 0:e87aa4c49e95 3893 void arm_biquad_cascade_df2T_f64(
phungductung 0:e87aa4c49e95 3894 const arm_biquad_cascade_df2T_instance_f64 * S,
phungductung 0:e87aa4c49e95 3895 float64_t * pSrc,
phungductung 0:e87aa4c49e95 3896 float64_t * pDst,
phungductung 0:e87aa4c49e95 3897 uint32_t blockSize);
phungductung 0:e87aa4c49e95 3898
phungductung 0:e87aa4c49e95 3899
phungductung 0:e87aa4c49e95 3900 /**
phungductung 0:e87aa4c49e95 3901 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
phungductung 0:e87aa4c49e95 3902 * @param[in,out] *S points to an instance of the filter data structure.
phungductung 0:e87aa4c49e95 3903 * @param[in] numStages number of 2nd order stages in the filter.
phungductung 0:e87aa4c49e95 3904 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 3905 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 3906 * @return none
phungductung 0:e87aa4c49e95 3907 */
phungductung 0:e87aa4c49e95 3908
phungductung 0:e87aa4c49e95 3909 void arm_biquad_cascade_df2T_init_f32(
phungductung 0:e87aa4c49e95 3910 arm_biquad_cascade_df2T_instance_f32 * S,
phungductung 0:e87aa4c49e95 3911 uint8_t numStages,
phungductung 0:e87aa4c49e95 3912 float32_t * pCoeffs,
phungductung 0:e87aa4c49e95 3913 float32_t * pState);
phungductung 0:e87aa4c49e95 3914
phungductung 0:e87aa4c49e95 3915
phungductung 0:e87aa4c49e95 3916 /**
phungductung 0:e87aa4c49e95 3917 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
phungductung 0:e87aa4c49e95 3918 * @param[in,out] *S points to an instance of the filter data structure.
phungductung 0:e87aa4c49e95 3919 * @param[in] numStages number of 2nd order stages in the filter.
phungductung 0:e87aa4c49e95 3920 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 3921 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 3922 * @return none
phungductung 0:e87aa4c49e95 3923 */
phungductung 0:e87aa4c49e95 3924
phungductung 0:e87aa4c49e95 3925 void arm_biquad_cascade_stereo_df2T_init_f32(
phungductung 0:e87aa4c49e95 3926 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
phungductung 0:e87aa4c49e95 3927 uint8_t numStages,
phungductung 0:e87aa4c49e95 3928 float32_t * pCoeffs,
phungductung 0:e87aa4c49e95 3929 float32_t * pState);
phungductung 0:e87aa4c49e95 3930
phungductung 0:e87aa4c49e95 3931
phungductung 0:e87aa4c49e95 3932 /**
phungductung 0:e87aa4c49e95 3933 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
phungductung 0:e87aa4c49e95 3934 * @param[in,out] *S points to an instance of the filter data structure.
phungductung 0:e87aa4c49e95 3935 * @param[in] numStages number of 2nd order stages in the filter.
phungductung 0:e87aa4c49e95 3936 * @param[in] *pCoeffs points to the filter coefficients.
phungductung 0:e87aa4c49e95 3937 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 3938 * @return none
phungductung 0:e87aa4c49e95 3939 */
phungductung 0:e87aa4c49e95 3940
phungductung 0:e87aa4c49e95 3941 void arm_biquad_cascade_df2T_init_f64(
phungductung 0:e87aa4c49e95 3942 arm_biquad_cascade_df2T_instance_f64 * S,
phungductung 0:e87aa4c49e95 3943 uint8_t numStages,
phungductung 0:e87aa4c49e95 3944 float64_t * pCoeffs,
phungductung 0:e87aa4c49e95 3945 float64_t * pState);
phungductung 0:e87aa4c49e95 3946
phungductung 0:e87aa4c49e95 3947
phungductung 0:e87aa4c49e95 3948
phungductung 0:e87aa4c49e95 3949 /**
phungductung 0:e87aa4c49e95 3950 * @brief Instance structure for the Q15 FIR lattice filter.
phungductung 0:e87aa4c49e95 3951 */
phungductung 0:e87aa4c49e95 3952
phungductung 0:e87aa4c49e95 3953 typedef struct
phungductung 0:e87aa4c49e95 3954 {
phungductung 0:e87aa4c49e95 3955 uint16_t numStages; /**< number of filter stages. */
phungductung 0:e87aa4c49e95 3956 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
phungductung 0:e87aa4c49e95 3957 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
phungductung 0:e87aa4c49e95 3958 } arm_fir_lattice_instance_q15;
phungductung 0:e87aa4c49e95 3959
phungductung 0:e87aa4c49e95 3960 /**
phungductung 0:e87aa4c49e95 3961 * @brief Instance structure for the Q31 FIR lattice filter.
phungductung 0:e87aa4c49e95 3962 */
phungductung 0:e87aa4c49e95 3963
phungductung 0:e87aa4c49e95 3964 typedef struct
phungductung 0:e87aa4c49e95 3965 {
phungductung 0:e87aa4c49e95 3966 uint16_t numStages; /**< number of filter stages. */
phungductung 0:e87aa4c49e95 3967 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
phungductung 0:e87aa4c49e95 3968 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
phungductung 0:e87aa4c49e95 3969 } arm_fir_lattice_instance_q31;
phungductung 0:e87aa4c49e95 3970
phungductung 0:e87aa4c49e95 3971 /**
phungductung 0:e87aa4c49e95 3972 * @brief Instance structure for the floating-point FIR lattice filter.
phungductung 0:e87aa4c49e95 3973 */
phungductung 0:e87aa4c49e95 3974
phungductung 0:e87aa4c49e95 3975 typedef struct
phungductung 0:e87aa4c49e95 3976 {
phungductung 0:e87aa4c49e95 3977 uint16_t numStages; /**< number of filter stages. */
phungductung 0:e87aa4c49e95 3978 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
phungductung 0:e87aa4c49e95 3979 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
phungductung 0:e87aa4c49e95 3980 } arm_fir_lattice_instance_f32;
phungductung 0:e87aa4c49e95 3981
phungductung 0:e87aa4c49e95 3982 /**
phungductung 0:e87aa4c49e95 3983 * @brief Initialization function for the Q15 FIR lattice filter.
phungductung 0:e87aa4c49e95 3984 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
phungductung 0:e87aa4c49e95 3985 * @param[in] numStages number of filter stages.
phungductung 0:e87aa4c49e95 3986 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
phungductung 0:e87aa4c49e95 3987 * @param[in] *pState points to the state buffer. The array is of length numStages.
phungductung 0:e87aa4c49e95 3988 * @return none.
phungductung 0:e87aa4c49e95 3989 */
phungductung 0:e87aa4c49e95 3990
phungductung 0:e87aa4c49e95 3991 void arm_fir_lattice_init_q15(
phungductung 0:e87aa4c49e95 3992 arm_fir_lattice_instance_q15 * S,
phungductung 0:e87aa4c49e95 3993 uint16_t numStages,
phungductung 0:e87aa4c49e95 3994 q15_t * pCoeffs,
phungductung 0:e87aa4c49e95 3995 q15_t * pState);
phungductung 0:e87aa4c49e95 3996
phungductung 0:e87aa4c49e95 3997
phungductung 0:e87aa4c49e95 3998 /**
phungductung 0:e87aa4c49e95 3999 * @brief Processing function for the Q15 FIR lattice filter.
phungductung 0:e87aa4c49e95 4000 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
phungductung 0:e87aa4c49e95 4001 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4002 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 4003 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4004 * @return none.
phungductung 0:e87aa4c49e95 4005 */
phungductung 0:e87aa4c49e95 4006 void arm_fir_lattice_q15(
phungductung 0:e87aa4c49e95 4007 const arm_fir_lattice_instance_q15 * S,
phungductung 0:e87aa4c49e95 4008 q15_t * pSrc,
phungductung 0:e87aa4c49e95 4009 q15_t * pDst,
phungductung 0:e87aa4c49e95 4010 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4011
phungductung 0:e87aa4c49e95 4012 /**
phungductung 0:e87aa4c49e95 4013 * @brief Initialization function for the Q31 FIR lattice filter.
phungductung 0:e87aa4c49e95 4014 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
phungductung 0:e87aa4c49e95 4015 * @param[in] numStages number of filter stages.
phungductung 0:e87aa4c49e95 4016 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
phungductung 0:e87aa4c49e95 4017 * @param[in] *pState points to the state buffer. The array is of length numStages.
phungductung 0:e87aa4c49e95 4018 * @return none.
phungductung 0:e87aa4c49e95 4019 */
phungductung 0:e87aa4c49e95 4020
phungductung 0:e87aa4c49e95 4021 void arm_fir_lattice_init_q31(
phungductung 0:e87aa4c49e95 4022 arm_fir_lattice_instance_q31 * S,
phungductung 0:e87aa4c49e95 4023 uint16_t numStages,
phungductung 0:e87aa4c49e95 4024 q31_t * pCoeffs,
phungductung 0:e87aa4c49e95 4025 q31_t * pState);
phungductung 0:e87aa4c49e95 4026
phungductung 0:e87aa4c49e95 4027
phungductung 0:e87aa4c49e95 4028 /**
phungductung 0:e87aa4c49e95 4029 * @brief Processing function for the Q31 FIR lattice filter.
phungductung 0:e87aa4c49e95 4030 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
phungductung 0:e87aa4c49e95 4031 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4032 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 4033 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4034 * @return none.
phungductung 0:e87aa4c49e95 4035 */
phungductung 0:e87aa4c49e95 4036
phungductung 0:e87aa4c49e95 4037 void arm_fir_lattice_q31(
phungductung 0:e87aa4c49e95 4038 const arm_fir_lattice_instance_q31 * S,
phungductung 0:e87aa4c49e95 4039 q31_t * pSrc,
phungductung 0:e87aa4c49e95 4040 q31_t * pDst,
phungductung 0:e87aa4c49e95 4041 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4042
phungductung 0:e87aa4c49e95 4043 /**
phungductung 0:e87aa4c49e95 4044 * @brief Initialization function for the floating-point FIR lattice filter.
phungductung 0:e87aa4c49e95 4045 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
phungductung 0:e87aa4c49e95 4046 * @param[in] numStages number of filter stages.
phungductung 0:e87aa4c49e95 4047 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
phungductung 0:e87aa4c49e95 4048 * @param[in] *pState points to the state buffer. The array is of length numStages.
phungductung 0:e87aa4c49e95 4049 * @return none.
phungductung 0:e87aa4c49e95 4050 */
phungductung 0:e87aa4c49e95 4051
phungductung 0:e87aa4c49e95 4052 void arm_fir_lattice_init_f32(
phungductung 0:e87aa4c49e95 4053 arm_fir_lattice_instance_f32 * S,
phungductung 0:e87aa4c49e95 4054 uint16_t numStages,
phungductung 0:e87aa4c49e95 4055 float32_t * pCoeffs,
phungductung 0:e87aa4c49e95 4056 float32_t * pState);
phungductung 0:e87aa4c49e95 4057
phungductung 0:e87aa4c49e95 4058 /**
phungductung 0:e87aa4c49e95 4059 * @brief Processing function for the floating-point FIR lattice filter.
phungductung 0:e87aa4c49e95 4060 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
phungductung 0:e87aa4c49e95 4061 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4062 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 4063 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4064 * @return none.
phungductung 0:e87aa4c49e95 4065 */
phungductung 0:e87aa4c49e95 4066
phungductung 0:e87aa4c49e95 4067 void arm_fir_lattice_f32(
phungductung 0:e87aa4c49e95 4068 const arm_fir_lattice_instance_f32 * S,
phungductung 0:e87aa4c49e95 4069 float32_t * pSrc,
phungductung 0:e87aa4c49e95 4070 float32_t * pDst,
phungductung 0:e87aa4c49e95 4071 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4072
phungductung 0:e87aa4c49e95 4073 /**
phungductung 0:e87aa4c49e95 4074 * @brief Instance structure for the Q15 IIR lattice filter.
phungductung 0:e87aa4c49e95 4075 */
phungductung 0:e87aa4c49e95 4076 typedef struct
phungductung 0:e87aa4c49e95 4077 {
phungductung 0:e87aa4c49e95 4078 uint16_t numStages; /**< number of stages in the filter. */
phungductung 0:e87aa4c49e95 4079 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
phungductung 0:e87aa4c49e95 4080 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
phungductung 0:e87aa4c49e95 4081 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
phungductung 0:e87aa4c49e95 4082 } arm_iir_lattice_instance_q15;
phungductung 0:e87aa4c49e95 4083
phungductung 0:e87aa4c49e95 4084 /**
phungductung 0:e87aa4c49e95 4085 * @brief Instance structure for the Q31 IIR lattice filter.
phungductung 0:e87aa4c49e95 4086 */
phungductung 0:e87aa4c49e95 4087 typedef struct
phungductung 0:e87aa4c49e95 4088 {
phungductung 0:e87aa4c49e95 4089 uint16_t numStages; /**< number of stages in the filter. */
phungductung 0:e87aa4c49e95 4090 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
phungductung 0:e87aa4c49e95 4091 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
phungductung 0:e87aa4c49e95 4092 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
phungductung 0:e87aa4c49e95 4093 } arm_iir_lattice_instance_q31;
phungductung 0:e87aa4c49e95 4094
phungductung 0:e87aa4c49e95 4095 /**
phungductung 0:e87aa4c49e95 4096 * @brief Instance structure for the floating-point IIR lattice filter.
phungductung 0:e87aa4c49e95 4097 */
phungductung 0:e87aa4c49e95 4098 typedef struct
phungductung 0:e87aa4c49e95 4099 {
phungductung 0:e87aa4c49e95 4100 uint16_t numStages; /**< number of stages in the filter. */
phungductung 0:e87aa4c49e95 4101 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
phungductung 0:e87aa4c49e95 4102 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
phungductung 0:e87aa4c49e95 4103 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
phungductung 0:e87aa4c49e95 4104 } arm_iir_lattice_instance_f32;
phungductung 0:e87aa4c49e95 4105
phungductung 0:e87aa4c49e95 4106 /**
phungductung 0:e87aa4c49e95 4107 * @brief Processing function for the floating-point IIR lattice filter.
phungductung 0:e87aa4c49e95 4108 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
phungductung 0:e87aa4c49e95 4109 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4110 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 4111 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4112 * @return none.
phungductung 0:e87aa4c49e95 4113 */
phungductung 0:e87aa4c49e95 4114
phungductung 0:e87aa4c49e95 4115 void arm_iir_lattice_f32(
phungductung 0:e87aa4c49e95 4116 const arm_iir_lattice_instance_f32 * S,
phungductung 0:e87aa4c49e95 4117 float32_t * pSrc,
phungductung 0:e87aa4c49e95 4118 float32_t * pDst,
phungductung 0:e87aa4c49e95 4119 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4120
phungductung 0:e87aa4c49e95 4121 /**
phungductung 0:e87aa4c49e95 4122 * @brief Initialization function for the floating-point IIR lattice filter.
phungductung 0:e87aa4c49e95 4123 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
phungductung 0:e87aa4c49e95 4124 * @param[in] numStages number of stages in the filter.
phungductung 0:e87aa4c49e95 4125 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
phungductung 0:e87aa4c49e95 4126 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
phungductung 0:e87aa4c49e95 4127 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
phungductung 0:e87aa4c49e95 4128 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4129 * @return none.
phungductung 0:e87aa4c49e95 4130 */
phungductung 0:e87aa4c49e95 4131
phungductung 0:e87aa4c49e95 4132 void arm_iir_lattice_init_f32(
phungductung 0:e87aa4c49e95 4133 arm_iir_lattice_instance_f32 * S,
phungductung 0:e87aa4c49e95 4134 uint16_t numStages,
phungductung 0:e87aa4c49e95 4135 float32_t * pkCoeffs,
phungductung 0:e87aa4c49e95 4136 float32_t * pvCoeffs,
phungductung 0:e87aa4c49e95 4137 float32_t * pState,
phungductung 0:e87aa4c49e95 4138 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4139
phungductung 0:e87aa4c49e95 4140
phungductung 0:e87aa4c49e95 4141 /**
phungductung 0:e87aa4c49e95 4142 * @brief Processing function for the Q31 IIR lattice filter.
phungductung 0:e87aa4c49e95 4143 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
phungductung 0:e87aa4c49e95 4144 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4145 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 4146 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4147 * @return none.
phungductung 0:e87aa4c49e95 4148 */
phungductung 0:e87aa4c49e95 4149
phungductung 0:e87aa4c49e95 4150 void arm_iir_lattice_q31(
phungductung 0:e87aa4c49e95 4151 const arm_iir_lattice_instance_q31 * S,
phungductung 0:e87aa4c49e95 4152 q31_t * pSrc,
phungductung 0:e87aa4c49e95 4153 q31_t * pDst,
phungductung 0:e87aa4c49e95 4154 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4155
phungductung 0:e87aa4c49e95 4156
phungductung 0:e87aa4c49e95 4157 /**
phungductung 0:e87aa4c49e95 4158 * @brief Initialization function for the Q31 IIR lattice filter.
phungductung 0:e87aa4c49e95 4159 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
phungductung 0:e87aa4c49e95 4160 * @param[in] numStages number of stages in the filter.
phungductung 0:e87aa4c49e95 4161 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
phungductung 0:e87aa4c49e95 4162 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
phungductung 0:e87aa4c49e95 4163 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
phungductung 0:e87aa4c49e95 4164 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4165 * @return none.
phungductung 0:e87aa4c49e95 4166 */
phungductung 0:e87aa4c49e95 4167
phungductung 0:e87aa4c49e95 4168 void arm_iir_lattice_init_q31(
phungductung 0:e87aa4c49e95 4169 arm_iir_lattice_instance_q31 * S,
phungductung 0:e87aa4c49e95 4170 uint16_t numStages,
phungductung 0:e87aa4c49e95 4171 q31_t * pkCoeffs,
phungductung 0:e87aa4c49e95 4172 q31_t * pvCoeffs,
phungductung 0:e87aa4c49e95 4173 q31_t * pState,
phungductung 0:e87aa4c49e95 4174 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4175
phungductung 0:e87aa4c49e95 4176
phungductung 0:e87aa4c49e95 4177 /**
phungductung 0:e87aa4c49e95 4178 * @brief Processing function for the Q15 IIR lattice filter.
phungductung 0:e87aa4c49e95 4179 * @param[in] *S points to an instance of the Q15 IIR lattice structure.
phungductung 0:e87aa4c49e95 4180 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4181 * @param[out] *pDst points to the block of output data.
phungductung 0:e87aa4c49e95 4182 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4183 * @return none.
phungductung 0:e87aa4c49e95 4184 */
phungductung 0:e87aa4c49e95 4185
phungductung 0:e87aa4c49e95 4186 void arm_iir_lattice_q15(
phungductung 0:e87aa4c49e95 4187 const arm_iir_lattice_instance_q15 * S,
phungductung 0:e87aa4c49e95 4188 q15_t * pSrc,
phungductung 0:e87aa4c49e95 4189 q15_t * pDst,
phungductung 0:e87aa4c49e95 4190 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4191
phungductung 0:e87aa4c49e95 4192
phungductung 0:e87aa4c49e95 4193 /**
phungductung 0:e87aa4c49e95 4194 * @brief Initialization function for the Q15 IIR lattice filter.
phungductung 0:e87aa4c49e95 4195 * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
phungductung 0:e87aa4c49e95 4196 * @param[in] numStages number of stages in the filter.
phungductung 0:e87aa4c49e95 4197 * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
phungductung 0:e87aa4c49e95 4198 * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
phungductung 0:e87aa4c49e95 4199 * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
phungductung 0:e87aa4c49e95 4200 * @param[in] blockSize number of samples to process per call.
phungductung 0:e87aa4c49e95 4201 * @return none.
phungductung 0:e87aa4c49e95 4202 */
phungductung 0:e87aa4c49e95 4203
phungductung 0:e87aa4c49e95 4204 void arm_iir_lattice_init_q15(
phungductung 0:e87aa4c49e95 4205 arm_iir_lattice_instance_q15 * S,
phungductung 0:e87aa4c49e95 4206 uint16_t numStages,
phungductung 0:e87aa4c49e95 4207 q15_t * pkCoeffs,
phungductung 0:e87aa4c49e95 4208 q15_t * pvCoeffs,
phungductung 0:e87aa4c49e95 4209 q15_t * pState,
phungductung 0:e87aa4c49e95 4210 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4211
phungductung 0:e87aa4c49e95 4212 /**
phungductung 0:e87aa4c49e95 4213 * @brief Instance structure for the floating-point LMS filter.
phungductung 0:e87aa4c49e95 4214 */
phungductung 0:e87aa4c49e95 4215
phungductung 0:e87aa4c49e95 4216 typedef struct
phungductung 0:e87aa4c49e95 4217 {
phungductung 0:e87aa4c49e95 4218 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 4219 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 4220 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 4221 float32_t mu; /**< step size that controls filter coefficient updates. */
phungductung 0:e87aa4c49e95 4222 } arm_lms_instance_f32;
phungductung 0:e87aa4c49e95 4223
phungductung 0:e87aa4c49e95 4224 /**
phungductung 0:e87aa4c49e95 4225 * @brief Processing function for floating-point LMS filter.
phungductung 0:e87aa4c49e95 4226 * @param[in] *S points to an instance of the floating-point LMS filter structure.
phungductung 0:e87aa4c49e95 4227 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4228 * @param[in] *pRef points to the block of reference data.
phungductung 0:e87aa4c49e95 4229 * @param[out] *pOut points to the block of output data.
phungductung 0:e87aa4c49e95 4230 * @param[out] *pErr points to the block of error data.
phungductung 0:e87aa4c49e95 4231 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4232 * @return none.
phungductung 0:e87aa4c49e95 4233 */
phungductung 0:e87aa4c49e95 4234
phungductung 0:e87aa4c49e95 4235 void arm_lms_f32(
phungductung 0:e87aa4c49e95 4236 const arm_lms_instance_f32 * S,
phungductung 0:e87aa4c49e95 4237 float32_t * pSrc,
phungductung 0:e87aa4c49e95 4238 float32_t * pRef,
phungductung 0:e87aa4c49e95 4239 float32_t * pOut,
phungductung 0:e87aa4c49e95 4240 float32_t * pErr,
phungductung 0:e87aa4c49e95 4241 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4242
phungductung 0:e87aa4c49e95 4243 /**
phungductung 0:e87aa4c49e95 4244 * @brief Initialization function for floating-point LMS filter.
phungductung 0:e87aa4c49e95 4245 * @param[in] *S points to an instance of the floating-point LMS filter structure.
phungductung 0:e87aa4c49e95 4246 * @param[in] numTaps number of filter coefficients.
phungductung 0:e87aa4c49e95 4247 * @param[in] *pCoeffs points to the coefficient buffer.
phungductung 0:e87aa4c49e95 4248 * @param[in] *pState points to state buffer.
phungductung 0:e87aa4c49e95 4249 * @param[in] mu step size that controls filter coefficient updates.
phungductung 0:e87aa4c49e95 4250 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4251 * @return none.
phungductung 0:e87aa4c49e95 4252 */
phungductung 0:e87aa4c49e95 4253
phungductung 0:e87aa4c49e95 4254 void arm_lms_init_f32(
phungductung 0:e87aa4c49e95 4255 arm_lms_instance_f32 * S,
phungductung 0:e87aa4c49e95 4256 uint16_t numTaps,
phungductung 0:e87aa4c49e95 4257 float32_t * pCoeffs,
phungductung 0:e87aa4c49e95 4258 float32_t * pState,
phungductung 0:e87aa4c49e95 4259 float32_t mu,
phungductung 0:e87aa4c49e95 4260 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4261
phungductung 0:e87aa4c49e95 4262 /**
phungductung 0:e87aa4c49e95 4263 * @brief Instance structure for the Q15 LMS filter.
phungductung 0:e87aa4c49e95 4264 */
phungductung 0:e87aa4c49e95 4265
phungductung 0:e87aa4c49e95 4266 typedef struct
phungductung 0:e87aa4c49e95 4267 {
phungductung 0:e87aa4c49e95 4268 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 4269 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 4270 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 4271 q15_t mu; /**< step size that controls filter coefficient updates. */
phungductung 0:e87aa4c49e95 4272 uint32_t postShift; /**< bit shift applied to coefficients. */
phungductung 0:e87aa4c49e95 4273 } arm_lms_instance_q15;
phungductung 0:e87aa4c49e95 4274
phungductung 0:e87aa4c49e95 4275
phungductung 0:e87aa4c49e95 4276 /**
phungductung 0:e87aa4c49e95 4277 * @brief Initialization function for the Q15 LMS filter.
phungductung 0:e87aa4c49e95 4278 * @param[in] *S points to an instance of the Q15 LMS filter structure.
phungductung 0:e87aa4c49e95 4279 * @param[in] numTaps number of filter coefficients.
phungductung 0:e87aa4c49e95 4280 * @param[in] *pCoeffs points to the coefficient buffer.
phungductung 0:e87aa4c49e95 4281 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 4282 * @param[in] mu step size that controls filter coefficient updates.
phungductung 0:e87aa4c49e95 4283 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4284 * @param[in] postShift bit shift applied to coefficients.
phungductung 0:e87aa4c49e95 4285 * @return none.
phungductung 0:e87aa4c49e95 4286 */
phungductung 0:e87aa4c49e95 4287
phungductung 0:e87aa4c49e95 4288 void arm_lms_init_q15(
phungductung 0:e87aa4c49e95 4289 arm_lms_instance_q15 * S,
phungductung 0:e87aa4c49e95 4290 uint16_t numTaps,
phungductung 0:e87aa4c49e95 4291 q15_t * pCoeffs,
phungductung 0:e87aa4c49e95 4292 q15_t * pState,
phungductung 0:e87aa4c49e95 4293 q15_t mu,
phungductung 0:e87aa4c49e95 4294 uint32_t blockSize,
phungductung 0:e87aa4c49e95 4295 uint32_t postShift);
phungductung 0:e87aa4c49e95 4296
phungductung 0:e87aa4c49e95 4297 /**
phungductung 0:e87aa4c49e95 4298 * @brief Processing function for Q15 LMS filter.
phungductung 0:e87aa4c49e95 4299 * @param[in] *S points to an instance of the Q15 LMS filter structure.
phungductung 0:e87aa4c49e95 4300 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4301 * @param[in] *pRef points to the block of reference data.
phungductung 0:e87aa4c49e95 4302 * @param[out] *pOut points to the block of output data.
phungductung 0:e87aa4c49e95 4303 * @param[out] *pErr points to the block of error data.
phungductung 0:e87aa4c49e95 4304 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4305 * @return none.
phungductung 0:e87aa4c49e95 4306 */
phungductung 0:e87aa4c49e95 4307
phungductung 0:e87aa4c49e95 4308 void arm_lms_q15(
phungductung 0:e87aa4c49e95 4309 const arm_lms_instance_q15 * S,
phungductung 0:e87aa4c49e95 4310 q15_t * pSrc,
phungductung 0:e87aa4c49e95 4311 q15_t * pRef,
phungductung 0:e87aa4c49e95 4312 q15_t * pOut,
phungductung 0:e87aa4c49e95 4313 q15_t * pErr,
phungductung 0:e87aa4c49e95 4314 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4315
phungductung 0:e87aa4c49e95 4316
phungductung 0:e87aa4c49e95 4317 /**
phungductung 0:e87aa4c49e95 4318 * @brief Instance structure for the Q31 LMS filter.
phungductung 0:e87aa4c49e95 4319 */
phungductung 0:e87aa4c49e95 4320
phungductung 0:e87aa4c49e95 4321 typedef struct
phungductung 0:e87aa4c49e95 4322 {
phungductung 0:e87aa4c49e95 4323 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 4324 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 4325 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 4326 q31_t mu; /**< step size that controls filter coefficient updates. */
phungductung 0:e87aa4c49e95 4327 uint32_t postShift; /**< bit shift applied to coefficients. */
phungductung 0:e87aa4c49e95 4328
phungductung 0:e87aa4c49e95 4329 } arm_lms_instance_q31;
phungductung 0:e87aa4c49e95 4330
phungductung 0:e87aa4c49e95 4331 /**
phungductung 0:e87aa4c49e95 4332 * @brief Processing function for Q31 LMS filter.
phungductung 0:e87aa4c49e95 4333 * @param[in] *S points to an instance of the Q15 LMS filter structure.
phungductung 0:e87aa4c49e95 4334 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4335 * @param[in] *pRef points to the block of reference data.
phungductung 0:e87aa4c49e95 4336 * @param[out] *pOut points to the block of output data.
phungductung 0:e87aa4c49e95 4337 * @param[out] *pErr points to the block of error data.
phungductung 0:e87aa4c49e95 4338 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4339 * @return none.
phungductung 0:e87aa4c49e95 4340 */
phungductung 0:e87aa4c49e95 4341
phungductung 0:e87aa4c49e95 4342 void arm_lms_q31(
phungductung 0:e87aa4c49e95 4343 const arm_lms_instance_q31 * S,
phungductung 0:e87aa4c49e95 4344 q31_t * pSrc,
phungductung 0:e87aa4c49e95 4345 q31_t * pRef,
phungductung 0:e87aa4c49e95 4346 q31_t * pOut,
phungductung 0:e87aa4c49e95 4347 q31_t * pErr,
phungductung 0:e87aa4c49e95 4348 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4349
phungductung 0:e87aa4c49e95 4350 /**
phungductung 0:e87aa4c49e95 4351 * @brief Initialization function for Q31 LMS filter.
phungductung 0:e87aa4c49e95 4352 * @param[in] *S points to an instance of the Q31 LMS filter structure.
phungductung 0:e87aa4c49e95 4353 * @param[in] numTaps number of filter coefficients.
phungductung 0:e87aa4c49e95 4354 * @param[in] *pCoeffs points to coefficient buffer.
phungductung 0:e87aa4c49e95 4355 * @param[in] *pState points to state buffer.
phungductung 0:e87aa4c49e95 4356 * @param[in] mu step size that controls filter coefficient updates.
phungductung 0:e87aa4c49e95 4357 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4358 * @param[in] postShift bit shift applied to coefficients.
phungductung 0:e87aa4c49e95 4359 * @return none.
phungductung 0:e87aa4c49e95 4360 */
phungductung 0:e87aa4c49e95 4361
phungductung 0:e87aa4c49e95 4362 void arm_lms_init_q31(
phungductung 0:e87aa4c49e95 4363 arm_lms_instance_q31 * S,
phungductung 0:e87aa4c49e95 4364 uint16_t numTaps,
phungductung 0:e87aa4c49e95 4365 q31_t * pCoeffs,
phungductung 0:e87aa4c49e95 4366 q31_t * pState,
phungductung 0:e87aa4c49e95 4367 q31_t mu,
phungductung 0:e87aa4c49e95 4368 uint32_t blockSize,
phungductung 0:e87aa4c49e95 4369 uint32_t postShift);
phungductung 0:e87aa4c49e95 4370
phungductung 0:e87aa4c49e95 4371 /**
phungductung 0:e87aa4c49e95 4372 * @brief Instance structure for the floating-point normalized LMS filter.
phungductung 0:e87aa4c49e95 4373 */
phungductung 0:e87aa4c49e95 4374
phungductung 0:e87aa4c49e95 4375 typedef struct
phungductung 0:e87aa4c49e95 4376 {
phungductung 0:e87aa4c49e95 4377 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 4378 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 4379 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 4380 float32_t mu; /**< step size that control filter coefficient updates. */
phungductung 0:e87aa4c49e95 4381 float32_t energy; /**< saves previous frame energy. */
phungductung 0:e87aa4c49e95 4382 float32_t x0; /**< saves previous input sample. */
phungductung 0:e87aa4c49e95 4383 } arm_lms_norm_instance_f32;
phungductung 0:e87aa4c49e95 4384
phungductung 0:e87aa4c49e95 4385 /**
phungductung 0:e87aa4c49e95 4386 * @brief Processing function for floating-point normalized LMS filter.
phungductung 0:e87aa4c49e95 4387 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
phungductung 0:e87aa4c49e95 4388 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4389 * @param[in] *pRef points to the block of reference data.
phungductung 0:e87aa4c49e95 4390 * @param[out] *pOut points to the block of output data.
phungductung 0:e87aa4c49e95 4391 * @param[out] *pErr points to the block of error data.
phungductung 0:e87aa4c49e95 4392 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4393 * @return none.
phungductung 0:e87aa4c49e95 4394 */
phungductung 0:e87aa4c49e95 4395
phungductung 0:e87aa4c49e95 4396 void arm_lms_norm_f32(
phungductung 0:e87aa4c49e95 4397 arm_lms_norm_instance_f32 * S,
phungductung 0:e87aa4c49e95 4398 float32_t * pSrc,
phungductung 0:e87aa4c49e95 4399 float32_t * pRef,
phungductung 0:e87aa4c49e95 4400 float32_t * pOut,
phungductung 0:e87aa4c49e95 4401 float32_t * pErr,
phungductung 0:e87aa4c49e95 4402 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4403
phungductung 0:e87aa4c49e95 4404 /**
phungductung 0:e87aa4c49e95 4405 * @brief Initialization function for floating-point normalized LMS filter.
phungductung 0:e87aa4c49e95 4406 * @param[in] *S points to an instance of the floating-point LMS filter structure.
phungductung 0:e87aa4c49e95 4407 * @param[in] numTaps number of filter coefficients.
phungductung 0:e87aa4c49e95 4408 * @param[in] *pCoeffs points to coefficient buffer.
phungductung 0:e87aa4c49e95 4409 * @param[in] *pState points to state buffer.
phungductung 0:e87aa4c49e95 4410 * @param[in] mu step size that controls filter coefficient updates.
phungductung 0:e87aa4c49e95 4411 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4412 * @return none.
phungductung 0:e87aa4c49e95 4413 */
phungductung 0:e87aa4c49e95 4414
phungductung 0:e87aa4c49e95 4415 void arm_lms_norm_init_f32(
phungductung 0:e87aa4c49e95 4416 arm_lms_norm_instance_f32 * S,
phungductung 0:e87aa4c49e95 4417 uint16_t numTaps,
phungductung 0:e87aa4c49e95 4418 float32_t * pCoeffs,
phungductung 0:e87aa4c49e95 4419 float32_t * pState,
phungductung 0:e87aa4c49e95 4420 float32_t mu,
phungductung 0:e87aa4c49e95 4421 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4422
phungductung 0:e87aa4c49e95 4423
phungductung 0:e87aa4c49e95 4424 /**
phungductung 0:e87aa4c49e95 4425 * @brief Instance structure for the Q31 normalized LMS filter.
phungductung 0:e87aa4c49e95 4426 */
phungductung 0:e87aa4c49e95 4427 typedef struct
phungductung 0:e87aa4c49e95 4428 {
phungductung 0:e87aa4c49e95 4429 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 4430 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 4431 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 4432 q31_t mu; /**< step size that controls filter coefficient updates. */
phungductung 0:e87aa4c49e95 4433 uint8_t postShift; /**< bit shift applied to coefficients. */
phungductung 0:e87aa4c49e95 4434 q31_t *recipTable; /**< points to the reciprocal initial value table. */
phungductung 0:e87aa4c49e95 4435 q31_t energy; /**< saves previous frame energy. */
phungductung 0:e87aa4c49e95 4436 q31_t x0; /**< saves previous input sample. */
phungductung 0:e87aa4c49e95 4437 } arm_lms_norm_instance_q31;
phungductung 0:e87aa4c49e95 4438
phungductung 0:e87aa4c49e95 4439 /**
phungductung 0:e87aa4c49e95 4440 * @brief Processing function for Q31 normalized LMS filter.
phungductung 0:e87aa4c49e95 4441 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
phungductung 0:e87aa4c49e95 4442 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4443 * @param[in] *pRef points to the block of reference data.
phungductung 0:e87aa4c49e95 4444 * @param[out] *pOut points to the block of output data.
phungductung 0:e87aa4c49e95 4445 * @param[out] *pErr points to the block of error data.
phungductung 0:e87aa4c49e95 4446 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4447 * @return none.
phungductung 0:e87aa4c49e95 4448 */
phungductung 0:e87aa4c49e95 4449
phungductung 0:e87aa4c49e95 4450 void arm_lms_norm_q31(
phungductung 0:e87aa4c49e95 4451 arm_lms_norm_instance_q31 * S,
phungductung 0:e87aa4c49e95 4452 q31_t * pSrc,
phungductung 0:e87aa4c49e95 4453 q31_t * pRef,
phungductung 0:e87aa4c49e95 4454 q31_t * pOut,
phungductung 0:e87aa4c49e95 4455 q31_t * pErr,
phungductung 0:e87aa4c49e95 4456 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4457
phungductung 0:e87aa4c49e95 4458 /**
phungductung 0:e87aa4c49e95 4459 * @brief Initialization function for Q31 normalized LMS filter.
phungductung 0:e87aa4c49e95 4460 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
phungductung 0:e87aa4c49e95 4461 * @param[in] numTaps number of filter coefficients.
phungductung 0:e87aa4c49e95 4462 * @param[in] *pCoeffs points to coefficient buffer.
phungductung 0:e87aa4c49e95 4463 * @param[in] *pState points to state buffer.
phungductung 0:e87aa4c49e95 4464 * @param[in] mu step size that controls filter coefficient updates.
phungductung 0:e87aa4c49e95 4465 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4466 * @param[in] postShift bit shift applied to coefficients.
phungductung 0:e87aa4c49e95 4467 * @return none.
phungductung 0:e87aa4c49e95 4468 */
phungductung 0:e87aa4c49e95 4469
phungductung 0:e87aa4c49e95 4470 void arm_lms_norm_init_q31(
phungductung 0:e87aa4c49e95 4471 arm_lms_norm_instance_q31 * S,
phungductung 0:e87aa4c49e95 4472 uint16_t numTaps,
phungductung 0:e87aa4c49e95 4473 q31_t * pCoeffs,
phungductung 0:e87aa4c49e95 4474 q31_t * pState,
phungductung 0:e87aa4c49e95 4475 q31_t mu,
phungductung 0:e87aa4c49e95 4476 uint32_t blockSize,
phungductung 0:e87aa4c49e95 4477 uint8_t postShift);
phungductung 0:e87aa4c49e95 4478
phungductung 0:e87aa4c49e95 4479 /**
phungductung 0:e87aa4c49e95 4480 * @brief Instance structure for the Q15 normalized LMS filter.
phungductung 0:e87aa4c49e95 4481 */
phungductung 0:e87aa4c49e95 4482
phungductung 0:e87aa4c49e95 4483 typedef struct
phungductung 0:e87aa4c49e95 4484 {
phungductung 0:e87aa4c49e95 4485 uint16_t numTaps; /**< Number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 4486 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
phungductung 0:e87aa4c49e95 4487 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 4488 q15_t mu; /**< step size that controls filter coefficient updates. */
phungductung 0:e87aa4c49e95 4489 uint8_t postShift; /**< bit shift applied to coefficients. */
phungductung 0:e87aa4c49e95 4490 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
phungductung 0:e87aa4c49e95 4491 q15_t energy; /**< saves previous frame energy. */
phungductung 0:e87aa4c49e95 4492 q15_t x0; /**< saves previous input sample. */
phungductung 0:e87aa4c49e95 4493 } arm_lms_norm_instance_q15;
phungductung 0:e87aa4c49e95 4494
phungductung 0:e87aa4c49e95 4495 /**
phungductung 0:e87aa4c49e95 4496 * @brief Processing function for Q15 normalized LMS filter.
phungductung 0:e87aa4c49e95 4497 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
phungductung 0:e87aa4c49e95 4498 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4499 * @param[in] *pRef points to the block of reference data.
phungductung 0:e87aa4c49e95 4500 * @param[out] *pOut points to the block of output data.
phungductung 0:e87aa4c49e95 4501 * @param[out] *pErr points to the block of error data.
phungductung 0:e87aa4c49e95 4502 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4503 * @return none.
phungductung 0:e87aa4c49e95 4504 */
phungductung 0:e87aa4c49e95 4505
phungductung 0:e87aa4c49e95 4506 void arm_lms_norm_q15(
phungductung 0:e87aa4c49e95 4507 arm_lms_norm_instance_q15 * S,
phungductung 0:e87aa4c49e95 4508 q15_t * pSrc,
phungductung 0:e87aa4c49e95 4509 q15_t * pRef,
phungductung 0:e87aa4c49e95 4510 q15_t * pOut,
phungductung 0:e87aa4c49e95 4511 q15_t * pErr,
phungductung 0:e87aa4c49e95 4512 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4513
phungductung 0:e87aa4c49e95 4514
phungductung 0:e87aa4c49e95 4515 /**
phungductung 0:e87aa4c49e95 4516 * @brief Initialization function for Q15 normalized LMS filter.
phungductung 0:e87aa4c49e95 4517 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
phungductung 0:e87aa4c49e95 4518 * @param[in] numTaps number of filter coefficients.
phungductung 0:e87aa4c49e95 4519 * @param[in] *pCoeffs points to coefficient buffer.
phungductung 0:e87aa4c49e95 4520 * @param[in] *pState points to state buffer.
phungductung 0:e87aa4c49e95 4521 * @param[in] mu step size that controls filter coefficient updates.
phungductung 0:e87aa4c49e95 4522 * @param[in] blockSize number of samples to process.
phungductung 0:e87aa4c49e95 4523 * @param[in] postShift bit shift applied to coefficients.
phungductung 0:e87aa4c49e95 4524 * @return none.
phungductung 0:e87aa4c49e95 4525 */
phungductung 0:e87aa4c49e95 4526
phungductung 0:e87aa4c49e95 4527 void arm_lms_norm_init_q15(
phungductung 0:e87aa4c49e95 4528 arm_lms_norm_instance_q15 * S,
phungductung 0:e87aa4c49e95 4529 uint16_t numTaps,
phungductung 0:e87aa4c49e95 4530 q15_t * pCoeffs,
phungductung 0:e87aa4c49e95 4531 q15_t * pState,
phungductung 0:e87aa4c49e95 4532 q15_t mu,
phungductung 0:e87aa4c49e95 4533 uint32_t blockSize,
phungductung 0:e87aa4c49e95 4534 uint8_t postShift);
phungductung 0:e87aa4c49e95 4535
phungductung 0:e87aa4c49e95 4536 /**
phungductung 0:e87aa4c49e95 4537 * @brief Correlation of floating-point sequences.
phungductung 0:e87aa4c49e95 4538 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 4539 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 4540 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 4541 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 4542 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
phungductung 0:e87aa4c49e95 4543 * @return none.
phungductung 0:e87aa4c49e95 4544 */
phungductung 0:e87aa4c49e95 4545
phungductung 0:e87aa4c49e95 4546 void arm_correlate_f32(
phungductung 0:e87aa4c49e95 4547 float32_t * pSrcA,
phungductung 0:e87aa4c49e95 4548 uint32_t srcALen,
phungductung 0:e87aa4c49e95 4549 float32_t * pSrcB,
phungductung 0:e87aa4c49e95 4550 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 4551 float32_t * pDst);
phungductung 0:e87aa4c49e95 4552
phungductung 0:e87aa4c49e95 4553
phungductung 0:e87aa4c49e95 4554 /**
phungductung 0:e87aa4c49e95 4555 * @brief Correlation of Q15 sequences
phungductung 0:e87aa4c49e95 4556 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 4557 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 4558 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 4559 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 4560 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
phungductung 0:e87aa4c49e95 4561 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
phungductung 0:e87aa4c49e95 4562 * @return none.
phungductung 0:e87aa4c49e95 4563 */
phungductung 0:e87aa4c49e95 4564 void arm_correlate_opt_q15(
phungductung 0:e87aa4c49e95 4565 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 4566 uint32_t srcALen,
phungductung 0:e87aa4c49e95 4567 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 4568 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 4569 q15_t * pDst,
phungductung 0:e87aa4c49e95 4570 q15_t * pScratch);
phungductung 0:e87aa4c49e95 4571
phungductung 0:e87aa4c49e95 4572
phungductung 0:e87aa4c49e95 4573 /**
phungductung 0:e87aa4c49e95 4574 * @brief Correlation of Q15 sequences.
phungductung 0:e87aa4c49e95 4575 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 4576 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 4577 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 4578 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 4579 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
phungductung 0:e87aa4c49e95 4580 * @return none.
phungductung 0:e87aa4c49e95 4581 */
phungductung 0:e87aa4c49e95 4582
phungductung 0:e87aa4c49e95 4583 void arm_correlate_q15(
phungductung 0:e87aa4c49e95 4584 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 4585 uint32_t srcALen,
phungductung 0:e87aa4c49e95 4586 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 4587 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 4588 q15_t * pDst);
phungductung 0:e87aa4c49e95 4589
phungductung 0:e87aa4c49e95 4590 /**
phungductung 0:e87aa4c49e95 4591 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
phungductung 0:e87aa4c49e95 4592 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 4593 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 4594 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 4595 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 4596 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
phungductung 0:e87aa4c49e95 4597 * @return none.
phungductung 0:e87aa4c49e95 4598 */
phungductung 0:e87aa4c49e95 4599
phungductung 0:e87aa4c49e95 4600 void arm_correlate_fast_q15(
phungductung 0:e87aa4c49e95 4601 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 4602 uint32_t srcALen,
phungductung 0:e87aa4c49e95 4603 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 4604 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 4605 q15_t * pDst);
phungductung 0:e87aa4c49e95 4606
phungductung 0:e87aa4c49e95 4607
phungductung 0:e87aa4c49e95 4608
phungductung 0:e87aa4c49e95 4609 /**
phungductung 0:e87aa4c49e95 4610 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
phungductung 0:e87aa4c49e95 4611 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 4612 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 4613 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 4614 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 4615 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
phungductung 0:e87aa4c49e95 4616 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
phungductung 0:e87aa4c49e95 4617 * @return none.
phungductung 0:e87aa4c49e95 4618 */
phungductung 0:e87aa4c49e95 4619
phungductung 0:e87aa4c49e95 4620 void arm_correlate_fast_opt_q15(
phungductung 0:e87aa4c49e95 4621 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 4622 uint32_t srcALen,
phungductung 0:e87aa4c49e95 4623 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 4624 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 4625 q15_t * pDst,
phungductung 0:e87aa4c49e95 4626 q15_t * pScratch);
phungductung 0:e87aa4c49e95 4627
phungductung 0:e87aa4c49e95 4628 /**
phungductung 0:e87aa4c49e95 4629 * @brief Correlation of Q31 sequences.
phungductung 0:e87aa4c49e95 4630 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 4631 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 4632 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 4633 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 4634 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
phungductung 0:e87aa4c49e95 4635 * @return none.
phungductung 0:e87aa4c49e95 4636 */
phungductung 0:e87aa4c49e95 4637
phungductung 0:e87aa4c49e95 4638 void arm_correlate_q31(
phungductung 0:e87aa4c49e95 4639 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 4640 uint32_t srcALen,
phungductung 0:e87aa4c49e95 4641 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 4642 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 4643 q31_t * pDst);
phungductung 0:e87aa4c49e95 4644
phungductung 0:e87aa4c49e95 4645 /**
phungductung 0:e87aa4c49e95 4646 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
phungductung 0:e87aa4c49e95 4647 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 4648 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 4649 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 4650 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 4651 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
phungductung 0:e87aa4c49e95 4652 * @return none.
phungductung 0:e87aa4c49e95 4653 */
phungductung 0:e87aa4c49e95 4654
phungductung 0:e87aa4c49e95 4655 void arm_correlate_fast_q31(
phungductung 0:e87aa4c49e95 4656 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 4657 uint32_t srcALen,
phungductung 0:e87aa4c49e95 4658 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 4659 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 4660 q31_t * pDst);
phungductung 0:e87aa4c49e95 4661
phungductung 0:e87aa4c49e95 4662
phungductung 0:e87aa4c49e95 4663
phungductung 0:e87aa4c49e95 4664 /**
phungductung 0:e87aa4c49e95 4665 * @brief Correlation of Q7 sequences.
phungductung 0:e87aa4c49e95 4666 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 4667 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 4668 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 4669 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 4670 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
phungductung 0:e87aa4c49e95 4671 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
phungductung 0:e87aa4c49e95 4672 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
phungductung 0:e87aa4c49e95 4673 * @return none.
phungductung 0:e87aa4c49e95 4674 */
phungductung 0:e87aa4c49e95 4675
phungductung 0:e87aa4c49e95 4676 void arm_correlate_opt_q7(
phungductung 0:e87aa4c49e95 4677 q7_t * pSrcA,
phungductung 0:e87aa4c49e95 4678 uint32_t srcALen,
phungductung 0:e87aa4c49e95 4679 q7_t * pSrcB,
phungductung 0:e87aa4c49e95 4680 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 4681 q7_t * pDst,
phungductung 0:e87aa4c49e95 4682 q15_t * pScratch1,
phungductung 0:e87aa4c49e95 4683 q15_t * pScratch2);
phungductung 0:e87aa4c49e95 4684
phungductung 0:e87aa4c49e95 4685
phungductung 0:e87aa4c49e95 4686 /**
phungductung 0:e87aa4c49e95 4687 * @brief Correlation of Q7 sequences.
phungductung 0:e87aa4c49e95 4688 * @param[in] *pSrcA points to the first input sequence.
phungductung 0:e87aa4c49e95 4689 * @param[in] srcALen length of the first input sequence.
phungductung 0:e87aa4c49e95 4690 * @param[in] *pSrcB points to the second input sequence.
phungductung 0:e87aa4c49e95 4691 * @param[in] srcBLen length of the second input sequence.
phungductung 0:e87aa4c49e95 4692 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
phungductung 0:e87aa4c49e95 4693 * @return none.
phungductung 0:e87aa4c49e95 4694 */
phungductung 0:e87aa4c49e95 4695
phungductung 0:e87aa4c49e95 4696 void arm_correlate_q7(
phungductung 0:e87aa4c49e95 4697 q7_t * pSrcA,
phungductung 0:e87aa4c49e95 4698 uint32_t srcALen,
phungductung 0:e87aa4c49e95 4699 q7_t * pSrcB,
phungductung 0:e87aa4c49e95 4700 uint32_t srcBLen,
phungductung 0:e87aa4c49e95 4701 q7_t * pDst);
phungductung 0:e87aa4c49e95 4702
phungductung 0:e87aa4c49e95 4703
phungductung 0:e87aa4c49e95 4704 /**
phungductung 0:e87aa4c49e95 4705 * @brief Instance structure for the floating-point sparse FIR filter.
phungductung 0:e87aa4c49e95 4706 */
phungductung 0:e87aa4c49e95 4707 typedef struct
phungductung 0:e87aa4c49e95 4708 {
phungductung 0:e87aa4c49e95 4709 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 4710 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
phungductung 0:e87aa4c49e95 4711 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
phungductung 0:e87aa4c49e95 4712 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
phungductung 0:e87aa4c49e95 4713 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
phungductung 0:e87aa4c49e95 4714 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 4715 } arm_fir_sparse_instance_f32;
phungductung 0:e87aa4c49e95 4716
phungductung 0:e87aa4c49e95 4717 /**
phungductung 0:e87aa4c49e95 4718 * @brief Instance structure for the Q31 sparse FIR filter.
phungductung 0:e87aa4c49e95 4719 */
phungductung 0:e87aa4c49e95 4720
phungductung 0:e87aa4c49e95 4721 typedef struct
phungductung 0:e87aa4c49e95 4722 {
phungductung 0:e87aa4c49e95 4723 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 4724 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
phungductung 0:e87aa4c49e95 4725 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
phungductung 0:e87aa4c49e95 4726 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
phungductung 0:e87aa4c49e95 4727 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
phungductung 0:e87aa4c49e95 4728 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 4729 } arm_fir_sparse_instance_q31;
phungductung 0:e87aa4c49e95 4730
phungductung 0:e87aa4c49e95 4731 /**
phungductung 0:e87aa4c49e95 4732 * @brief Instance structure for the Q15 sparse FIR filter.
phungductung 0:e87aa4c49e95 4733 */
phungductung 0:e87aa4c49e95 4734
phungductung 0:e87aa4c49e95 4735 typedef struct
phungductung 0:e87aa4c49e95 4736 {
phungductung 0:e87aa4c49e95 4737 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 4738 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
phungductung 0:e87aa4c49e95 4739 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
phungductung 0:e87aa4c49e95 4740 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
phungductung 0:e87aa4c49e95 4741 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
phungductung 0:e87aa4c49e95 4742 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 4743 } arm_fir_sparse_instance_q15;
phungductung 0:e87aa4c49e95 4744
phungductung 0:e87aa4c49e95 4745 /**
phungductung 0:e87aa4c49e95 4746 * @brief Instance structure for the Q7 sparse FIR filter.
phungductung 0:e87aa4c49e95 4747 */
phungductung 0:e87aa4c49e95 4748
phungductung 0:e87aa4c49e95 4749 typedef struct
phungductung 0:e87aa4c49e95 4750 {
phungductung 0:e87aa4c49e95 4751 uint16_t numTaps; /**< number of coefficients in the filter. */
phungductung 0:e87aa4c49e95 4752 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
phungductung 0:e87aa4c49e95 4753 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
phungductung 0:e87aa4c49e95 4754 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
phungductung 0:e87aa4c49e95 4755 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
phungductung 0:e87aa4c49e95 4756 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
phungductung 0:e87aa4c49e95 4757 } arm_fir_sparse_instance_q7;
phungductung 0:e87aa4c49e95 4758
phungductung 0:e87aa4c49e95 4759 /**
phungductung 0:e87aa4c49e95 4760 * @brief Processing function for the floating-point sparse FIR filter.
phungductung 0:e87aa4c49e95 4761 * @param[in] *S points to an instance of the floating-point sparse FIR structure.
phungductung 0:e87aa4c49e95 4762 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4763 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 4764 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
phungductung 0:e87aa4c49e95 4765 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 4766 * @return none.
phungductung 0:e87aa4c49e95 4767 */
phungductung 0:e87aa4c49e95 4768
phungductung 0:e87aa4c49e95 4769 void arm_fir_sparse_f32(
phungductung 0:e87aa4c49e95 4770 arm_fir_sparse_instance_f32 * S,
phungductung 0:e87aa4c49e95 4771 float32_t * pSrc,
phungductung 0:e87aa4c49e95 4772 float32_t * pDst,
phungductung 0:e87aa4c49e95 4773 float32_t * pScratchIn,
phungductung 0:e87aa4c49e95 4774 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4775
phungductung 0:e87aa4c49e95 4776 /**
phungductung 0:e87aa4c49e95 4777 * @brief Initialization function for the floating-point sparse FIR filter.
phungductung 0:e87aa4c49e95 4778 * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
phungductung 0:e87aa4c49e95 4779 * @param[in] numTaps number of nonzero coefficients in the filter.
phungductung 0:e87aa4c49e95 4780 * @param[in] *pCoeffs points to the array of filter coefficients.
phungductung 0:e87aa4c49e95 4781 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 4782 * @param[in] *pTapDelay points to the array of offset times.
phungductung 0:e87aa4c49e95 4783 * @param[in] maxDelay maximum offset time supported.
phungductung 0:e87aa4c49e95 4784 * @param[in] blockSize number of samples that will be processed per block.
phungductung 0:e87aa4c49e95 4785 * @return none
phungductung 0:e87aa4c49e95 4786 */
phungductung 0:e87aa4c49e95 4787
phungductung 0:e87aa4c49e95 4788 void arm_fir_sparse_init_f32(
phungductung 0:e87aa4c49e95 4789 arm_fir_sparse_instance_f32 * S,
phungductung 0:e87aa4c49e95 4790 uint16_t numTaps,
phungductung 0:e87aa4c49e95 4791 float32_t * pCoeffs,
phungductung 0:e87aa4c49e95 4792 float32_t * pState,
phungductung 0:e87aa4c49e95 4793 int32_t * pTapDelay,
phungductung 0:e87aa4c49e95 4794 uint16_t maxDelay,
phungductung 0:e87aa4c49e95 4795 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4796
phungductung 0:e87aa4c49e95 4797 /**
phungductung 0:e87aa4c49e95 4798 * @brief Processing function for the Q31 sparse FIR filter.
phungductung 0:e87aa4c49e95 4799 * @param[in] *S points to an instance of the Q31 sparse FIR structure.
phungductung 0:e87aa4c49e95 4800 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4801 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 4802 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
phungductung 0:e87aa4c49e95 4803 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 4804 * @return none.
phungductung 0:e87aa4c49e95 4805 */
phungductung 0:e87aa4c49e95 4806
phungductung 0:e87aa4c49e95 4807 void arm_fir_sparse_q31(
phungductung 0:e87aa4c49e95 4808 arm_fir_sparse_instance_q31 * S,
phungductung 0:e87aa4c49e95 4809 q31_t * pSrc,
phungductung 0:e87aa4c49e95 4810 q31_t * pDst,
phungductung 0:e87aa4c49e95 4811 q31_t * pScratchIn,
phungductung 0:e87aa4c49e95 4812 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4813
phungductung 0:e87aa4c49e95 4814 /**
phungductung 0:e87aa4c49e95 4815 * @brief Initialization function for the Q31 sparse FIR filter.
phungductung 0:e87aa4c49e95 4816 * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
phungductung 0:e87aa4c49e95 4817 * @param[in] numTaps number of nonzero coefficients in the filter.
phungductung 0:e87aa4c49e95 4818 * @param[in] *pCoeffs points to the array of filter coefficients.
phungductung 0:e87aa4c49e95 4819 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 4820 * @param[in] *pTapDelay points to the array of offset times.
phungductung 0:e87aa4c49e95 4821 * @param[in] maxDelay maximum offset time supported.
phungductung 0:e87aa4c49e95 4822 * @param[in] blockSize number of samples that will be processed per block.
phungductung 0:e87aa4c49e95 4823 * @return none
phungductung 0:e87aa4c49e95 4824 */
phungductung 0:e87aa4c49e95 4825
phungductung 0:e87aa4c49e95 4826 void arm_fir_sparse_init_q31(
phungductung 0:e87aa4c49e95 4827 arm_fir_sparse_instance_q31 * S,
phungductung 0:e87aa4c49e95 4828 uint16_t numTaps,
phungductung 0:e87aa4c49e95 4829 q31_t * pCoeffs,
phungductung 0:e87aa4c49e95 4830 q31_t * pState,
phungductung 0:e87aa4c49e95 4831 int32_t * pTapDelay,
phungductung 0:e87aa4c49e95 4832 uint16_t maxDelay,
phungductung 0:e87aa4c49e95 4833 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4834
phungductung 0:e87aa4c49e95 4835 /**
phungductung 0:e87aa4c49e95 4836 * @brief Processing function for the Q15 sparse FIR filter.
phungductung 0:e87aa4c49e95 4837 * @param[in] *S points to an instance of the Q15 sparse FIR structure.
phungductung 0:e87aa4c49e95 4838 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4839 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 4840 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
phungductung 0:e87aa4c49e95 4841 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
phungductung 0:e87aa4c49e95 4842 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 4843 * @return none.
phungductung 0:e87aa4c49e95 4844 */
phungductung 0:e87aa4c49e95 4845
phungductung 0:e87aa4c49e95 4846 void arm_fir_sparse_q15(
phungductung 0:e87aa4c49e95 4847 arm_fir_sparse_instance_q15 * S,
phungductung 0:e87aa4c49e95 4848 q15_t * pSrc,
phungductung 0:e87aa4c49e95 4849 q15_t * pDst,
phungductung 0:e87aa4c49e95 4850 q15_t * pScratchIn,
phungductung 0:e87aa4c49e95 4851 q31_t * pScratchOut,
phungductung 0:e87aa4c49e95 4852 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4853
phungductung 0:e87aa4c49e95 4854
phungductung 0:e87aa4c49e95 4855 /**
phungductung 0:e87aa4c49e95 4856 * @brief Initialization function for the Q15 sparse FIR filter.
phungductung 0:e87aa4c49e95 4857 * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
phungductung 0:e87aa4c49e95 4858 * @param[in] numTaps number of nonzero coefficients in the filter.
phungductung 0:e87aa4c49e95 4859 * @param[in] *pCoeffs points to the array of filter coefficients.
phungductung 0:e87aa4c49e95 4860 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 4861 * @param[in] *pTapDelay points to the array of offset times.
phungductung 0:e87aa4c49e95 4862 * @param[in] maxDelay maximum offset time supported.
phungductung 0:e87aa4c49e95 4863 * @param[in] blockSize number of samples that will be processed per block.
phungductung 0:e87aa4c49e95 4864 * @return none
phungductung 0:e87aa4c49e95 4865 */
phungductung 0:e87aa4c49e95 4866
phungductung 0:e87aa4c49e95 4867 void arm_fir_sparse_init_q15(
phungductung 0:e87aa4c49e95 4868 arm_fir_sparse_instance_q15 * S,
phungductung 0:e87aa4c49e95 4869 uint16_t numTaps,
phungductung 0:e87aa4c49e95 4870 q15_t * pCoeffs,
phungductung 0:e87aa4c49e95 4871 q15_t * pState,
phungductung 0:e87aa4c49e95 4872 int32_t * pTapDelay,
phungductung 0:e87aa4c49e95 4873 uint16_t maxDelay,
phungductung 0:e87aa4c49e95 4874 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4875
phungductung 0:e87aa4c49e95 4876 /**
phungductung 0:e87aa4c49e95 4877 * @brief Processing function for the Q7 sparse FIR filter.
phungductung 0:e87aa4c49e95 4878 * @param[in] *S points to an instance of the Q7 sparse FIR structure.
phungductung 0:e87aa4c49e95 4879 * @param[in] *pSrc points to the block of input data.
phungductung 0:e87aa4c49e95 4880 * @param[out] *pDst points to the block of output data
phungductung 0:e87aa4c49e95 4881 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
phungductung 0:e87aa4c49e95 4882 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
phungductung 0:e87aa4c49e95 4883 * @param[in] blockSize number of input samples to process per call.
phungductung 0:e87aa4c49e95 4884 * @return none.
phungductung 0:e87aa4c49e95 4885 */
phungductung 0:e87aa4c49e95 4886
phungductung 0:e87aa4c49e95 4887 void arm_fir_sparse_q7(
phungductung 0:e87aa4c49e95 4888 arm_fir_sparse_instance_q7 * S,
phungductung 0:e87aa4c49e95 4889 q7_t * pSrc,
phungductung 0:e87aa4c49e95 4890 q7_t * pDst,
phungductung 0:e87aa4c49e95 4891 q7_t * pScratchIn,
phungductung 0:e87aa4c49e95 4892 q31_t * pScratchOut,
phungductung 0:e87aa4c49e95 4893 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4894
phungductung 0:e87aa4c49e95 4895 /**
phungductung 0:e87aa4c49e95 4896 * @brief Initialization function for the Q7 sparse FIR filter.
phungductung 0:e87aa4c49e95 4897 * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
phungductung 0:e87aa4c49e95 4898 * @param[in] numTaps number of nonzero coefficients in the filter.
phungductung 0:e87aa4c49e95 4899 * @param[in] *pCoeffs points to the array of filter coefficients.
phungductung 0:e87aa4c49e95 4900 * @param[in] *pState points to the state buffer.
phungductung 0:e87aa4c49e95 4901 * @param[in] *pTapDelay points to the array of offset times.
phungductung 0:e87aa4c49e95 4902 * @param[in] maxDelay maximum offset time supported.
phungductung 0:e87aa4c49e95 4903 * @param[in] blockSize number of samples that will be processed per block.
phungductung 0:e87aa4c49e95 4904 * @return none
phungductung 0:e87aa4c49e95 4905 */
phungductung 0:e87aa4c49e95 4906
phungductung 0:e87aa4c49e95 4907 void arm_fir_sparse_init_q7(
phungductung 0:e87aa4c49e95 4908 arm_fir_sparse_instance_q7 * S,
phungductung 0:e87aa4c49e95 4909 uint16_t numTaps,
phungductung 0:e87aa4c49e95 4910 q7_t * pCoeffs,
phungductung 0:e87aa4c49e95 4911 q7_t * pState,
phungductung 0:e87aa4c49e95 4912 int32_t * pTapDelay,
phungductung 0:e87aa4c49e95 4913 uint16_t maxDelay,
phungductung 0:e87aa4c49e95 4914 uint32_t blockSize);
phungductung 0:e87aa4c49e95 4915
phungductung 0:e87aa4c49e95 4916
phungductung 0:e87aa4c49e95 4917 /*
phungductung 0:e87aa4c49e95 4918 * @brief Floating-point sin_cos function.
phungductung 0:e87aa4c49e95 4919 * @param[in] theta input value in degrees
phungductung 0:e87aa4c49e95 4920 * @param[out] *pSinVal points to the processed sine output.
phungductung 0:e87aa4c49e95 4921 * @param[out] *pCosVal points to the processed cos output.
phungductung 0:e87aa4c49e95 4922 * @return none.
phungductung 0:e87aa4c49e95 4923 */
phungductung 0:e87aa4c49e95 4924
phungductung 0:e87aa4c49e95 4925 void arm_sin_cos_f32(
phungductung 0:e87aa4c49e95 4926 float32_t theta,
phungductung 0:e87aa4c49e95 4927 float32_t * pSinVal,
phungductung 0:e87aa4c49e95 4928 float32_t * pCcosVal);
phungductung 0:e87aa4c49e95 4929
phungductung 0:e87aa4c49e95 4930 /*
phungductung 0:e87aa4c49e95 4931 * @brief Q31 sin_cos function.
phungductung 0:e87aa4c49e95 4932 * @param[in] theta scaled input value in degrees
phungductung 0:e87aa4c49e95 4933 * @param[out] *pSinVal points to the processed sine output.
phungductung 0:e87aa4c49e95 4934 * @param[out] *pCosVal points to the processed cosine output.
phungductung 0:e87aa4c49e95 4935 * @return none.
phungductung 0:e87aa4c49e95 4936 */
phungductung 0:e87aa4c49e95 4937
phungductung 0:e87aa4c49e95 4938 void arm_sin_cos_q31(
phungductung 0:e87aa4c49e95 4939 q31_t theta,
phungductung 0:e87aa4c49e95 4940 q31_t * pSinVal,
phungductung 0:e87aa4c49e95 4941 q31_t * pCosVal);
phungductung 0:e87aa4c49e95 4942
phungductung 0:e87aa4c49e95 4943
phungductung 0:e87aa4c49e95 4944 /**
phungductung 0:e87aa4c49e95 4945 * @brief Floating-point complex conjugate.
phungductung 0:e87aa4c49e95 4946 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 4947 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 4948 * @param[in] numSamples number of complex samples in each vector
phungductung 0:e87aa4c49e95 4949 * @return none.
phungductung 0:e87aa4c49e95 4950 */
phungductung 0:e87aa4c49e95 4951
phungductung 0:e87aa4c49e95 4952 void arm_cmplx_conj_f32(
phungductung 0:e87aa4c49e95 4953 float32_t * pSrc,
phungductung 0:e87aa4c49e95 4954 float32_t * pDst,
phungductung 0:e87aa4c49e95 4955 uint32_t numSamples);
phungductung 0:e87aa4c49e95 4956
phungductung 0:e87aa4c49e95 4957 /**
phungductung 0:e87aa4c49e95 4958 * @brief Q31 complex conjugate.
phungductung 0:e87aa4c49e95 4959 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 4960 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 4961 * @param[in] numSamples number of complex samples in each vector
phungductung 0:e87aa4c49e95 4962 * @return none.
phungductung 0:e87aa4c49e95 4963 */
phungductung 0:e87aa4c49e95 4964
phungductung 0:e87aa4c49e95 4965 void arm_cmplx_conj_q31(
phungductung 0:e87aa4c49e95 4966 q31_t * pSrc,
phungductung 0:e87aa4c49e95 4967 q31_t * pDst,
phungductung 0:e87aa4c49e95 4968 uint32_t numSamples);
phungductung 0:e87aa4c49e95 4969
phungductung 0:e87aa4c49e95 4970 /**
phungductung 0:e87aa4c49e95 4971 * @brief Q15 complex conjugate.
phungductung 0:e87aa4c49e95 4972 * @param[in] *pSrc points to the input vector
phungductung 0:e87aa4c49e95 4973 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 4974 * @param[in] numSamples number of complex samples in each vector
phungductung 0:e87aa4c49e95 4975 * @return none.
phungductung 0:e87aa4c49e95 4976 */
phungductung 0:e87aa4c49e95 4977
phungductung 0:e87aa4c49e95 4978 void arm_cmplx_conj_q15(
phungductung 0:e87aa4c49e95 4979 q15_t * pSrc,
phungductung 0:e87aa4c49e95 4980 q15_t * pDst,
phungductung 0:e87aa4c49e95 4981 uint32_t numSamples);
phungductung 0:e87aa4c49e95 4982
phungductung 0:e87aa4c49e95 4983
phungductung 0:e87aa4c49e95 4984
phungductung 0:e87aa4c49e95 4985 /**
phungductung 0:e87aa4c49e95 4986 * @brief Floating-point complex magnitude squared
phungductung 0:e87aa4c49e95 4987 * @param[in] *pSrc points to the complex input vector
phungductung 0:e87aa4c49e95 4988 * @param[out] *pDst points to the real output vector
phungductung 0:e87aa4c49e95 4989 * @param[in] numSamples number of complex samples in the input vector
phungductung 0:e87aa4c49e95 4990 * @return none.
phungductung 0:e87aa4c49e95 4991 */
phungductung 0:e87aa4c49e95 4992
phungductung 0:e87aa4c49e95 4993 void arm_cmplx_mag_squared_f32(
phungductung 0:e87aa4c49e95 4994 float32_t * pSrc,
phungductung 0:e87aa4c49e95 4995 float32_t * pDst,
phungductung 0:e87aa4c49e95 4996 uint32_t numSamples);
phungductung 0:e87aa4c49e95 4997
phungductung 0:e87aa4c49e95 4998 /**
phungductung 0:e87aa4c49e95 4999 * @brief Q31 complex magnitude squared
phungductung 0:e87aa4c49e95 5000 * @param[in] *pSrc points to the complex input vector
phungductung 0:e87aa4c49e95 5001 * @param[out] *pDst points to the real output vector
phungductung 0:e87aa4c49e95 5002 * @param[in] numSamples number of complex samples in the input vector
phungductung 0:e87aa4c49e95 5003 * @return none.
phungductung 0:e87aa4c49e95 5004 */
phungductung 0:e87aa4c49e95 5005
phungductung 0:e87aa4c49e95 5006 void arm_cmplx_mag_squared_q31(
phungductung 0:e87aa4c49e95 5007 q31_t * pSrc,
phungductung 0:e87aa4c49e95 5008 q31_t * pDst,
phungductung 0:e87aa4c49e95 5009 uint32_t numSamples);
phungductung 0:e87aa4c49e95 5010
phungductung 0:e87aa4c49e95 5011 /**
phungductung 0:e87aa4c49e95 5012 * @brief Q15 complex magnitude squared
phungductung 0:e87aa4c49e95 5013 * @param[in] *pSrc points to the complex input vector
phungductung 0:e87aa4c49e95 5014 * @param[out] *pDst points to the real output vector
phungductung 0:e87aa4c49e95 5015 * @param[in] numSamples number of complex samples in the input vector
phungductung 0:e87aa4c49e95 5016 * @return none.
phungductung 0:e87aa4c49e95 5017 */
phungductung 0:e87aa4c49e95 5018
phungductung 0:e87aa4c49e95 5019 void arm_cmplx_mag_squared_q15(
phungductung 0:e87aa4c49e95 5020 q15_t * pSrc,
phungductung 0:e87aa4c49e95 5021 q15_t * pDst,
phungductung 0:e87aa4c49e95 5022 uint32_t numSamples);
phungductung 0:e87aa4c49e95 5023
phungductung 0:e87aa4c49e95 5024
phungductung 0:e87aa4c49e95 5025 /**
phungductung 0:e87aa4c49e95 5026 * @ingroup groupController
phungductung 0:e87aa4c49e95 5027 */
phungductung 0:e87aa4c49e95 5028
phungductung 0:e87aa4c49e95 5029 /**
phungductung 0:e87aa4c49e95 5030 * @defgroup PID PID Motor Control
phungductung 0:e87aa4c49e95 5031 *
phungductung 0:e87aa4c49e95 5032 * A Proportional Integral Derivative (PID) controller is a generic feedback control
phungductung 0:e87aa4c49e95 5033 * loop mechanism widely used in industrial control systems.
phungductung 0:e87aa4c49e95 5034 * A PID controller is the most commonly used type of feedback controller.
phungductung 0:e87aa4c49e95 5035 *
phungductung 0:e87aa4c49e95 5036 * This set of functions implements (PID) controllers
phungductung 0:e87aa4c49e95 5037 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
phungductung 0:e87aa4c49e95 5038 * of data and each call to the function returns a single processed value.
phungductung 0:e87aa4c49e95 5039 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
phungductung 0:e87aa4c49e95 5040 * is the input sample value. The functions return the output value.
phungductung 0:e87aa4c49e95 5041 *
phungductung 0:e87aa4c49e95 5042 * \par Algorithm:
phungductung 0:e87aa4c49e95 5043 * <pre>
phungductung 0:e87aa4c49e95 5044 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
phungductung 0:e87aa4c49e95 5045 * A0 = Kp + Ki + Kd
phungductung 0:e87aa4c49e95 5046 * A1 = (-Kp ) - (2 * Kd )
phungductung 0:e87aa4c49e95 5047 * A2 = Kd </pre>
phungductung 0:e87aa4c49e95 5048 *
phungductung 0:e87aa4c49e95 5049 * \par
phungductung 0:e87aa4c49e95 5050 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
phungductung 0:e87aa4c49e95 5051 *
phungductung 0:e87aa4c49e95 5052 * \par
phungductung 0:e87aa4c49e95 5053 * \image html PID.gif "Proportional Integral Derivative Controller"
phungductung 0:e87aa4c49e95 5054 *
phungductung 0:e87aa4c49e95 5055 * \par
phungductung 0:e87aa4c49e95 5056 * The PID controller calculates an "error" value as the difference between
phungductung 0:e87aa4c49e95 5057 * the measured output and the reference input.
phungductung 0:e87aa4c49e95 5058 * The controller attempts to minimize the error by adjusting the process control inputs.
phungductung 0:e87aa4c49e95 5059 * The proportional value determines the reaction to the current error,
phungductung 0:e87aa4c49e95 5060 * the integral value determines the reaction based on the sum of recent errors,
phungductung 0:e87aa4c49e95 5061 * and the derivative value determines the reaction based on the rate at which the error has been changing.
phungductung 0:e87aa4c49e95 5062 *
phungductung 0:e87aa4c49e95 5063 * \par Instance Structure
phungductung 0:e87aa4c49e95 5064 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
phungductung 0:e87aa4c49e95 5065 * A separate instance structure must be defined for each PID Controller.
phungductung 0:e87aa4c49e95 5066 * There are separate instance structure declarations for each of the 3 supported data types.
phungductung 0:e87aa4c49e95 5067 *
phungductung 0:e87aa4c49e95 5068 * \par Reset Functions
phungductung 0:e87aa4c49e95 5069 * There is also an associated reset function for each data type which clears the state array.
phungductung 0:e87aa4c49e95 5070 *
phungductung 0:e87aa4c49e95 5071 * \par Initialization Functions
phungductung 0:e87aa4c49e95 5072 * There is also an associated initialization function for each data type.
phungductung 0:e87aa4c49e95 5073 * The initialization function performs the following operations:
phungductung 0:e87aa4c49e95 5074 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
phungductung 0:e87aa4c49e95 5075 * - Zeros out the values in the state buffer.
phungductung 0:e87aa4c49e95 5076 *
phungductung 0:e87aa4c49e95 5077 * \par
phungductung 0:e87aa4c49e95 5078 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
phungductung 0:e87aa4c49e95 5079 *
phungductung 0:e87aa4c49e95 5080 * \par Fixed-Point Behavior
phungductung 0:e87aa4c49e95 5081 * Care must be taken when using the fixed-point versions of the PID Controller functions.
phungductung 0:e87aa4c49e95 5082 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
phungductung 0:e87aa4c49e95 5083 * Refer to the function specific documentation below for usage guidelines.
phungductung 0:e87aa4c49e95 5084 */
phungductung 0:e87aa4c49e95 5085
phungductung 0:e87aa4c49e95 5086 /**
phungductung 0:e87aa4c49e95 5087 * @addtogroup PID
phungductung 0:e87aa4c49e95 5088 * @{
phungductung 0:e87aa4c49e95 5089 */
phungductung 0:e87aa4c49e95 5090
phungductung 0:e87aa4c49e95 5091 /**
phungductung 0:e87aa4c49e95 5092 * @brief Process function for the floating-point PID Control.
phungductung 0:e87aa4c49e95 5093 * @param[in,out] *S is an instance of the floating-point PID Control structure
phungductung 0:e87aa4c49e95 5094 * @param[in] in input sample to process
phungductung 0:e87aa4c49e95 5095 * @return out processed output sample.
phungductung 0:e87aa4c49e95 5096 */
phungductung 0:e87aa4c49e95 5097
phungductung 0:e87aa4c49e95 5098
phungductung 0:e87aa4c49e95 5099 static __INLINE float32_t arm_pid_f32(
phungductung 0:e87aa4c49e95 5100 arm_pid_instance_f32 * S,
phungductung 0:e87aa4c49e95 5101 float32_t in)
phungductung 0:e87aa4c49e95 5102 {
phungductung 0:e87aa4c49e95 5103 float32_t out;
phungductung 0:e87aa4c49e95 5104
phungductung 0:e87aa4c49e95 5105 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
phungductung 0:e87aa4c49e95 5106 out = (S->A0 * in) +
phungductung 0:e87aa4c49e95 5107 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
phungductung 0:e87aa4c49e95 5108
phungductung 0:e87aa4c49e95 5109 /* Update state */
phungductung 0:e87aa4c49e95 5110 S->state[1] = S->state[0];
phungductung 0:e87aa4c49e95 5111 S->state[0] = in;
phungductung 0:e87aa4c49e95 5112 S->state[2] = out;
phungductung 0:e87aa4c49e95 5113
phungductung 0:e87aa4c49e95 5114 /* return to application */
phungductung 0:e87aa4c49e95 5115 return (out);
phungductung 0:e87aa4c49e95 5116
phungductung 0:e87aa4c49e95 5117 }
phungductung 0:e87aa4c49e95 5118
phungductung 0:e87aa4c49e95 5119 /**
phungductung 0:e87aa4c49e95 5120 * @brief Process function for the Q31 PID Control.
phungductung 0:e87aa4c49e95 5121 * @param[in,out] *S points to an instance of the Q31 PID Control structure
phungductung 0:e87aa4c49e95 5122 * @param[in] in input sample to process
phungductung 0:e87aa4c49e95 5123 * @return out processed output sample.
phungductung 0:e87aa4c49e95 5124 *
phungductung 0:e87aa4c49e95 5125 * <b>Scaling and Overflow Behavior:</b>
phungductung 0:e87aa4c49e95 5126 * \par
phungductung 0:e87aa4c49e95 5127 * The function is implemented using an internal 64-bit accumulator.
phungductung 0:e87aa4c49e95 5128 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
phungductung 0:e87aa4c49e95 5129 * Thus, if the accumulator result overflows it wraps around rather than clip.
phungductung 0:e87aa4c49e95 5130 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
phungductung 0:e87aa4c49e95 5131 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
phungductung 0:e87aa4c49e95 5132 */
phungductung 0:e87aa4c49e95 5133
phungductung 0:e87aa4c49e95 5134 static __INLINE q31_t arm_pid_q31(
phungductung 0:e87aa4c49e95 5135 arm_pid_instance_q31 * S,
phungductung 0:e87aa4c49e95 5136 q31_t in)
phungductung 0:e87aa4c49e95 5137 {
phungductung 0:e87aa4c49e95 5138 q63_t acc;
phungductung 0:e87aa4c49e95 5139 q31_t out;
phungductung 0:e87aa4c49e95 5140
phungductung 0:e87aa4c49e95 5141 /* acc = A0 * x[n] */
phungductung 0:e87aa4c49e95 5142 acc = (q63_t) S->A0 * in;
phungductung 0:e87aa4c49e95 5143
phungductung 0:e87aa4c49e95 5144 /* acc += A1 * x[n-1] */
phungductung 0:e87aa4c49e95 5145 acc += (q63_t) S->A1 * S->state[0];
phungductung 0:e87aa4c49e95 5146
phungductung 0:e87aa4c49e95 5147 /* acc += A2 * x[n-2] */
phungductung 0:e87aa4c49e95 5148 acc += (q63_t) S->A2 * S->state[1];
phungductung 0:e87aa4c49e95 5149
phungductung 0:e87aa4c49e95 5150 /* convert output to 1.31 format to add y[n-1] */
phungductung 0:e87aa4c49e95 5151 out = (q31_t) (acc >> 31u);
phungductung 0:e87aa4c49e95 5152
phungductung 0:e87aa4c49e95 5153 /* out += y[n-1] */
phungductung 0:e87aa4c49e95 5154 out += S->state[2];
phungductung 0:e87aa4c49e95 5155
phungductung 0:e87aa4c49e95 5156 /* Update state */
phungductung 0:e87aa4c49e95 5157 S->state[1] = S->state[0];
phungductung 0:e87aa4c49e95 5158 S->state[0] = in;
phungductung 0:e87aa4c49e95 5159 S->state[2] = out;
phungductung 0:e87aa4c49e95 5160
phungductung 0:e87aa4c49e95 5161 /* return to application */
phungductung 0:e87aa4c49e95 5162 return (out);
phungductung 0:e87aa4c49e95 5163
phungductung 0:e87aa4c49e95 5164 }
phungductung 0:e87aa4c49e95 5165
phungductung 0:e87aa4c49e95 5166 /**
phungductung 0:e87aa4c49e95 5167 * @brief Process function for the Q15 PID Control.
phungductung 0:e87aa4c49e95 5168 * @param[in,out] *S points to an instance of the Q15 PID Control structure
phungductung 0:e87aa4c49e95 5169 * @param[in] in input sample to process
phungductung 0:e87aa4c49e95 5170 * @return out processed output sample.
phungductung 0:e87aa4c49e95 5171 *
phungductung 0:e87aa4c49e95 5172 * <b>Scaling and Overflow Behavior:</b>
phungductung 0:e87aa4c49e95 5173 * \par
phungductung 0:e87aa4c49e95 5174 * The function is implemented using a 64-bit internal accumulator.
phungductung 0:e87aa4c49e95 5175 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
phungductung 0:e87aa4c49e95 5176 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
phungductung 0:e87aa4c49e95 5177 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
phungductung 0:e87aa4c49e95 5178 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
phungductung 0:e87aa4c49e95 5179 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
phungductung 0:e87aa4c49e95 5180 */
phungductung 0:e87aa4c49e95 5181
phungductung 0:e87aa4c49e95 5182 static __INLINE q15_t arm_pid_q15(
phungductung 0:e87aa4c49e95 5183 arm_pid_instance_q15 * S,
phungductung 0:e87aa4c49e95 5184 q15_t in)
phungductung 0:e87aa4c49e95 5185 {
phungductung 0:e87aa4c49e95 5186 q63_t acc;
phungductung 0:e87aa4c49e95 5187 q15_t out;
phungductung 0:e87aa4c49e95 5188
phungductung 0:e87aa4c49e95 5189 #ifndef ARM_MATH_CM0_FAMILY
phungductung 0:e87aa4c49e95 5190 __SIMD32_TYPE *vstate;
phungductung 0:e87aa4c49e95 5191
phungductung 0:e87aa4c49e95 5192 /* Implementation of PID controller */
phungductung 0:e87aa4c49e95 5193
phungductung 0:e87aa4c49e95 5194 /* acc = A0 * x[n] */
phungductung 0:e87aa4c49e95 5195 acc = (q31_t) __SMUAD(S->A0, in);
phungductung 0:e87aa4c49e95 5196
phungductung 0:e87aa4c49e95 5197 /* acc += A1 * x[n-1] + A2 * x[n-2] */
phungductung 0:e87aa4c49e95 5198 vstate = __SIMD32_CONST(S->state);
phungductung 0:e87aa4c49e95 5199 acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
phungductung 0:e87aa4c49e95 5200
phungductung 0:e87aa4c49e95 5201 #else
phungductung 0:e87aa4c49e95 5202 /* acc = A0 * x[n] */
phungductung 0:e87aa4c49e95 5203 acc = ((q31_t) S->A0) * in;
phungductung 0:e87aa4c49e95 5204
phungductung 0:e87aa4c49e95 5205 /* acc += A1 * x[n-1] + A2 * x[n-2] */
phungductung 0:e87aa4c49e95 5206 acc += (q31_t) S->A1 * S->state[0];
phungductung 0:e87aa4c49e95 5207 acc += (q31_t) S->A2 * S->state[1];
phungductung 0:e87aa4c49e95 5208
phungductung 0:e87aa4c49e95 5209 #endif
phungductung 0:e87aa4c49e95 5210
phungductung 0:e87aa4c49e95 5211 /* acc += y[n-1] */
phungductung 0:e87aa4c49e95 5212 acc += (q31_t) S->state[2] << 15;
phungductung 0:e87aa4c49e95 5213
phungductung 0:e87aa4c49e95 5214 /* saturate the output */
phungductung 0:e87aa4c49e95 5215 out = (q15_t) (__SSAT((acc >> 15), 16));
phungductung 0:e87aa4c49e95 5216
phungductung 0:e87aa4c49e95 5217 /* Update state */
phungductung 0:e87aa4c49e95 5218 S->state[1] = S->state[0];
phungductung 0:e87aa4c49e95 5219 S->state[0] = in;
phungductung 0:e87aa4c49e95 5220 S->state[2] = out;
phungductung 0:e87aa4c49e95 5221
phungductung 0:e87aa4c49e95 5222 /* return to application */
phungductung 0:e87aa4c49e95 5223 return (out);
phungductung 0:e87aa4c49e95 5224
phungductung 0:e87aa4c49e95 5225 }
phungductung 0:e87aa4c49e95 5226
phungductung 0:e87aa4c49e95 5227 /**
phungductung 0:e87aa4c49e95 5228 * @} end of PID group
phungductung 0:e87aa4c49e95 5229 */
phungductung 0:e87aa4c49e95 5230
phungductung 0:e87aa4c49e95 5231
phungductung 0:e87aa4c49e95 5232 /**
phungductung 0:e87aa4c49e95 5233 * @brief Floating-point matrix inverse.
phungductung 0:e87aa4c49e95 5234 * @param[in] *src points to the instance of the input floating-point matrix structure.
phungductung 0:e87aa4c49e95 5235 * @param[out] *dst points to the instance of the output floating-point matrix structure.
phungductung 0:e87aa4c49e95 5236 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
phungductung 0:e87aa4c49e95 5237 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
phungductung 0:e87aa4c49e95 5238 */
phungductung 0:e87aa4c49e95 5239
phungductung 0:e87aa4c49e95 5240 arm_status arm_mat_inverse_f32(
phungductung 0:e87aa4c49e95 5241 const arm_matrix_instance_f32 * src,
phungductung 0:e87aa4c49e95 5242 arm_matrix_instance_f32 * dst);
phungductung 0:e87aa4c49e95 5243
phungductung 0:e87aa4c49e95 5244
phungductung 0:e87aa4c49e95 5245 /**
phungductung 0:e87aa4c49e95 5246 * @brief Floating-point matrix inverse.
phungductung 0:e87aa4c49e95 5247 * @param[in] *src points to the instance of the input floating-point matrix structure.
phungductung 0:e87aa4c49e95 5248 * @param[out] *dst points to the instance of the output floating-point matrix structure.
phungductung 0:e87aa4c49e95 5249 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
phungductung 0:e87aa4c49e95 5250 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
phungductung 0:e87aa4c49e95 5251 */
phungductung 0:e87aa4c49e95 5252
phungductung 0:e87aa4c49e95 5253 arm_status arm_mat_inverse_f64(
phungductung 0:e87aa4c49e95 5254 const arm_matrix_instance_f64 * src,
phungductung 0:e87aa4c49e95 5255 arm_matrix_instance_f64 * dst);
phungductung 0:e87aa4c49e95 5256
phungductung 0:e87aa4c49e95 5257
phungductung 0:e87aa4c49e95 5258
phungductung 0:e87aa4c49e95 5259 /**
phungductung 0:e87aa4c49e95 5260 * @ingroup groupController
phungductung 0:e87aa4c49e95 5261 */
phungductung 0:e87aa4c49e95 5262
phungductung 0:e87aa4c49e95 5263
phungductung 0:e87aa4c49e95 5264 /**
phungductung 0:e87aa4c49e95 5265 * @defgroup clarke Vector Clarke Transform
phungductung 0:e87aa4c49e95 5266 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
phungductung 0:e87aa4c49e95 5267 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
phungductung 0:e87aa4c49e95 5268 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
phungductung 0:e87aa4c49e95 5269 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
phungductung 0:e87aa4c49e95 5270 * \image html clarke.gif Stator current space vector and its components in (a,b).
phungductung 0:e87aa4c49e95 5271 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
phungductung 0:e87aa4c49e95 5272 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
phungductung 0:e87aa4c49e95 5273 *
phungductung 0:e87aa4c49e95 5274 * The function operates on a single sample of data and each call to the function returns the processed output.
phungductung 0:e87aa4c49e95 5275 * The library provides separate functions for Q31 and floating-point data types.
phungductung 0:e87aa4c49e95 5276 * \par Algorithm
phungductung 0:e87aa4c49e95 5277 * \image html clarkeFormula.gif
phungductung 0:e87aa4c49e95 5278 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
phungductung 0:e87aa4c49e95 5279 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
phungductung 0:e87aa4c49e95 5280 * \par Fixed-Point Behavior
phungductung 0:e87aa4c49e95 5281 * Care must be taken when using the Q31 version of the Clarke transform.
phungductung 0:e87aa4c49e95 5282 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
phungductung 0:e87aa4c49e95 5283 * Refer to the function specific documentation below for usage guidelines.
phungductung 0:e87aa4c49e95 5284 */
phungductung 0:e87aa4c49e95 5285
phungductung 0:e87aa4c49e95 5286 /**
phungductung 0:e87aa4c49e95 5287 * @addtogroup clarke
phungductung 0:e87aa4c49e95 5288 * @{
phungductung 0:e87aa4c49e95 5289 */
phungductung 0:e87aa4c49e95 5290
phungductung 0:e87aa4c49e95 5291 /**
phungductung 0:e87aa4c49e95 5292 *
phungductung 0:e87aa4c49e95 5293 * @brief Floating-point Clarke transform
phungductung 0:e87aa4c49e95 5294 * @param[in] Ia input three-phase coordinate <code>a</code>
phungductung 0:e87aa4c49e95 5295 * @param[in] Ib input three-phase coordinate <code>b</code>
phungductung 0:e87aa4c49e95 5296 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
phungductung 0:e87aa4c49e95 5297 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
phungductung 0:e87aa4c49e95 5298 * @return none.
phungductung 0:e87aa4c49e95 5299 */
phungductung 0:e87aa4c49e95 5300
phungductung 0:e87aa4c49e95 5301 static __INLINE void arm_clarke_f32(
phungductung 0:e87aa4c49e95 5302 float32_t Ia,
phungductung 0:e87aa4c49e95 5303 float32_t Ib,
phungductung 0:e87aa4c49e95 5304 float32_t * pIalpha,
phungductung 0:e87aa4c49e95 5305 float32_t * pIbeta)
phungductung 0:e87aa4c49e95 5306 {
phungductung 0:e87aa4c49e95 5307 /* Calculate pIalpha using the equation, pIalpha = Ia */
phungductung 0:e87aa4c49e95 5308 *pIalpha = Ia;
phungductung 0:e87aa4c49e95 5309
phungductung 0:e87aa4c49e95 5310 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
phungductung 0:e87aa4c49e95 5311 *pIbeta =
phungductung 0:e87aa4c49e95 5312 ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
phungductung 0:e87aa4c49e95 5313
phungductung 0:e87aa4c49e95 5314 }
phungductung 0:e87aa4c49e95 5315
phungductung 0:e87aa4c49e95 5316 /**
phungductung 0:e87aa4c49e95 5317 * @brief Clarke transform for Q31 version
phungductung 0:e87aa4c49e95 5318 * @param[in] Ia input three-phase coordinate <code>a</code>
phungductung 0:e87aa4c49e95 5319 * @param[in] Ib input three-phase coordinate <code>b</code>
phungductung 0:e87aa4c49e95 5320 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
phungductung 0:e87aa4c49e95 5321 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
phungductung 0:e87aa4c49e95 5322 * @return none.
phungductung 0:e87aa4c49e95 5323 *
phungductung 0:e87aa4c49e95 5324 * <b>Scaling and Overflow Behavior:</b>
phungductung 0:e87aa4c49e95 5325 * \par
phungductung 0:e87aa4c49e95 5326 * The function is implemented using an internal 32-bit accumulator.
phungductung 0:e87aa4c49e95 5327 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
phungductung 0:e87aa4c49e95 5328 * There is saturation on the addition, hence there is no risk of overflow.
phungductung 0:e87aa4c49e95 5329 */
phungductung 0:e87aa4c49e95 5330
phungductung 0:e87aa4c49e95 5331 static __INLINE void arm_clarke_q31(
phungductung 0:e87aa4c49e95 5332 q31_t Ia,
phungductung 0:e87aa4c49e95 5333 q31_t Ib,
phungductung 0:e87aa4c49e95 5334 q31_t * pIalpha,
phungductung 0:e87aa4c49e95 5335 q31_t * pIbeta)
phungductung 0:e87aa4c49e95 5336 {
phungductung 0:e87aa4c49e95 5337 q31_t product1, product2; /* Temporary variables used to store intermediate results */
phungductung 0:e87aa4c49e95 5338
phungductung 0:e87aa4c49e95 5339 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
phungductung 0:e87aa4c49e95 5340 *pIalpha = Ia;
phungductung 0:e87aa4c49e95 5341
phungductung 0:e87aa4c49e95 5342 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
phungductung 0:e87aa4c49e95 5343 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
phungductung 0:e87aa4c49e95 5344
phungductung 0:e87aa4c49e95 5345 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
phungductung 0:e87aa4c49e95 5346 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
phungductung 0:e87aa4c49e95 5347
phungductung 0:e87aa4c49e95 5348 /* pIbeta is calculated by adding the intermediate products */
phungductung 0:e87aa4c49e95 5349 *pIbeta = __QADD(product1, product2);
phungductung 0:e87aa4c49e95 5350 }
phungductung 0:e87aa4c49e95 5351
phungductung 0:e87aa4c49e95 5352 /**
phungductung 0:e87aa4c49e95 5353 * @} end of clarke group
phungductung 0:e87aa4c49e95 5354 */
phungductung 0:e87aa4c49e95 5355
phungductung 0:e87aa4c49e95 5356 /**
phungductung 0:e87aa4c49e95 5357 * @brief Converts the elements of the Q7 vector to Q31 vector.
phungductung 0:e87aa4c49e95 5358 * @param[in] *pSrc input pointer
phungductung 0:e87aa4c49e95 5359 * @param[out] *pDst output pointer
phungductung 0:e87aa4c49e95 5360 * @param[in] blockSize number of samples to process
phungductung 0:e87aa4c49e95 5361 * @return none.
phungductung 0:e87aa4c49e95 5362 */
phungductung 0:e87aa4c49e95 5363 void arm_q7_to_q31(
phungductung 0:e87aa4c49e95 5364 q7_t * pSrc,
phungductung 0:e87aa4c49e95 5365 q31_t * pDst,
phungductung 0:e87aa4c49e95 5366 uint32_t blockSize);
phungductung 0:e87aa4c49e95 5367
phungductung 0:e87aa4c49e95 5368
phungductung 0:e87aa4c49e95 5369
phungductung 0:e87aa4c49e95 5370
phungductung 0:e87aa4c49e95 5371 /**
phungductung 0:e87aa4c49e95 5372 * @ingroup groupController
phungductung 0:e87aa4c49e95 5373 */
phungductung 0:e87aa4c49e95 5374
phungductung 0:e87aa4c49e95 5375 /**
phungductung 0:e87aa4c49e95 5376 * @defgroup inv_clarke Vector Inverse Clarke Transform
phungductung 0:e87aa4c49e95 5377 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
phungductung 0:e87aa4c49e95 5378 *
phungductung 0:e87aa4c49e95 5379 * The function operates on a single sample of data and each call to the function returns the processed output.
phungductung 0:e87aa4c49e95 5380 * The library provides separate functions for Q31 and floating-point data types.
phungductung 0:e87aa4c49e95 5381 * \par Algorithm
phungductung 0:e87aa4c49e95 5382 * \image html clarkeInvFormula.gif
phungductung 0:e87aa4c49e95 5383 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
phungductung 0:e87aa4c49e95 5384 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
phungductung 0:e87aa4c49e95 5385 * \par Fixed-Point Behavior
phungductung 0:e87aa4c49e95 5386 * Care must be taken when using the Q31 version of the Clarke transform.
phungductung 0:e87aa4c49e95 5387 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
phungductung 0:e87aa4c49e95 5388 * Refer to the function specific documentation below for usage guidelines.
phungductung 0:e87aa4c49e95 5389 */
phungductung 0:e87aa4c49e95 5390
phungductung 0:e87aa4c49e95 5391 /**
phungductung 0:e87aa4c49e95 5392 * @addtogroup inv_clarke
phungductung 0:e87aa4c49e95 5393 * @{
phungductung 0:e87aa4c49e95 5394 */
phungductung 0:e87aa4c49e95 5395
phungductung 0:e87aa4c49e95 5396 /**
phungductung 0:e87aa4c49e95 5397 * @brief Floating-point Inverse Clarke transform
phungductung 0:e87aa4c49e95 5398 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
phungductung 0:e87aa4c49e95 5399 * @param[in] Ibeta input two-phase orthogonal vector axis beta
phungductung 0:e87aa4c49e95 5400 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
phungductung 0:e87aa4c49e95 5401 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
phungductung 0:e87aa4c49e95 5402 * @return none.
phungductung 0:e87aa4c49e95 5403 */
phungductung 0:e87aa4c49e95 5404
phungductung 0:e87aa4c49e95 5405
phungductung 0:e87aa4c49e95 5406 static __INLINE void arm_inv_clarke_f32(
phungductung 0:e87aa4c49e95 5407 float32_t Ialpha,
phungductung 0:e87aa4c49e95 5408 float32_t Ibeta,
phungductung 0:e87aa4c49e95 5409 float32_t * pIa,
phungductung 0:e87aa4c49e95 5410 float32_t * pIb)
phungductung 0:e87aa4c49e95 5411 {
phungductung 0:e87aa4c49e95 5412 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
phungductung 0:e87aa4c49e95 5413 *pIa = Ialpha;
phungductung 0:e87aa4c49e95 5414
phungductung 0:e87aa4c49e95 5415 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
phungductung 0:e87aa4c49e95 5416 *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
phungductung 0:e87aa4c49e95 5417
phungductung 0:e87aa4c49e95 5418 }
phungductung 0:e87aa4c49e95 5419
phungductung 0:e87aa4c49e95 5420 /**
phungductung 0:e87aa4c49e95 5421 * @brief Inverse Clarke transform for Q31 version
phungductung 0:e87aa4c49e95 5422 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
phungductung 0:e87aa4c49e95 5423 * @param[in] Ibeta input two-phase orthogonal vector axis beta
phungductung 0:e87aa4c49e95 5424 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
phungductung 0:e87aa4c49e95 5425 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
phungductung 0:e87aa4c49e95 5426 * @return none.
phungductung 0:e87aa4c49e95 5427 *
phungductung 0:e87aa4c49e95 5428 * <b>Scaling and Overflow Behavior:</b>
phungductung 0:e87aa4c49e95 5429 * \par
phungductung 0:e87aa4c49e95 5430 * The function is implemented using an internal 32-bit accumulator.
phungductung 0:e87aa4c49e95 5431 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
phungductung 0:e87aa4c49e95 5432 * There is saturation on the subtraction, hence there is no risk of overflow.
phungductung 0:e87aa4c49e95 5433 */
phungductung 0:e87aa4c49e95 5434
phungductung 0:e87aa4c49e95 5435 static __INLINE void arm_inv_clarke_q31(
phungductung 0:e87aa4c49e95 5436 q31_t Ialpha,
phungductung 0:e87aa4c49e95 5437 q31_t Ibeta,
phungductung 0:e87aa4c49e95 5438 q31_t * pIa,
phungductung 0:e87aa4c49e95 5439 q31_t * pIb)
phungductung 0:e87aa4c49e95 5440 {
phungductung 0:e87aa4c49e95 5441 q31_t product1, product2; /* Temporary variables used to store intermediate results */
phungductung 0:e87aa4c49e95 5442
phungductung 0:e87aa4c49e95 5443 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
phungductung 0:e87aa4c49e95 5444 *pIa = Ialpha;
phungductung 0:e87aa4c49e95 5445
phungductung 0:e87aa4c49e95 5446 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
phungductung 0:e87aa4c49e95 5447 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
phungductung 0:e87aa4c49e95 5448
phungductung 0:e87aa4c49e95 5449 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
phungductung 0:e87aa4c49e95 5450 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
phungductung 0:e87aa4c49e95 5451
phungductung 0:e87aa4c49e95 5452 /* pIb is calculated by subtracting the products */
phungductung 0:e87aa4c49e95 5453 *pIb = __QSUB(product2, product1);
phungductung 0:e87aa4c49e95 5454
phungductung 0:e87aa4c49e95 5455 }
phungductung 0:e87aa4c49e95 5456
phungductung 0:e87aa4c49e95 5457 /**
phungductung 0:e87aa4c49e95 5458 * @} end of inv_clarke group
phungductung 0:e87aa4c49e95 5459 */
phungductung 0:e87aa4c49e95 5460
phungductung 0:e87aa4c49e95 5461 /**
phungductung 0:e87aa4c49e95 5462 * @brief Converts the elements of the Q7 vector to Q15 vector.
phungductung 0:e87aa4c49e95 5463 * @param[in] *pSrc input pointer
phungductung 0:e87aa4c49e95 5464 * @param[out] *pDst output pointer
phungductung 0:e87aa4c49e95 5465 * @param[in] blockSize number of samples to process
phungductung 0:e87aa4c49e95 5466 * @return none.
phungductung 0:e87aa4c49e95 5467 */
phungductung 0:e87aa4c49e95 5468 void arm_q7_to_q15(
phungductung 0:e87aa4c49e95 5469 q7_t * pSrc,
phungductung 0:e87aa4c49e95 5470 q15_t * pDst,
phungductung 0:e87aa4c49e95 5471 uint32_t blockSize);
phungductung 0:e87aa4c49e95 5472
phungductung 0:e87aa4c49e95 5473
phungductung 0:e87aa4c49e95 5474
phungductung 0:e87aa4c49e95 5475 /**
phungductung 0:e87aa4c49e95 5476 * @ingroup groupController
phungductung 0:e87aa4c49e95 5477 */
phungductung 0:e87aa4c49e95 5478
phungductung 0:e87aa4c49e95 5479 /**
phungductung 0:e87aa4c49e95 5480 * @defgroup park Vector Park Transform
phungductung 0:e87aa4c49e95 5481 *
phungductung 0:e87aa4c49e95 5482 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
phungductung 0:e87aa4c49e95 5483 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
phungductung 0:e87aa4c49e95 5484 * from the stationary to the moving reference frame and control the spatial relationship between
phungductung 0:e87aa4c49e95 5485 * the stator vector current and rotor flux vector.
phungductung 0:e87aa4c49e95 5486 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
phungductung 0:e87aa4c49e95 5487 * current vector and the relationship from the two reference frames:
phungductung 0:e87aa4c49e95 5488 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
phungductung 0:e87aa4c49e95 5489 *
phungductung 0:e87aa4c49e95 5490 * The function operates on a single sample of data and each call to the function returns the processed output.
phungductung 0:e87aa4c49e95 5491 * The library provides separate functions for Q31 and floating-point data types.
phungductung 0:e87aa4c49e95 5492 * \par Algorithm
phungductung 0:e87aa4c49e95 5493 * \image html parkFormula.gif
phungductung 0:e87aa4c49e95 5494 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
phungductung 0:e87aa4c49e95 5495 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
phungductung 0:e87aa4c49e95 5496 * cosine and sine values of theta (rotor flux position).
phungductung 0:e87aa4c49e95 5497 * \par Fixed-Point Behavior
phungductung 0:e87aa4c49e95 5498 * Care must be taken when using the Q31 version of the Park transform.
phungductung 0:e87aa4c49e95 5499 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
phungductung 0:e87aa4c49e95 5500 * Refer to the function specific documentation below for usage guidelines.
phungductung 0:e87aa4c49e95 5501 */
phungductung 0:e87aa4c49e95 5502
phungductung 0:e87aa4c49e95 5503 /**
phungductung 0:e87aa4c49e95 5504 * @addtogroup park
phungductung 0:e87aa4c49e95 5505 * @{
phungductung 0:e87aa4c49e95 5506 */
phungductung 0:e87aa4c49e95 5507
phungductung 0:e87aa4c49e95 5508 /**
phungductung 0:e87aa4c49e95 5509 * @brief Floating-point Park transform
phungductung 0:e87aa4c49e95 5510 * @param[in] Ialpha input two-phase vector coordinate alpha
phungductung 0:e87aa4c49e95 5511 * @param[in] Ibeta input two-phase vector coordinate beta
phungductung 0:e87aa4c49e95 5512 * @param[out] *pId points to output rotor reference frame d
phungductung 0:e87aa4c49e95 5513 * @param[out] *pIq points to output rotor reference frame q
phungductung 0:e87aa4c49e95 5514 * @param[in] sinVal sine value of rotation angle theta
phungductung 0:e87aa4c49e95 5515 * @param[in] cosVal cosine value of rotation angle theta
phungductung 0:e87aa4c49e95 5516 * @return none.
phungductung 0:e87aa4c49e95 5517 *
phungductung 0:e87aa4c49e95 5518 * The function implements the forward Park transform.
phungductung 0:e87aa4c49e95 5519 *
phungductung 0:e87aa4c49e95 5520 */
phungductung 0:e87aa4c49e95 5521
phungductung 0:e87aa4c49e95 5522 static __INLINE void arm_park_f32(
phungductung 0:e87aa4c49e95 5523 float32_t Ialpha,
phungductung 0:e87aa4c49e95 5524 float32_t Ibeta,
phungductung 0:e87aa4c49e95 5525 float32_t * pId,
phungductung 0:e87aa4c49e95 5526 float32_t * pIq,
phungductung 0:e87aa4c49e95 5527 float32_t sinVal,
phungductung 0:e87aa4c49e95 5528 float32_t cosVal)
phungductung 0:e87aa4c49e95 5529 {
phungductung 0:e87aa4c49e95 5530 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
phungductung 0:e87aa4c49e95 5531 *pId = Ialpha * cosVal + Ibeta * sinVal;
phungductung 0:e87aa4c49e95 5532
phungductung 0:e87aa4c49e95 5533 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
phungductung 0:e87aa4c49e95 5534 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
phungductung 0:e87aa4c49e95 5535
phungductung 0:e87aa4c49e95 5536 }
phungductung 0:e87aa4c49e95 5537
phungductung 0:e87aa4c49e95 5538 /**
phungductung 0:e87aa4c49e95 5539 * @brief Park transform for Q31 version
phungductung 0:e87aa4c49e95 5540 * @param[in] Ialpha input two-phase vector coordinate alpha
phungductung 0:e87aa4c49e95 5541 * @param[in] Ibeta input two-phase vector coordinate beta
phungductung 0:e87aa4c49e95 5542 * @param[out] *pId points to output rotor reference frame d
phungductung 0:e87aa4c49e95 5543 * @param[out] *pIq points to output rotor reference frame q
phungductung 0:e87aa4c49e95 5544 * @param[in] sinVal sine value of rotation angle theta
phungductung 0:e87aa4c49e95 5545 * @param[in] cosVal cosine value of rotation angle theta
phungductung 0:e87aa4c49e95 5546 * @return none.
phungductung 0:e87aa4c49e95 5547 *
phungductung 0:e87aa4c49e95 5548 * <b>Scaling and Overflow Behavior:</b>
phungductung 0:e87aa4c49e95 5549 * \par
phungductung 0:e87aa4c49e95 5550 * The function is implemented using an internal 32-bit accumulator.
phungductung 0:e87aa4c49e95 5551 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
phungductung 0:e87aa4c49e95 5552 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
phungductung 0:e87aa4c49e95 5553 */
phungductung 0:e87aa4c49e95 5554
phungductung 0:e87aa4c49e95 5555
phungductung 0:e87aa4c49e95 5556 static __INLINE void arm_park_q31(
phungductung 0:e87aa4c49e95 5557 q31_t Ialpha,
phungductung 0:e87aa4c49e95 5558 q31_t Ibeta,
phungductung 0:e87aa4c49e95 5559 q31_t * pId,
phungductung 0:e87aa4c49e95 5560 q31_t * pIq,
phungductung 0:e87aa4c49e95 5561 q31_t sinVal,
phungductung 0:e87aa4c49e95 5562 q31_t cosVal)
phungductung 0:e87aa4c49e95 5563 {
phungductung 0:e87aa4c49e95 5564 q31_t product1, product2; /* Temporary variables used to store intermediate results */
phungductung 0:e87aa4c49e95 5565 q31_t product3, product4; /* Temporary variables used to store intermediate results */
phungductung 0:e87aa4c49e95 5566
phungductung 0:e87aa4c49e95 5567 /* Intermediate product is calculated by (Ialpha * cosVal) */
phungductung 0:e87aa4c49e95 5568 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
phungductung 0:e87aa4c49e95 5569
phungductung 0:e87aa4c49e95 5570 /* Intermediate product is calculated by (Ibeta * sinVal) */
phungductung 0:e87aa4c49e95 5571 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
phungductung 0:e87aa4c49e95 5572
phungductung 0:e87aa4c49e95 5573
phungductung 0:e87aa4c49e95 5574 /* Intermediate product is calculated by (Ialpha * sinVal) */
phungductung 0:e87aa4c49e95 5575 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
phungductung 0:e87aa4c49e95 5576
phungductung 0:e87aa4c49e95 5577 /* Intermediate product is calculated by (Ibeta * cosVal) */
phungductung 0:e87aa4c49e95 5578 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
phungductung 0:e87aa4c49e95 5579
phungductung 0:e87aa4c49e95 5580 /* Calculate pId by adding the two intermediate products 1 and 2 */
phungductung 0:e87aa4c49e95 5581 *pId = __QADD(product1, product2);
phungductung 0:e87aa4c49e95 5582
phungductung 0:e87aa4c49e95 5583 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
phungductung 0:e87aa4c49e95 5584 *pIq = __QSUB(product4, product3);
phungductung 0:e87aa4c49e95 5585 }
phungductung 0:e87aa4c49e95 5586
phungductung 0:e87aa4c49e95 5587 /**
phungductung 0:e87aa4c49e95 5588 * @} end of park group
phungductung 0:e87aa4c49e95 5589 */
phungductung 0:e87aa4c49e95 5590
phungductung 0:e87aa4c49e95 5591 /**
phungductung 0:e87aa4c49e95 5592 * @brief Converts the elements of the Q7 vector to floating-point vector.
phungductung 0:e87aa4c49e95 5593 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 5594 * @param[out] *pDst is output pointer
phungductung 0:e87aa4c49e95 5595 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 5596 * @return none.
phungductung 0:e87aa4c49e95 5597 */
phungductung 0:e87aa4c49e95 5598 void arm_q7_to_float(
phungductung 0:e87aa4c49e95 5599 q7_t * pSrc,
phungductung 0:e87aa4c49e95 5600 float32_t * pDst,
phungductung 0:e87aa4c49e95 5601 uint32_t blockSize);
phungductung 0:e87aa4c49e95 5602
phungductung 0:e87aa4c49e95 5603
phungductung 0:e87aa4c49e95 5604 /**
phungductung 0:e87aa4c49e95 5605 * @ingroup groupController
phungductung 0:e87aa4c49e95 5606 */
phungductung 0:e87aa4c49e95 5607
phungductung 0:e87aa4c49e95 5608 /**
phungductung 0:e87aa4c49e95 5609 * @defgroup inv_park Vector Inverse Park transform
phungductung 0:e87aa4c49e95 5610 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
phungductung 0:e87aa4c49e95 5611 *
phungductung 0:e87aa4c49e95 5612 * The function operates on a single sample of data and each call to the function returns the processed output.
phungductung 0:e87aa4c49e95 5613 * The library provides separate functions for Q31 and floating-point data types.
phungductung 0:e87aa4c49e95 5614 * \par Algorithm
phungductung 0:e87aa4c49e95 5615 * \image html parkInvFormula.gif
phungductung 0:e87aa4c49e95 5616 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
phungductung 0:e87aa4c49e95 5617 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
phungductung 0:e87aa4c49e95 5618 * cosine and sine values of theta (rotor flux position).
phungductung 0:e87aa4c49e95 5619 * \par Fixed-Point Behavior
phungductung 0:e87aa4c49e95 5620 * Care must be taken when using the Q31 version of the Park transform.
phungductung 0:e87aa4c49e95 5621 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
phungductung 0:e87aa4c49e95 5622 * Refer to the function specific documentation below for usage guidelines.
phungductung 0:e87aa4c49e95 5623 */
phungductung 0:e87aa4c49e95 5624
phungductung 0:e87aa4c49e95 5625 /**
phungductung 0:e87aa4c49e95 5626 * @addtogroup inv_park
phungductung 0:e87aa4c49e95 5627 * @{
phungductung 0:e87aa4c49e95 5628 */
phungductung 0:e87aa4c49e95 5629
phungductung 0:e87aa4c49e95 5630 /**
phungductung 0:e87aa4c49e95 5631 * @brief Floating-point Inverse Park transform
phungductung 0:e87aa4c49e95 5632 * @param[in] Id input coordinate of rotor reference frame d
phungductung 0:e87aa4c49e95 5633 * @param[in] Iq input coordinate of rotor reference frame q
phungductung 0:e87aa4c49e95 5634 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
phungductung 0:e87aa4c49e95 5635 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
phungductung 0:e87aa4c49e95 5636 * @param[in] sinVal sine value of rotation angle theta
phungductung 0:e87aa4c49e95 5637 * @param[in] cosVal cosine value of rotation angle theta
phungductung 0:e87aa4c49e95 5638 * @return none.
phungductung 0:e87aa4c49e95 5639 */
phungductung 0:e87aa4c49e95 5640
phungductung 0:e87aa4c49e95 5641 static __INLINE void arm_inv_park_f32(
phungductung 0:e87aa4c49e95 5642 float32_t Id,
phungductung 0:e87aa4c49e95 5643 float32_t Iq,
phungductung 0:e87aa4c49e95 5644 float32_t * pIalpha,
phungductung 0:e87aa4c49e95 5645 float32_t * pIbeta,
phungductung 0:e87aa4c49e95 5646 float32_t sinVal,
phungductung 0:e87aa4c49e95 5647 float32_t cosVal)
phungductung 0:e87aa4c49e95 5648 {
phungductung 0:e87aa4c49e95 5649 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
phungductung 0:e87aa4c49e95 5650 *pIalpha = Id * cosVal - Iq * sinVal;
phungductung 0:e87aa4c49e95 5651
phungductung 0:e87aa4c49e95 5652 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
phungductung 0:e87aa4c49e95 5653 *pIbeta = Id * sinVal + Iq * cosVal;
phungductung 0:e87aa4c49e95 5654
phungductung 0:e87aa4c49e95 5655 }
phungductung 0:e87aa4c49e95 5656
phungductung 0:e87aa4c49e95 5657
phungductung 0:e87aa4c49e95 5658 /**
phungductung 0:e87aa4c49e95 5659 * @brief Inverse Park transform for Q31 version
phungductung 0:e87aa4c49e95 5660 * @param[in] Id input coordinate of rotor reference frame d
phungductung 0:e87aa4c49e95 5661 * @param[in] Iq input coordinate of rotor reference frame q
phungductung 0:e87aa4c49e95 5662 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
phungductung 0:e87aa4c49e95 5663 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
phungductung 0:e87aa4c49e95 5664 * @param[in] sinVal sine value of rotation angle theta
phungductung 0:e87aa4c49e95 5665 * @param[in] cosVal cosine value of rotation angle theta
phungductung 0:e87aa4c49e95 5666 * @return none.
phungductung 0:e87aa4c49e95 5667 *
phungductung 0:e87aa4c49e95 5668 * <b>Scaling and Overflow Behavior:</b>
phungductung 0:e87aa4c49e95 5669 * \par
phungductung 0:e87aa4c49e95 5670 * The function is implemented using an internal 32-bit accumulator.
phungductung 0:e87aa4c49e95 5671 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
phungductung 0:e87aa4c49e95 5672 * There is saturation on the addition, hence there is no risk of overflow.
phungductung 0:e87aa4c49e95 5673 */
phungductung 0:e87aa4c49e95 5674
phungductung 0:e87aa4c49e95 5675
phungductung 0:e87aa4c49e95 5676 static __INLINE void arm_inv_park_q31(
phungductung 0:e87aa4c49e95 5677 q31_t Id,
phungductung 0:e87aa4c49e95 5678 q31_t Iq,
phungductung 0:e87aa4c49e95 5679 q31_t * pIalpha,
phungductung 0:e87aa4c49e95 5680 q31_t * pIbeta,
phungductung 0:e87aa4c49e95 5681 q31_t sinVal,
phungductung 0:e87aa4c49e95 5682 q31_t cosVal)
phungductung 0:e87aa4c49e95 5683 {
phungductung 0:e87aa4c49e95 5684 q31_t product1, product2; /* Temporary variables used to store intermediate results */
phungductung 0:e87aa4c49e95 5685 q31_t product3, product4; /* Temporary variables used to store intermediate results */
phungductung 0:e87aa4c49e95 5686
phungductung 0:e87aa4c49e95 5687 /* Intermediate product is calculated by (Id * cosVal) */
phungductung 0:e87aa4c49e95 5688 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
phungductung 0:e87aa4c49e95 5689
phungductung 0:e87aa4c49e95 5690 /* Intermediate product is calculated by (Iq * sinVal) */
phungductung 0:e87aa4c49e95 5691 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
phungductung 0:e87aa4c49e95 5692
phungductung 0:e87aa4c49e95 5693
phungductung 0:e87aa4c49e95 5694 /* Intermediate product is calculated by (Id * sinVal) */
phungductung 0:e87aa4c49e95 5695 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
phungductung 0:e87aa4c49e95 5696
phungductung 0:e87aa4c49e95 5697 /* Intermediate product is calculated by (Iq * cosVal) */
phungductung 0:e87aa4c49e95 5698 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
phungductung 0:e87aa4c49e95 5699
phungductung 0:e87aa4c49e95 5700 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
phungductung 0:e87aa4c49e95 5701 *pIalpha = __QSUB(product1, product2);
phungductung 0:e87aa4c49e95 5702
phungductung 0:e87aa4c49e95 5703 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
phungductung 0:e87aa4c49e95 5704 *pIbeta = __QADD(product4, product3);
phungductung 0:e87aa4c49e95 5705
phungductung 0:e87aa4c49e95 5706 }
phungductung 0:e87aa4c49e95 5707
phungductung 0:e87aa4c49e95 5708 /**
phungductung 0:e87aa4c49e95 5709 * @} end of Inverse park group
phungductung 0:e87aa4c49e95 5710 */
phungductung 0:e87aa4c49e95 5711
phungductung 0:e87aa4c49e95 5712
phungductung 0:e87aa4c49e95 5713 /**
phungductung 0:e87aa4c49e95 5714 * @brief Converts the elements of the Q31 vector to floating-point vector.
phungductung 0:e87aa4c49e95 5715 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 5716 * @param[out] *pDst is output pointer
phungductung 0:e87aa4c49e95 5717 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 5718 * @return none.
phungductung 0:e87aa4c49e95 5719 */
phungductung 0:e87aa4c49e95 5720 void arm_q31_to_float(
phungductung 0:e87aa4c49e95 5721 q31_t * pSrc,
phungductung 0:e87aa4c49e95 5722 float32_t * pDst,
phungductung 0:e87aa4c49e95 5723 uint32_t blockSize);
phungductung 0:e87aa4c49e95 5724
phungductung 0:e87aa4c49e95 5725 /**
phungductung 0:e87aa4c49e95 5726 * @ingroup groupInterpolation
phungductung 0:e87aa4c49e95 5727 */
phungductung 0:e87aa4c49e95 5728
phungductung 0:e87aa4c49e95 5729 /**
phungductung 0:e87aa4c49e95 5730 * @defgroup LinearInterpolate Linear Interpolation
phungductung 0:e87aa4c49e95 5731 *
phungductung 0:e87aa4c49e95 5732 * Linear interpolation is a method of curve fitting using linear polynomials.
phungductung 0:e87aa4c49e95 5733 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
phungductung 0:e87aa4c49e95 5734 *
phungductung 0:e87aa4c49e95 5735 * \par
phungductung 0:e87aa4c49e95 5736 * \image html LinearInterp.gif "Linear interpolation"
phungductung 0:e87aa4c49e95 5737 *
phungductung 0:e87aa4c49e95 5738 * \par
phungductung 0:e87aa4c49e95 5739 * A Linear Interpolate function calculates an output value(y), for the input(x)
phungductung 0:e87aa4c49e95 5740 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
phungductung 0:e87aa4c49e95 5741 *
phungductung 0:e87aa4c49e95 5742 * \par Algorithm:
phungductung 0:e87aa4c49e95 5743 * <pre>
phungductung 0:e87aa4c49e95 5744 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
phungductung 0:e87aa4c49e95 5745 * where x0, x1 are nearest values of input x
phungductung 0:e87aa4c49e95 5746 * y0, y1 are nearest values to output y
phungductung 0:e87aa4c49e95 5747 * </pre>
phungductung 0:e87aa4c49e95 5748 *
phungductung 0:e87aa4c49e95 5749 * \par
phungductung 0:e87aa4c49e95 5750 * This set of functions implements Linear interpolation process
phungductung 0:e87aa4c49e95 5751 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
phungductung 0:e87aa4c49e95 5752 * sample of data and each call to the function returns a single processed value.
phungductung 0:e87aa4c49e95 5753 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
phungductung 0:e87aa4c49e95 5754 * <code>x</code> is the input sample value. The functions returns the output value.
phungductung 0:e87aa4c49e95 5755 *
phungductung 0:e87aa4c49e95 5756 * \par
phungductung 0:e87aa4c49e95 5757 * if x is outside of the table boundary, Linear interpolation returns first value of the table
phungductung 0:e87aa4c49e95 5758 * if x is below input range and returns last value of table if x is above range.
phungductung 0:e87aa4c49e95 5759 */
phungductung 0:e87aa4c49e95 5760
phungductung 0:e87aa4c49e95 5761 /**
phungductung 0:e87aa4c49e95 5762 * @addtogroup LinearInterpolate
phungductung 0:e87aa4c49e95 5763 * @{
phungductung 0:e87aa4c49e95 5764 */
phungductung 0:e87aa4c49e95 5765
phungductung 0:e87aa4c49e95 5766 /**
phungductung 0:e87aa4c49e95 5767 * @brief Process function for the floating-point Linear Interpolation Function.
phungductung 0:e87aa4c49e95 5768 * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
phungductung 0:e87aa4c49e95 5769 * @param[in] x input sample to process
phungductung 0:e87aa4c49e95 5770 * @return y processed output sample.
phungductung 0:e87aa4c49e95 5771 *
phungductung 0:e87aa4c49e95 5772 */
phungductung 0:e87aa4c49e95 5773
phungductung 0:e87aa4c49e95 5774 static __INLINE float32_t arm_linear_interp_f32(
phungductung 0:e87aa4c49e95 5775 arm_linear_interp_instance_f32 * S,
phungductung 0:e87aa4c49e95 5776 float32_t x)
phungductung 0:e87aa4c49e95 5777 {
phungductung 0:e87aa4c49e95 5778
phungductung 0:e87aa4c49e95 5779 float32_t y;
phungductung 0:e87aa4c49e95 5780 float32_t x0, x1; /* Nearest input values */
phungductung 0:e87aa4c49e95 5781 float32_t y0, y1; /* Nearest output values */
phungductung 0:e87aa4c49e95 5782 float32_t xSpacing = S->xSpacing; /* spacing between input values */
phungductung 0:e87aa4c49e95 5783 int32_t i; /* Index variable */
phungductung 0:e87aa4c49e95 5784 float32_t *pYData = S->pYData; /* pointer to output table */
phungductung 0:e87aa4c49e95 5785
phungductung 0:e87aa4c49e95 5786 /* Calculation of index */
phungductung 0:e87aa4c49e95 5787 i = (int32_t) ((x - S->x1) / xSpacing);
phungductung 0:e87aa4c49e95 5788
phungductung 0:e87aa4c49e95 5789 if(i < 0)
phungductung 0:e87aa4c49e95 5790 {
phungductung 0:e87aa4c49e95 5791 /* Iniatilize output for below specified range as least output value of table */
phungductung 0:e87aa4c49e95 5792 y = pYData[0];
phungductung 0:e87aa4c49e95 5793 }
phungductung 0:e87aa4c49e95 5794 else if((uint32_t)i >= S->nValues)
phungductung 0:e87aa4c49e95 5795 {
phungductung 0:e87aa4c49e95 5796 /* Iniatilize output for above specified range as last output value of table */
phungductung 0:e87aa4c49e95 5797 y = pYData[S->nValues - 1];
phungductung 0:e87aa4c49e95 5798 }
phungductung 0:e87aa4c49e95 5799 else
phungductung 0:e87aa4c49e95 5800 {
phungductung 0:e87aa4c49e95 5801 /* Calculation of nearest input values */
phungductung 0:e87aa4c49e95 5802 x0 = S->x1 + i * xSpacing;
phungductung 0:e87aa4c49e95 5803 x1 = S->x1 + (i + 1) * xSpacing;
phungductung 0:e87aa4c49e95 5804
phungductung 0:e87aa4c49e95 5805 /* Read of nearest output values */
phungductung 0:e87aa4c49e95 5806 y0 = pYData[i];
phungductung 0:e87aa4c49e95 5807 y1 = pYData[i + 1];
phungductung 0:e87aa4c49e95 5808
phungductung 0:e87aa4c49e95 5809 /* Calculation of output */
phungductung 0:e87aa4c49e95 5810 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
phungductung 0:e87aa4c49e95 5811
phungductung 0:e87aa4c49e95 5812 }
phungductung 0:e87aa4c49e95 5813
phungductung 0:e87aa4c49e95 5814 /* returns output value */
phungductung 0:e87aa4c49e95 5815 return (y);
phungductung 0:e87aa4c49e95 5816 }
phungductung 0:e87aa4c49e95 5817
phungductung 0:e87aa4c49e95 5818 /**
phungductung 0:e87aa4c49e95 5819 *
phungductung 0:e87aa4c49e95 5820 * @brief Process function for the Q31 Linear Interpolation Function.
phungductung 0:e87aa4c49e95 5821 * @param[in] *pYData pointer to Q31 Linear Interpolation table
phungductung 0:e87aa4c49e95 5822 * @param[in] x input sample to process
phungductung 0:e87aa4c49e95 5823 * @param[in] nValues number of table values
phungductung 0:e87aa4c49e95 5824 * @return y processed output sample.
phungductung 0:e87aa4c49e95 5825 *
phungductung 0:e87aa4c49e95 5826 * \par
phungductung 0:e87aa4c49e95 5827 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
phungductung 0:e87aa4c49e95 5828 * This function can support maximum of table size 2^12.
phungductung 0:e87aa4c49e95 5829 *
phungductung 0:e87aa4c49e95 5830 */
phungductung 0:e87aa4c49e95 5831
phungductung 0:e87aa4c49e95 5832
phungductung 0:e87aa4c49e95 5833 static __INLINE q31_t arm_linear_interp_q31(
phungductung 0:e87aa4c49e95 5834 q31_t * pYData,
phungductung 0:e87aa4c49e95 5835 q31_t x,
phungductung 0:e87aa4c49e95 5836 uint32_t nValues)
phungductung 0:e87aa4c49e95 5837 {
phungductung 0:e87aa4c49e95 5838 q31_t y; /* output */
phungductung 0:e87aa4c49e95 5839 q31_t y0, y1; /* Nearest output values */
phungductung 0:e87aa4c49e95 5840 q31_t fract; /* fractional part */
phungductung 0:e87aa4c49e95 5841 int32_t index; /* Index to read nearest output values */
phungductung 0:e87aa4c49e95 5842
phungductung 0:e87aa4c49e95 5843 /* Input is in 12.20 format */
phungductung 0:e87aa4c49e95 5844 /* 12 bits for the table index */
phungductung 0:e87aa4c49e95 5845 /* Index value calculation */
phungductung 0:e87aa4c49e95 5846 index = ((x & 0xFFF00000) >> 20);
phungductung 0:e87aa4c49e95 5847
phungductung 0:e87aa4c49e95 5848 if(index >= (int32_t)(nValues - 1))
phungductung 0:e87aa4c49e95 5849 {
phungductung 0:e87aa4c49e95 5850 return (pYData[nValues - 1]);
phungductung 0:e87aa4c49e95 5851 }
phungductung 0:e87aa4c49e95 5852 else if(index < 0)
phungductung 0:e87aa4c49e95 5853 {
phungductung 0:e87aa4c49e95 5854 return (pYData[0]);
phungductung 0:e87aa4c49e95 5855 }
phungductung 0:e87aa4c49e95 5856 else
phungductung 0:e87aa4c49e95 5857 {
phungductung 0:e87aa4c49e95 5858
phungductung 0:e87aa4c49e95 5859 /* 20 bits for the fractional part */
phungductung 0:e87aa4c49e95 5860 /* shift left by 11 to keep fract in 1.31 format */
phungductung 0:e87aa4c49e95 5861 fract = (x & 0x000FFFFF) << 11;
phungductung 0:e87aa4c49e95 5862
phungductung 0:e87aa4c49e95 5863 /* Read two nearest output values from the index in 1.31(q31) format */
phungductung 0:e87aa4c49e95 5864 y0 = pYData[index];
phungductung 0:e87aa4c49e95 5865 y1 = pYData[index + 1u];
phungductung 0:e87aa4c49e95 5866
phungductung 0:e87aa4c49e95 5867 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
phungductung 0:e87aa4c49e95 5868 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
phungductung 0:e87aa4c49e95 5869
phungductung 0:e87aa4c49e95 5870 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
phungductung 0:e87aa4c49e95 5871 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
phungductung 0:e87aa4c49e95 5872
phungductung 0:e87aa4c49e95 5873 /* Convert y to 1.31 format */
phungductung 0:e87aa4c49e95 5874 return (y << 1u);
phungductung 0:e87aa4c49e95 5875
phungductung 0:e87aa4c49e95 5876 }
phungductung 0:e87aa4c49e95 5877
phungductung 0:e87aa4c49e95 5878 }
phungductung 0:e87aa4c49e95 5879
phungductung 0:e87aa4c49e95 5880 /**
phungductung 0:e87aa4c49e95 5881 *
phungductung 0:e87aa4c49e95 5882 * @brief Process function for the Q15 Linear Interpolation Function.
phungductung 0:e87aa4c49e95 5883 * @param[in] *pYData pointer to Q15 Linear Interpolation table
phungductung 0:e87aa4c49e95 5884 * @param[in] x input sample to process
phungductung 0:e87aa4c49e95 5885 * @param[in] nValues number of table values
phungductung 0:e87aa4c49e95 5886 * @return y processed output sample.
phungductung 0:e87aa4c49e95 5887 *
phungductung 0:e87aa4c49e95 5888 * \par
phungductung 0:e87aa4c49e95 5889 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
phungductung 0:e87aa4c49e95 5890 * This function can support maximum of table size 2^12.
phungductung 0:e87aa4c49e95 5891 *
phungductung 0:e87aa4c49e95 5892 */
phungductung 0:e87aa4c49e95 5893
phungductung 0:e87aa4c49e95 5894
phungductung 0:e87aa4c49e95 5895 static __INLINE q15_t arm_linear_interp_q15(
phungductung 0:e87aa4c49e95 5896 q15_t * pYData,
phungductung 0:e87aa4c49e95 5897 q31_t x,
phungductung 0:e87aa4c49e95 5898 uint32_t nValues)
phungductung 0:e87aa4c49e95 5899 {
phungductung 0:e87aa4c49e95 5900 q63_t y; /* output */
phungductung 0:e87aa4c49e95 5901 q15_t y0, y1; /* Nearest output values */
phungductung 0:e87aa4c49e95 5902 q31_t fract; /* fractional part */
phungductung 0:e87aa4c49e95 5903 int32_t index; /* Index to read nearest output values */
phungductung 0:e87aa4c49e95 5904
phungductung 0:e87aa4c49e95 5905 /* Input is in 12.20 format */
phungductung 0:e87aa4c49e95 5906 /* 12 bits for the table index */
phungductung 0:e87aa4c49e95 5907 /* Index value calculation */
phungductung 0:e87aa4c49e95 5908 index = ((x & 0xFFF00000) >> 20u);
phungductung 0:e87aa4c49e95 5909
phungductung 0:e87aa4c49e95 5910 if(index >= (int32_t)(nValues - 1))
phungductung 0:e87aa4c49e95 5911 {
phungductung 0:e87aa4c49e95 5912 return (pYData[nValues - 1]);
phungductung 0:e87aa4c49e95 5913 }
phungductung 0:e87aa4c49e95 5914 else if(index < 0)
phungductung 0:e87aa4c49e95 5915 {
phungductung 0:e87aa4c49e95 5916 return (pYData[0]);
phungductung 0:e87aa4c49e95 5917 }
phungductung 0:e87aa4c49e95 5918 else
phungductung 0:e87aa4c49e95 5919 {
phungductung 0:e87aa4c49e95 5920 /* 20 bits for the fractional part */
phungductung 0:e87aa4c49e95 5921 /* fract is in 12.20 format */
phungductung 0:e87aa4c49e95 5922 fract = (x & 0x000FFFFF);
phungductung 0:e87aa4c49e95 5923
phungductung 0:e87aa4c49e95 5924 /* Read two nearest output values from the index */
phungductung 0:e87aa4c49e95 5925 y0 = pYData[index];
phungductung 0:e87aa4c49e95 5926 y1 = pYData[index + 1u];
phungductung 0:e87aa4c49e95 5927
phungductung 0:e87aa4c49e95 5928 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
phungductung 0:e87aa4c49e95 5929 y = ((q63_t) y0 * (0xFFFFF - fract));
phungductung 0:e87aa4c49e95 5930
phungductung 0:e87aa4c49e95 5931 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
phungductung 0:e87aa4c49e95 5932 y += ((q63_t) y1 * (fract));
phungductung 0:e87aa4c49e95 5933
phungductung 0:e87aa4c49e95 5934 /* convert y to 1.15 format */
phungductung 0:e87aa4c49e95 5935 return (y >> 20);
phungductung 0:e87aa4c49e95 5936 }
phungductung 0:e87aa4c49e95 5937
phungductung 0:e87aa4c49e95 5938
phungductung 0:e87aa4c49e95 5939 }
phungductung 0:e87aa4c49e95 5940
phungductung 0:e87aa4c49e95 5941 /**
phungductung 0:e87aa4c49e95 5942 *
phungductung 0:e87aa4c49e95 5943 * @brief Process function for the Q7 Linear Interpolation Function.
phungductung 0:e87aa4c49e95 5944 * @param[in] *pYData pointer to Q7 Linear Interpolation table
phungductung 0:e87aa4c49e95 5945 * @param[in] x input sample to process
phungductung 0:e87aa4c49e95 5946 * @param[in] nValues number of table values
phungductung 0:e87aa4c49e95 5947 * @return y processed output sample.
phungductung 0:e87aa4c49e95 5948 *
phungductung 0:e87aa4c49e95 5949 * \par
phungductung 0:e87aa4c49e95 5950 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
phungductung 0:e87aa4c49e95 5951 * This function can support maximum of table size 2^12.
phungductung 0:e87aa4c49e95 5952 */
phungductung 0:e87aa4c49e95 5953
phungductung 0:e87aa4c49e95 5954
phungductung 0:e87aa4c49e95 5955 static __INLINE q7_t arm_linear_interp_q7(
phungductung 0:e87aa4c49e95 5956 q7_t * pYData,
phungductung 0:e87aa4c49e95 5957 q31_t x,
phungductung 0:e87aa4c49e95 5958 uint32_t nValues)
phungductung 0:e87aa4c49e95 5959 {
phungductung 0:e87aa4c49e95 5960 q31_t y; /* output */
phungductung 0:e87aa4c49e95 5961 q7_t y0, y1; /* Nearest output values */
phungductung 0:e87aa4c49e95 5962 q31_t fract; /* fractional part */
phungductung 0:e87aa4c49e95 5963 uint32_t index; /* Index to read nearest output values */
phungductung 0:e87aa4c49e95 5964
phungductung 0:e87aa4c49e95 5965 /* Input is in 12.20 format */
phungductung 0:e87aa4c49e95 5966 /* 12 bits for the table index */
phungductung 0:e87aa4c49e95 5967 /* Index value calculation */
phungductung 0:e87aa4c49e95 5968 if (x < 0)
phungductung 0:e87aa4c49e95 5969 {
phungductung 0:e87aa4c49e95 5970 return (pYData[0]);
phungductung 0:e87aa4c49e95 5971 }
phungductung 0:e87aa4c49e95 5972 index = (x >> 20) & 0xfff;
phungductung 0:e87aa4c49e95 5973
phungductung 0:e87aa4c49e95 5974
phungductung 0:e87aa4c49e95 5975 if(index >= (nValues - 1))
phungductung 0:e87aa4c49e95 5976 {
phungductung 0:e87aa4c49e95 5977 return (pYData[nValues - 1]);
phungductung 0:e87aa4c49e95 5978 }
phungductung 0:e87aa4c49e95 5979 else
phungductung 0:e87aa4c49e95 5980 {
phungductung 0:e87aa4c49e95 5981
phungductung 0:e87aa4c49e95 5982 /* 20 bits for the fractional part */
phungductung 0:e87aa4c49e95 5983 /* fract is in 12.20 format */
phungductung 0:e87aa4c49e95 5984 fract = (x & 0x000FFFFF);
phungductung 0:e87aa4c49e95 5985
phungductung 0:e87aa4c49e95 5986 /* Read two nearest output values from the index and are in 1.7(q7) format */
phungductung 0:e87aa4c49e95 5987 y0 = pYData[index];
phungductung 0:e87aa4c49e95 5988 y1 = pYData[index + 1u];
phungductung 0:e87aa4c49e95 5989
phungductung 0:e87aa4c49e95 5990 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
phungductung 0:e87aa4c49e95 5991 y = ((y0 * (0xFFFFF - fract)));
phungductung 0:e87aa4c49e95 5992
phungductung 0:e87aa4c49e95 5993 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
phungductung 0:e87aa4c49e95 5994 y += (y1 * fract);
phungductung 0:e87aa4c49e95 5995
phungductung 0:e87aa4c49e95 5996 /* convert y to 1.7(q7) format */
phungductung 0:e87aa4c49e95 5997 return (y >> 20u);
phungductung 0:e87aa4c49e95 5998
phungductung 0:e87aa4c49e95 5999 }
phungductung 0:e87aa4c49e95 6000
phungductung 0:e87aa4c49e95 6001 }
phungductung 0:e87aa4c49e95 6002 /**
phungductung 0:e87aa4c49e95 6003 * @} end of LinearInterpolate group
phungductung 0:e87aa4c49e95 6004 */
phungductung 0:e87aa4c49e95 6005
phungductung 0:e87aa4c49e95 6006 /**
phungductung 0:e87aa4c49e95 6007 * @brief Fast approximation to the trigonometric sine function for floating-point data.
phungductung 0:e87aa4c49e95 6008 * @param[in] x input value in radians.
phungductung 0:e87aa4c49e95 6009 * @return sin(x).
phungductung 0:e87aa4c49e95 6010 */
phungductung 0:e87aa4c49e95 6011
phungductung 0:e87aa4c49e95 6012 float32_t arm_sin_f32(
phungductung 0:e87aa4c49e95 6013 float32_t x);
phungductung 0:e87aa4c49e95 6014
phungductung 0:e87aa4c49e95 6015 /**
phungductung 0:e87aa4c49e95 6016 * @brief Fast approximation to the trigonometric sine function for Q31 data.
phungductung 0:e87aa4c49e95 6017 * @param[in] x Scaled input value in radians.
phungductung 0:e87aa4c49e95 6018 * @return sin(x).
phungductung 0:e87aa4c49e95 6019 */
phungductung 0:e87aa4c49e95 6020
phungductung 0:e87aa4c49e95 6021 q31_t arm_sin_q31(
phungductung 0:e87aa4c49e95 6022 q31_t x);
phungductung 0:e87aa4c49e95 6023
phungductung 0:e87aa4c49e95 6024 /**
phungductung 0:e87aa4c49e95 6025 * @brief Fast approximation to the trigonometric sine function for Q15 data.
phungductung 0:e87aa4c49e95 6026 * @param[in] x Scaled input value in radians.
phungductung 0:e87aa4c49e95 6027 * @return sin(x).
phungductung 0:e87aa4c49e95 6028 */
phungductung 0:e87aa4c49e95 6029
phungductung 0:e87aa4c49e95 6030 q15_t arm_sin_q15(
phungductung 0:e87aa4c49e95 6031 q15_t x);
phungductung 0:e87aa4c49e95 6032
phungductung 0:e87aa4c49e95 6033 /**
phungductung 0:e87aa4c49e95 6034 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
phungductung 0:e87aa4c49e95 6035 * @param[in] x input value in radians.
phungductung 0:e87aa4c49e95 6036 * @return cos(x).
phungductung 0:e87aa4c49e95 6037 */
phungductung 0:e87aa4c49e95 6038
phungductung 0:e87aa4c49e95 6039 float32_t arm_cos_f32(
phungductung 0:e87aa4c49e95 6040 float32_t x);
phungductung 0:e87aa4c49e95 6041
phungductung 0:e87aa4c49e95 6042 /**
phungductung 0:e87aa4c49e95 6043 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
phungductung 0:e87aa4c49e95 6044 * @param[in] x Scaled input value in radians.
phungductung 0:e87aa4c49e95 6045 * @return cos(x).
phungductung 0:e87aa4c49e95 6046 */
phungductung 0:e87aa4c49e95 6047
phungductung 0:e87aa4c49e95 6048 q31_t arm_cos_q31(
phungductung 0:e87aa4c49e95 6049 q31_t x);
phungductung 0:e87aa4c49e95 6050
phungductung 0:e87aa4c49e95 6051 /**
phungductung 0:e87aa4c49e95 6052 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
phungductung 0:e87aa4c49e95 6053 * @param[in] x Scaled input value in radians.
phungductung 0:e87aa4c49e95 6054 * @return cos(x).
phungductung 0:e87aa4c49e95 6055 */
phungductung 0:e87aa4c49e95 6056
phungductung 0:e87aa4c49e95 6057 q15_t arm_cos_q15(
phungductung 0:e87aa4c49e95 6058 q15_t x);
phungductung 0:e87aa4c49e95 6059
phungductung 0:e87aa4c49e95 6060
phungductung 0:e87aa4c49e95 6061 /**
phungductung 0:e87aa4c49e95 6062 * @ingroup groupFastMath
phungductung 0:e87aa4c49e95 6063 */
phungductung 0:e87aa4c49e95 6064
phungductung 0:e87aa4c49e95 6065
phungductung 0:e87aa4c49e95 6066 /**
phungductung 0:e87aa4c49e95 6067 * @defgroup SQRT Square Root
phungductung 0:e87aa4c49e95 6068 *
phungductung 0:e87aa4c49e95 6069 * Computes the square root of a number.
phungductung 0:e87aa4c49e95 6070 * There are separate functions for Q15, Q31, and floating-point data types.
phungductung 0:e87aa4c49e95 6071 * The square root function is computed using the Newton-Raphson algorithm.
phungductung 0:e87aa4c49e95 6072 * This is an iterative algorithm of the form:
phungductung 0:e87aa4c49e95 6073 * <pre>
phungductung 0:e87aa4c49e95 6074 * x1 = x0 - f(x0)/f'(x0)
phungductung 0:e87aa4c49e95 6075 * </pre>
phungductung 0:e87aa4c49e95 6076 * where <code>x1</code> is the current estimate,
phungductung 0:e87aa4c49e95 6077 * <code>x0</code> is the previous estimate, and
phungductung 0:e87aa4c49e95 6078 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
phungductung 0:e87aa4c49e95 6079 * For the square root function, the algorithm reduces to:
phungductung 0:e87aa4c49e95 6080 * <pre>
phungductung 0:e87aa4c49e95 6081 * x0 = in/2 [initial guess]
phungductung 0:e87aa4c49e95 6082 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
phungductung 0:e87aa4c49e95 6083 * </pre>
phungductung 0:e87aa4c49e95 6084 */
phungductung 0:e87aa4c49e95 6085
phungductung 0:e87aa4c49e95 6086
phungductung 0:e87aa4c49e95 6087 /**
phungductung 0:e87aa4c49e95 6088 * @addtogroup SQRT
phungductung 0:e87aa4c49e95 6089 * @{
phungductung 0:e87aa4c49e95 6090 */
phungductung 0:e87aa4c49e95 6091
phungductung 0:e87aa4c49e95 6092 /**
phungductung 0:e87aa4c49e95 6093 * @brief Floating-point square root function.
phungductung 0:e87aa4c49e95 6094 * @param[in] in input value.
phungductung 0:e87aa4c49e95 6095 * @param[out] *pOut square root of input value.
phungductung 0:e87aa4c49e95 6096 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
phungductung 0:e87aa4c49e95 6097 * <code>in</code> is negative value and returns zero output for negative values.
phungductung 0:e87aa4c49e95 6098 */
phungductung 0:e87aa4c49e95 6099
phungductung 0:e87aa4c49e95 6100 static __INLINE arm_status arm_sqrt_f32(
phungductung 0:e87aa4c49e95 6101 float32_t in,
phungductung 0:e87aa4c49e95 6102 float32_t * pOut)
phungductung 0:e87aa4c49e95 6103 {
phungductung 0:e87aa4c49e95 6104 if(in >= 0.0f)
phungductung 0:e87aa4c49e95 6105 {
phungductung 0:e87aa4c49e95 6106
phungductung 0:e87aa4c49e95 6107 // #if __FPU_USED
phungductung 0:e87aa4c49e95 6108 #if (__FPU_USED == 1) && defined ( __CC_ARM )
phungductung 0:e87aa4c49e95 6109 *pOut = __sqrtf(in);
phungductung 0:e87aa4c49e95 6110 #else
phungductung 0:e87aa4c49e95 6111 *pOut = sqrtf(in);
phungductung 0:e87aa4c49e95 6112 #endif
phungductung 0:e87aa4c49e95 6113
phungductung 0:e87aa4c49e95 6114 return (ARM_MATH_SUCCESS);
phungductung 0:e87aa4c49e95 6115 }
phungductung 0:e87aa4c49e95 6116 else
phungductung 0:e87aa4c49e95 6117 {
phungductung 0:e87aa4c49e95 6118 *pOut = 0.0f;
phungductung 0:e87aa4c49e95 6119 return (ARM_MATH_ARGUMENT_ERROR);
phungductung 0:e87aa4c49e95 6120 }
phungductung 0:e87aa4c49e95 6121
phungductung 0:e87aa4c49e95 6122 }
phungductung 0:e87aa4c49e95 6123
phungductung 0:e87aa4c49e95 6124
phungductung 0:e87aa4c49e95 6125 /**
phungductung 0:e87aa4c49e95 6126 * @brief Q31 square root function.
phungductung 0:e87aa4c49e95 6127 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
phungductung 0:e87aa4c49e95 6128 * @param[out] *pOut square root of input value.
phungductung 0:e87aa4c49e95 6129 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
phungductung 0:e87aa4c49e95 6130 * <code>in</code> is negative value and returns zero output for negative values.
phungductung 0:e87aa4c49e95 6131 */
phungductung 0:e87aa4c49e95 6132 arm_status arm_sqrt_q31(
phungductung 0:e87aa4c49e95 6133 q31_t in,
phungductung 0:e87aa4c49e95 6134 q31_t * pOut);
phungductung 0:e87aa4c49e95 6135
phungductung 0:e87aa4c49e95 6136 /**
phungductung 0:e87aa4c49e95 6137 * @brief Q15 square root function.
phungductung 0:e87aa4c49e95 6138 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
phungductung 0:e87aa4c49e95 6139 * @param[out] *pOut square root of input value.
phungductung 0:e87aa4c49e95 6140 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
phungductung 0:e87aa4c49e95 6141 * <code>in</code> is negative value and returns zero output for negative values.
phungductung 0:e87aa4c49e95 6142 */
phungductung 0:e87aa4c49e95 6143 arm_status arm_sqrt_q15(
phungductung 0:e87aa4c49e95 6144 q15_t in,
phungductung 0:e87aa4c49e95 6145 q15_t * pOut);
phungductung 0:e87aa4c49e95 6146
phungductung 0:e87aa4c49e95 6147 /**
phungductung 0:e87aa4c49e95 6148 * @} end of SQRT group
phungductung 0:e87aa4c49e95 6149 */
phungductung 0:e87aa4c49e95 6150
phungductung 0:e87aa4c49e95 6151
phungductung 0:e87aa4c49e95 6152
phungductung 0:e87aa4c49e95 6153
phungductung 0:e87aa4c49e95 6154
phungductung 0:e87aa4c49e95 6155
phungductung 0:e87aa4c49e95 6156 /**
phungductung 0:e87aa4c49e95 6157 * @brief floating-point Circular write function.
phungductung 0:e87aa4c49e95 6158 */
phungductung 0:e87aa4c49e95 6159
phungductung 0:e87aa4c49e95 6160 static __INLINE void arm_circularWrite_f32(
phungductung 0:e87aa4c49e95 6161 int32_t * circBuffer,
phungductung 0:e87aa4c49e95 6162 int32_t L,
phungductung 0:e87aa4c49e95 6163 uint16_t * writeOffset,
phungductung 0:e87aa4c49e95 6164 int32_t bufferInc,
phungductung 0:e87aa4c49e95 6165 const int32_t * src,
phungductung 0:e87aa4c49e95 6166 int32_t srcInc,
phungductung 0:e87aa4c49e95 6167 uint32_t blockSize)
phungductung 0:e87aa4c49e95 6168 {
phungductung 0:e87aa4c49e95 6169 uint32_t i = 0u;
phungductung 0:e87aa4c49e95 6170 int32_t wOffset;
phungductung 0:e87aa4c49e95 6171
phungductung 0:e87aa4c49e95 6172 /* Copy the value of Index pointer that points
phungductung 0:e87aa4c49e95 6173 * to the current location where the input samples to be copied */
phungductung 0:e87aa4c49e95 6174 wOffset = *writeOffset;
phungductung 0:e87aa4c49e95 6175
phungductung 0:e87aa4c49e95 6176 /* Loop over the blockSize */
phungductung 0:e87aa4c49e95 6177 i = blockSize;
phungductung 0:e87aa4c49e95 6178
phungductung 0:e87aa4c49e95 6179 while(i > 0u)
phungductung 0:e87aa4c49e95 6180 {
phungductung 0:e87aa4c49e95 6181 /* copy the input sample to the circular buffer */
phungductung 0:e87aa4c49e95 6182 circBuffer[wOffset] = *src;
phungductung 0:e87aa4c49e95 6183
phungductung 0:e87aa4c49e95 6184 /* Update the input pointer */
phungductung 0:e87aa4c49e95 6185 src += srcInc;
phungductung 0:e87aa4c49e95 6186
phungductung 0:e87aa4c49e95 6187 /* Circularly update wOffset. Watch out for positive and negative value */
phungductung 0:e87aa4c49e95 6188 wOffset += bufferInc;
phungductung 0:e87aa4c49e95 6189 if(wOffset >= L)
phungductung 0:e87aa4c49e95 6190 wOffset -= L;
phungductung 0:e87aa4c49e95 6191
phungductung 0:e87aa4c49e95 6192 /* Decrement the loop counter */
phungductung 0:e87aa4c49e95 6193 i--;
phungductung 0:e87aa4c49e95 6194 }
phungductung 0:e87aa4c49e95 6195
phungductung 0:e87aa4c49e95 6196 /* Update the index pointer */
phungductung 0:e87aa4c49e95 6197 *writeOffset = wOffset;
phungductung 0:e87aa4c49e95 6198 }
phungductung 0:e87aa4c49e95 6199
phungductung 0:e87aa4c49e95 6200
phungductung 0:e87aa4c49e95 6201
phungductung 0:e87aa4c49e95 6202 /**
phungductung 0:e87aa4c49e95 6203 * @brief floating-point Circular Read function.
phungductung 0:e87aa4c49e95 6204 */
phungductung 0:e87aa4c49e95 6205 static __INLINE void arm_circularRead_f32(
phungductung 0:e87aa4c49e95 6206 int32_t * circBuffer,
phungductung 0:e87aa4c49e95 6207 int32_t L,
phungductung 0:e87aa4c49e95 6208 int32_t * readOffset,
phungductung 0:e87aa4c49e95 6209 int32_t bufferInc,
phungductung 0:e87aa4c49e95 6210 int32_t * dst,
phungductung 0:e87aa4c49e95 6211 int32_t * dst_base,
phungductung 0:e87aa4c49e95 6212 int32_t dst_length,
phungductung 0:e87aa4c49e95 6213 int32_t dstInc,
phungductung 0:e87aa4c49e95 6214 uint32_t blockSize)
phungductung 0:e87aa4c49e95 6215 {
phungductung 0:e87aa4c49e95 6216 uint32_t i = 0u;
phungductung 0:e87aa4c49e95 6217 int32_t rOffset, dst_end;
phungductung 0:e87aa4c49e95 6218
phungductung 0:e87aa4c49e95 6219 /* Copy the value of Index pointer that points
phungductung 0:e87aa4c49e95 6220 * to the current location from where the input samples to be read */
phungductung 0:e87aa4c49e95 6221 rOffset = *readOffset;
phungductung 0:e87aa4c49e95 6222 dst_end = (int32_t) (dst_base + dst_length);
phungductung 0:e87aa4c49e95 6223
phungductung 0:e87aa4c49e95 6224 /* Loop over the blockSize */
phungductung 0:e87aa4c49e95 6225 i = blockSize;
phungductung 0:e87aa4c49e95 6226
phungductung 0:e87aa4c49e95 6227 while(i > 0u)
phungductung 0:e87aa4c49e95 6228 {
phungductung 0:e87aa4c49e95 6229 /* copy the sample from the circular buffer to the destination buffer */
phungductung 0:e87aa4c49e95 6230 *dst = circBuffer[rOffset];
phungductung 0:e87aa4c49e95 6231
phungductung 0:e87aa4c49e95 6232 /* Update the input pointer */
phungductung 0:e87aa4c49e95 6233 dst += dstInc;
phungductung 0:e87aa4c49e95 6234
phungductung 0:e87aa4c49e95 6235 if(dst == (int32_t *) dst_end)
phungductung 0:e87aa4c49e95 6236 {
phungductung 0:e87aa4c49e95 6237 dst = dst_base;
phungductung 0:e87aa4c49e95 6238 }
phungductung 0:e87aa4c49e95 6239
phungductung 0:e87aa4c49e95 6240 /* Circularly update rOffset. Watch out for positive and negative value */
phungductung 0:e87aa4c49e95 6241 rOffset += bufferInc;
phungductung 0:e87aa4c49e95 6242
phungductung 0:e87aa4c49e95 6243 if(rOffset >= L)
phungductung 0:e87aa4c49e95 6244 {
phungductung 0:e87aa4c49e95 6245 rOffset -= L;
phungductung 0:e87aa4c49e95 6246 }
phungductung 0:e87aa4c49e95 6247
phungductung 0:e87aa4c49e95 6248 /* Decrement the loop counter */
phungductung 0:e87aa4c49e95 6249 i--;
phungductung 0:e87aa4c49e95 6250 }
phungductung 0:e87aa4c49e95 6251
phungductung 0:e87aa4c49e95 6252 /* Update the index pointer */
phungductung 0:e87aa4c49e95 6253 *readOffset = rOffset;
phungductung 0:e87aa4c49e95 6254 }
phungductung 0:e87aa4c49e95 6255
phungductung 0:e87aa4c49e95 6256 /**
phungductung 0:e87aa4c49e95 6257 * @brief Q15 Circular write function.
phungductung 0:e87aa4c49e95 6258 */
phungductung 0:e87aa4c49e95 6259
phungductung 0:e87aa4c49e95 6260 static __INLINE void arm_circularWrite_q15(
phungductung 0:e87aa4c49e95 6261 q15_t * circBuffer,
phungductung 0:e87aa4c49e95 6262 int32_t L,
phungductung 0:e87aa4c49e95 6263 uint16_t * writeOffset,
phungductung 0:e87aa4c49e95 6264 int32_t bufferInc,
phungductung 0:e87aa4c49e95 6265 const q15_t * src,
phungductung 0:e87aa4c49e95 6266 int32_t srcInc,
phungductung 0:e87aa4c49e95 6267 uint32_t blockSize)
phungductung 0:e87aa4c49e95 6268 {
phungductung 0:e87aa4c49e95 6269 uint32_t i = 0u;
phungductung 0:e87aa4c49e95 6270 int32_t wOffset;
phungductung 0:e87aa4c49e95 6271
phungductung 0:e87aa4c49e95 6272 /* Copy the value of Index pointer that points
phungductung 0:e87aa4c49e95 6273 * to the current location where the input samples to be copied */
phungductung 0:e87aa4c49e95 6274 wOffset = *writeOffset;
phungductung 0:e87aa4c49e95 6275
phungductung 0:e87aa4c49e95 6276 /* Loop over the blockSize */
phungductung 0:e87aa4c49e95 6277 i = blockSize;
phungductung 0:e87aa4c49e95 6278
phungductung 0:e87aa4c49e95 6279 while(i > 0u)
phungductung 0:e87aa4c49e95 6280 {
phungductung 0:e87aa4c49e95 6281 /* copy the input sample to the circular buffer */
phungductung 0:e87aa4c49e95 6282 circBuffer[wOffset] = *src;
phungductung 0:e87aa4c49e95 6283
phungductung 0:e87aa4c49e95 6284 /* Update the input pointer */
phungductung 0:e87aa4c49e95 6285 src += srcInc;
phungductung 0:e87aa4c49e95 6286
phungductung 0:e87aa4c49e95 6287 /* Circularly update wOffset. Watch out for positive and negative value */
phungductung 0:e87aa4c49e95 6288 wOffset += bufferInc;
phungductung 0:e87aa4c49e95 6289 if(wOffset >= L)
phungductung 0:e87aa4c49e95 6290 wOffset -= L;
phungductung 0:e87aa4c49e95 6291
phungductung 0:e87aa4c49e95 6292 /* Decrement the loop counter */
phungductung 0:e87aa4c49e95 6293 i--;
phungductung 0:e87aa4c49e95 6294 }
phungductung 0:e87aa4c49e95 6295
phungductung 0:e87aa4c49e95 6296 /* Update the index pointer */
phungductung 0:e87aa4c49e95 6297 *writeOffset = wOffset;
phungductung 0:e87aa4c49e95 6298 }
phungductung 0:e87aa4c49e95 6299
phungductung 0:e87aa4c49e95 6300
phungductung 0:e87aa4c49e95 6301
phungductung 0:e87aa4c49e95 6302 /**
phungductung 0:e87aa4c49e95 6303 * @brief Q15 Circular Read function.
phungductung 0:e87aa4c49e95 6304 */
phungductung 0:e87aa4c49e95 6305 static __INLINE void arm_circularRead_q15(
phungductung 0:e87aa4c49e95 6306 q15_t * circBuffer,
phungductung 0:e87aa4c49e95 6307 int32_t L,
phungductung 0:e87aa4c49e95 6308 int32_t * readOffset,
phungductung 0:e87aa4c49e95 6309 int32_t bufferInc,
phungductung 0:e87aa4c49e95 6310 q15_t * dst,
phungductung 0:e87aa4c49e95 6311 q15_t * dst_base,
phungductung 0:e87aa4c49e95 6312 int32_t dst_length,
phungductung 0:e87aa4c49e95 6313 int32_t dstInc,
phungductung 0:e87aa4c49e95 6314 uint32_t blockSize)
phungductung 0:e87aa4c49e95 6315 {
phungductung 0:e87aa4c49e95 6316 uint32_t i = 0;
phungductung 0:e87aa4c49e95 6317 int32_t rOffset, dst_end;
phungductung 0:e87aa4c49e95 6318
phungductung 0:e87aa4c49e95 6319 /* Copy the value of Index pointer that points
phungductung 0:e87aa4c49e95 6320 * to the current location from where the input samples to be read */
phungductung 0:e87aa4c49e95 6321 rOffset = *readOffset;
phungductung 0:e87aa4c49e95 6322
phungductung 0:e87aa4c49e95 6323 dst_end = (int32_t) (dst_base + dst_length);
phungductung 0:e87aa4c49e95 6324
phungductung 0:e87aa4c49e95 6325 /* Loop over the blockSize */
phungductung 0:e87aa4c49e95 6326 i = blockSize;
phungductung 0:e87aa4c49e95 6327
phungductung 0:e87aa4c49e95 6328 while(i > 0u)
phungductung 0:e87aa4c49e95 6329 {
phungductung 0:e87aa4c49e95 6330 /* copy the sample from the circular buffer to the destination buffer */
phungductung 0:e87aa4c49e95 6331 *dst = circBuffer[rOffset];
phungductung 0:e87aa4c49e95 6332
phungductung 0:e87aa4c49e95 6333 /* Update the input pointer */
phungductung 0:e87aa4c49e95 6334 dst += dstInc;
phungductung 0:e87aa4c49e95 6335
phungductung 0:e87aa4c49e95 6336 if(dst == (q15_t *) dst_end)
phungductung 0:e87aa4c49e95 6337 {
phungductung 0:e87aa4c49e95 6338 dst = dst_base;
phungductung 0:e87aa4c49e95 6339 }
phungductung 0:e87aa4c49e95 6340
phungductung 0:e87aa4c49e95 6341 /* Circularly update wOffset. Watch out for positive and negative value */
phungductung 0:e87aa4c49e95 6342 rOffset += bufferInc;
phungductung 0:e87aa4c49e95 6343
phungductung 0:e87aa4c49e95 6344 if(rOffset >= L)
phungductung 0:e87aa4c49e95 6345 {
phungductung 0:e87aa4c49e95 6346 rOffset -= L;
phungductung 0:e87aa4c49e95 6347 }
phungductung 0:e87aa4c49e95 6348
phungductung 0:e87aa4c49e95 6349 /* Decrement the loop counter */
phungductung 0:e87aa4c49e95 6350 i--;
phungductung 0:e87aa4c49e95 6351 }
phungductung 0:e87aa4c49e95 6352
phungductung 0:e87aa4c49e95 6353 /* Update the index pointer */
phungductung 0:e87aa4c49e95 6354 *readOffset = rOffset;
phungductung 0:e87aa4c49e95 6355 }
phungductung 0:e87aa4c49e95 6356
phungductung 0:e87aa4c49e95 6357
phungductung 0:e87aa4c49e95 6358 /**
phungductung 0:e87aa4c49e95 6359 * @brief Q7 Circular write function.
phungductung 0:e87aa4c49e95 6360 */
phungductung 0:e87aa4c49e95 6361
phungductung 0:e87aa4c49e95 6362 static __INLINE void arm_circularWrite_q7(
phungductung 0:e87aa4c49e95 6363 q7_t * circBuffer,
phungductung 0:e87aa4c49e95 6364 int32_t L,
phungductung 0:e87aa4c49e95 6365 uint16_t * writeOffset,
phungductung 0:e87aa4c49e95 6366 int32_t bufferInc,
phungductung 0:e87aa4c49e95 6367 const q7_t * src,
phungductung 0:e87aa4c49e95 6368 int32_t srcInc,
phungductung 0:e87aa4c49e95 6369 uint32_t blockSize)
phungductung 0:e87aa4c49e95 6370 {
phungductung 0:e87aa4c49e95 6371 uint32_t i = 0u;
phungductung 0:e87aa4c49e95 6372 int32_t wOffset;
phungductung 0:e87aa4c49e95 6373
phungductung 0:e87aa4c49e95 6374 /* Copy the value of Index pointer that points
phungductung 0:e87aa4c49e95 6375 * to the current location where the input samples to be copied */
phungductung 0:e87aa4c49e95 6376 wOffset = *writeOffset;
phungductung 0:e87aa4c49e95 6377
phungductung 0:e87aa4c49e95 6378 /* Loop over the blockSize */
phungductung 0:e87aa4c49e95 6379 i = blockSize;
phungductung 0:e87aa4c49e95 6380
phungductung 0:e87aa4c49e95 6381 while(i > 0u)
phungductung 0:e87aa4c49e95 6382 {
phungductung 0:e87aa4c49e95 6383 /* copy the input sample to the circular buffer */
phungductung 0:e87aa4c49e95 6384 circBuffer[wOffset] = *src;
phungductung 0:e87aa4c49e95 6385
phungductung 0:e87aa4c49e95 6386 /* Update the input pointer */
phungductung 0:e87aa4c49e95 6387 src += srcInc;
phungductung 0:e87aa4c49e95 6388
phungductung 0:e87aa4c49e95 6389 /* Circularly update wOffset. Watch out for positive and negative value */
phungductung 0:e87aa4c49e95 6390 wOffset += bufferInc;
phungductung 0:e87aa4c49e95 6391 if(wOffset >= L)
phungductung 0:e87aa4c49e95 6392 wOffset -= L;
phungductung 0:e87aa4c49e95 6393
phungductung 0:e87aa4c49e95 6394 /* Decrement the loop counter */
phungductung 0:e87aa4c49e95 6395 i--;
phungductung 0:e87aa4c49e95 6396 }
phungductung 0:e87aa4c49e95 6397
phungductung 0:e87aa4c49e95 6398 /* Update the index pointer */
phungductung 0:e87aa4c49e95 6399 *writeOffset = wOffset;
phungductung 0:e87aa4c49e95 6400 }
phungductung 0:e87aa4c49e95 6401
phungductung 0:e87aa4c49e95 6402
phungductung 0:e87aa4c49e95 6403
phungductung 0:e87aa4c49e95 6404 /**
phungductung 0:e87aa4c49e95 6405 * @brief Q7 Circular Read function.
phungductung 0:e87aa4c49e95 6406 */
phungductung 0:e87aa4c49e95 6407 static __INLINE void arm_circularRead_q7(
phungductung 0:e87aa4c49e95 6408 q7_t * circBuffer,
phungductung 0:e87aa4c49e95 6409 int32_t L,
phungductung 0:e87aa4c49e95 6410 int32_t * readOffset,
phungductung 0:e87aa4c49e95 6411 int32_t bufferInc,
phungductung 0:e87aa4c49e95 6412 q7_t * dst,
phungductung 0:e87aa4c49e95 6413 q7_t * dst_base,
phungductung 0:e87aa4c49e95 6414 int32_t dst_length,
phungductung 0:e87aa4c49e95 6415 int32_t dstInc,
phungductung 0:e87aa4c49e95 6416 uint32_t blockSize)
phungductung 0:e87aa4c49e95 6417 {
phungductung 0:e87aa4c49e95 6418 uint32_t i = 0;
phungductung 0:e87aa4c49e95 6419 int32_t rOffset, dst_end;
phungductung 0:e87aa4c49e95 6420
phungductung 0:e87aa4c49e95 6421 /* Copy the value of Index pointer that points
phungductung 0:e87aa4c49e95 6422 * to the current location from where the input samples to be read */
phungductung 0:e87aa4c49e95 6423 rOffset = *readOffset;
phungductung 0:e87aa4c49e95 6424
phungductung 0:e87aa4c49e95 6425 dst_end = (int32_t) (dst_base + dst_length);
phungductung 0:e87aa4c49e95 6426
phungductung 0:e87aa4c49e95 6427 /* Loop over the blockSize */
phungductung 0:e87aa4c49e95 6428 i = blockSize;
phungductung 0:e87aa4c49e95 6429
phungductung 0:e87aa4c49e95 6430 while(i > 0u)
phungductung 0:e87aa4c49e95 6431 {
phungductung 0:e87aa4c49e95 6432 /* copy the sample from the circular buffer to the destination buffer */
phungductung 0:e87aa4c49e95 6433 *dst = circBuffer[rOffset];
phungductung 0:e87aa4c49e95 6434
phungductung 0:e87aa4c49e95 6435 /* Update the input pointer */
phungductung 0:e87aa4c49e95 6436 dst += dstInc;
phungductung 0:e87aa4c49e95 6437
phungductung 0:e87aa4c49e95 6438 if(dst == (q7_t *) dst_end)
phungductung 0:e87aa4c49e95 6439 {
phungductung 0:e87aa4c49e95 6440 dst = dst_base;
phungductung 0:e87aa4c49e95 6441 }
phungductung 0:e87aa4c49e95 6442
phungductung 0:e87aa4c49e95 6443 /* Circularly update rOffset. Watch out for positive and negative value */
phungductung 0:e87aa4c49e95 6444 rOffset += bufferInc;
phungductung 0:e87aa4c49e95 6445
phungductung 0:e87aa4c49e95 6446 if(rOffset >= L)
phungductung 0:e87aa4c49e95 6447 {
phungductung 0:e87aa4c49e95 6448 rOffset -= L;
phungductung 0:e87aa4c49e95 6449 }
phungductung 0:e87aa4c49e95 6450
phungductung 0:e87aa4c49e95 6451 /* Decrement the loop counter */
phungductung 0:e87aa4c49e95 6452 i--;
phungductung 0:e87aa4c49e95 6453 }
phungductung 0:e87aa4c49e95 6454
phungductung 0:e87aa4c49e95 6455 /* Update the index pointer */
phungductung 0:e87aa4c49e95 6456 *readOffset = rOffset;
phungductung 0:e87aa4c49e95 6457 }
phungductung 0:e87aa4c49e95 6458
phungductung 0:e87aa4c49e95 6459
phungductung 0:e87aa4c49e95 6460 /**
phungductung 0:e87aa4c49e95 6461 * @brief Sum of the squares of the elements of a Q31 vector.
phungductung 0:e87aa4c49e95 6462 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6463 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6464 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6465 * @return none.
phungductung 0:e87aa4c49e95 6466 */
phungductung 0:e87aa4c49e95 6467
phungductung 0:e87aa4c49e95 6468 void arm_power_q31(
phungductung 0:e87aa4c49e95 6469 q31_t * pSrc,
phungductung 0:e87aa4c49e95 6470 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6471 q63_t * pResult);
phungductung 0:e87aa4c49e95 6472
phungductung 0:e87aa4c49e95 6473 /**
phungductung 0:e87aa4c49e95 6474 * @brief Sum of the squares of the elements of a floating-point vector.
phungductung 0:e87aa4c49e95 6475 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6476 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6477 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6478 * @return none.
phungductung 0:e87aa4c49e95 6479 */
phungductung 0:e87aa4c49e95 6480
phungductung 0:e87aa4c49e95 6481 void arm_power_f32(
phungductung 0:e87aa4c49e95 6482 float32_t * pSrc,
phungductung 0:e87aa4c49e95 6483 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6484 float32_t * pResult);
phungductung 0:e87aa4c49e95 6485
phungductung 0:e87aa4c49e95 6486 /**
phungductung 0:e87aa4c49e95 6487 * @brief Sum of the squares of the elements of a Q15 vector.
phungductung 0:e87aa4c49e95 6488 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6489 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6490 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6491 * @return none.
phungductung 0:e87aa4c49e95 6492 */
phungductung 0:e87aa4c49e95 6493
phungductung 0:e87aa4c49e95 6494 void arm_power_q15(
phungductung 0:e87aa4c49e95 6495 q15_t * pSrc,
phungductung 0:e87aa4c49e95 6496 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6497 q63_t * pResult);
phungductung 0:e87aa4c49e95 6498
phungductung 0:e87aa4c49e95 6499 /**
phungductung 0:e87aa4c49e95 6500 * @brief Sum of the squares of the elements of a Q7 vector.
phungductung 0:e87aa4c49e95 6501 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6502 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6503 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6504 * @return none.
phungductung 0:e87aa4c49e95 6505 */
phungductung 0:e87aa4c49e95 6506
phungductung 0:e87aa4c49e95 6507 void arm_power_q7(
phungductung 0:e87aa4c49e95 6508 q7_t * pSrc,
phungductung 0:e87aa4c49e95 6509 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6510 q31_t * pResult);
phungductung 0:e87aa4c49e95 6511
phungductung 0:e87aa4c49e95 6512 /**
phungductung 0:e87aa4c49e95 6513 * @brief Mean value of a Q7 vector.
phungductung 0:e87aa4c49e95 6514 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6515 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6516 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6517 * @return none.
phungductung 0:e87aa4c49e95 6518 */
phungductung 0:e87aa4c49e95 6519
phungductung 0:e87aa4c49e95 6520 void arm_mean_q7(
phungductung 0:e87aa4c49e95 6521 q7_t * pSrc,
phungductung 0:e87aa4c49e95 6522 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6523 q7_t * pResult);
phungductung 0:e87aa4c49e95 6524
phungductung 0:e87aa4c49e95 6525 /**
phungductung 0:e87aa4c49e95 6526 * @brief Mean value of a Q15 vector.
phungductung 0:e87aa4c49e95 6527 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6528 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6529 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6530 * @return none.
phungductung 0:e87aa4c49e95 6531 */
phungductung 0:e87aa4c49e95 6532 void arm_mean_q15(
phungductung 0:e87aa4c49e95 6533 q15_t * pSrc,
phungductung 0:e87aa4c49e95 6534 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6535 q15_t * pResult);
phungductung 0:e87aa4c49e95 6536
phungductung 0:e87aa4c49e95 6537 /**
phungductung 0:e87aa4c49e95 6538 * @brief Mean value of a Q31 vector.
phungductung 0:e87aa4c49e95 6539 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6540 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6541 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6542 * @return none.
phungductung 0:e87aa4c49e95 6543 */
phungductung 0:e87aa4c49e95 6544 void arm_mean_q31(
phungductung 0:e87aa4c49e95 6545 q31_t * pSrc,
phungductung 0:e87aa4c49e95 6546 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6547 q31_t * pResult);
phungductung 0:e87aa4c49e95 6548
phungductung 0:e87aa4c49e95 6549 /**
phungductung 0:e87aa4c49e95 6550 * @brief Mean value of a floating-point vector.
phungductung 0:e87aa4c49e95 6551 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6552 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6553 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6554 * @return none.
phungductung 0:e87aa4c49e95 6555 */
phungductung 0:e87aa4c49e95 6556 void arm_mean_f32(
phungductung 0:e87aa4c49e95 6557 float32_t * pSrc,
phungductung 0:e87aa4c49e95 6558 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6559 float32_t * pResult);
phungductung 0:e87aa4c49e95 6560
phungductung 0:e87aa4c49e95 6561 /**
phungductung 0:e87aa4c49e95 6562 * @brief Variance of the elements of a floating-point vector.
phungductung 0:e87aa4c49e95 6563 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6564 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6565 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6566 * @return none.
phungductung 0:e87aa4c49e95 6567 */
phungductung 0:e87aa4c49e95 6568
phungductung 0:e87aa4c49e95 6569 void arm_var_f32(
phungductung 0:e87aa4c49e95 6570 float32_t * pSrc,
phungductung 0:e87aa4c49e95 6571 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6572 float32_t * pResult);
phungductung 0:e87aa4c49e95 6573
phungductung 0:e87aa4c49e95 6574 /**
phungductung 0:e87aa4c49e95 6575 * @brief Variance of the elements of a Q31 vector.
phungductung 0:e87aa4c49e95 6576 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6577 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6578 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6579 * @return none.
phungductung 0:e87aa4c49e95 6580 */
phungductung 0:e87aa4c49e95 6581
phungductung 0:e87aa4c49e95 6582 void arm_var_q31(
phungductung 0:e87aa4c49e95 6583 q31_t * pSrc,
phungductung 0:e87aa4c49e95 6584 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6585 q31_t * pResult);
phungductung 0:e87aa4c49e95 6586
phungductung 0:e87aa4c49e95 6587 /**
phungductung 0:e87aa4c49e95 6588 * @brief Variance of the elements of a Q15 vector.
phungductung 0:e87aa4c49e95 6589 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6590 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6591 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6592 * @return none.
phungductung 0:e87aa4c49e95 6593 */
phungductung 0:e87aa4c49e95 6594
phungductung 0:e87aa4c49e95 6595 void arm_var_q15(
phungductung 0:e87aa4c49e95 6596 q15_t * pSrc,
phungductung 0:e87aa4c49e95 6597 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6598 q15_t * pResult);
phungductung 0:e87aa4c49e95 6599
phungductung 0:e87aa4c49e95 6600 /**
phungductung 0:e87aa4c49e95 6601 * @brief Root Mean Square of the elements of a floating-point vector.
phungductung 0:e87aa4c49e95 6602 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6603 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6604 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6605 * @return none.
phungductung 0:e87aa4c49e95 6606 */
phungductung 0:e87aa4c49e95 6607
phungductung 0:e87aa4c49e95 6608 void arm_rms_f32(
phungductung 0:e87aa4c49e95 6609 float32_t * pSrc,
phungductung 0:e87aa4c49e95 6610 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6611 float32_t * pResult);
phungductung 0:e87aa4c49e95 6612
phungductung 0:e87aa4c49e95 6613 /**
phungductung 0:e87aa4c49e95 6614 * @brief Root Mean Square of the elements of a Q31 vector.
phungductung 0:e87aa4c49e95 6615 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6616 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6617 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6618 * @return none.
phungductung 0:e87aa4c49e95 6619 */
phungductung 0:e87aa4c49e95 6620
phungductung 0:e87aa4c49e95 6621 void arm_rms_q31(
phungductung 0:e87aa4c49e95 6622 q31_t * pSrc,
phungductung 0:e87aa4c49e95 6623 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6624 q31_t * pResult);
phungductung 0:e87aa4c49e95 6625
phungductung 0:e87aa4c49e95 6626 /**
phungductung 0:e87aa4c49e95 6627 * @brief Root Mean Square of the elements of a Q15 vector.
phungductung 0:e87aa4c49e95 6628 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6629 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6630 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6631 * @return none.
phungductung 0:e87aa4c49e95 6632 */
phungductung 0:e87aa4c49e95 6633
phungductung 0:e87aa4c49e95 6634 void arm_rms_q15(
phungductung 0:e87aa4c49e95 6635 q15_t * pSrc,
phungductung 0:e87aa4c49e95 6636 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6637 q15_t * pResult);
phungductung 0:e87aa4c49e95 6638
phungductung 0:e87aa4c49e95 6639 /**
phungductung 0:e87aa4c49e95 6640 * @brief Standard deviation of the elements of a floating-point vector.
phungductung 0:e87aa4c49e95 6641 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6642 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6643 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6644 * @return none.
phungductung 0:e87aa4c49e95 6645 */
phungductung 0:e87aa4c49e95 6646
phungductung 0:e87aa4c49e95 6647 void arm_std_f32(
phungductung 0:e87aa4c49e95 6648 float32_t * pSrc,
phungductung 0:e87aa4c49e95 6649 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6650 float32_t * pResult);
phungductung 0:e87aa4c49e95 6651
phungductung 0:e87aa4c49e95 6652 /**
phungductung 0:e87aa4c49e95 6653 * @brief Standard deviation of the elements of a Q31 vector.
phungductung 0:e87aa4c49e95 6654 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6655 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6656 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6657 * @return none.
phungductung 0:e87aa4c49e95 6658 */
phungductung 0:e87aa4c49e95 6659
phungductung 0:e87aa4c49e95 6660 void arm_std_q31(
phungductung 0:e87aa4c49e95 6661 q31_t * pSrc,
phungductung 0:e87aa4c49e95 6662 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6663 q31_t * pResult);
phungductung 0:e87aa4c49e95 6664
phungductung 0:e87aa4c49e95 6665 /**
phungductung 0:e87aa4c49e95 6666 * @brief Standard deviation of the elements of a Q15 vector.
phungductung 0:e87aa4c49e95 6667 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6668 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6669 * @param[out] *pResult is output value.
phungductung 0:e87aa4c49e95 6670 * @return none.
phungductung 0:e87aa4c49e95 6671 */
phungductung 0:e87aa4c49e95 6672
phungductung 0:e87aa4c49e95 6673 void arm_std_q15(
phungductung 0:e87aa4c49e95 6674 q15_t * pSrc,
phungductung 0:e87aa4c49e95 6675 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6676 q15_t * pResult);
phungductung 0:e87aa4c49e95 6677
phungductung 0:e87aa4c49e95 6678 /**
phungductung 0:e87aa4c49e95 6679 * @brief Floating-point complex magnitude
phungductung 0:e87aa4c49e95 6680 * @param[in] *pSrc points to the complex input vector
phungductung 0:e87aa4c49e95 6681 * @param[out] *pDst points to the real output vector
phungductung 0:e87aa4c49e95 6682 * @param[in] numSamples number of complex samples in the input vector
phungductung 0:e87aa4c49e95 6683 * @return none.
phungductung 0:e87aa4c49e95 6684 */
phungductung 0:e87aa4c49e95 6685
phungductung 0:e87aa4c49e95 6686 void arm_cmplx_mag_f32(
phungductung 0:e87aa4c49e95 6687 float32_t * pSrc,
phungductung 0:e87aa4c49e95 6688 float32_t * pDst,
phungductung 0:e87aa4c49e95 6689 uint32_t numSamples);
phungductung 0:e87aa4c49e95 6690
phungductung 0:e87aa4c49e95 6691 /**
phungductung 0:e87aa4c49e95 6692 * @brief Q31 complex magnitude
phungductung 0:e87aa4c49e95 6693 * @param[in] *pSrc points to the complex input vector
phungductung 0:e87aa4c49e95 6694 * @param[out] *pDst points to the real output vector
phungductung 0:e87aa4c49e95 6695 * @param[in] numSamples number of complex samples in the input vector
phungductung 0:e87aa4c49e95 6696 * @return none.
phungductung 0:e87aa4c49e95 6697 */
phungductung 0:e87aa4c49e95 6698
phungductung 0:e87aa4c49e95 6699 void arm_cmplx_mag_q31(
phungductung 0:e87aa4c49e95 6700 q31_t * pSrc,
phungductung 0:e87aa4c49e95 6701 q31_t * pDst,
phungductung 0:e87aa4c49e95 6702 uint32_t numSamples);
phungductung 0:e87aa4c49e95 6703
phungductung 0:e87aa4c49e95 6704 /**
phungductung 0:e87aa4c49e95 6705 * @brief Q15 complex magnitude
phungductung 0:e87aa4c49e95 6706 * @param[in] *pSrc points to the complex input vector
phungductung 0:e87aa4c49e95 6707 * @param[out] *pDst points to the real output vector
phungductung 0:e87aa4c49e95 6708 * @param[in] numSamples number of complex samples in the input vector
phungductung 0:e87aa4c49e95 6709 * @return none.
phungductung 0:e87aa4c49e95 6710 */
phungductung 0:e87aa4c49e95 6711
phungductung 0:e87aa4c49e95 6712 void arm_cmplx_mag_q15(
phungductung 0:e87aa4c49e95 6713 q15_t * pSrc,
phungductung 0:e87aa4c49e95 6714 q15_t * pDst,
phungductung 0:e87aa4c49e95 6715 uint32_t numSamples);
phungductung 0:e87aa4c49e95 6716
phungductung 0:e87aa4c49e95 6717 /**
phungductung 0:e87aa4c49e95 6718 * @brief Q15 complex dot product
phungductung 0:e87aa4c49e95 6719 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 6720 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 6721 * @param[in] numSamples number of complex samples in each vector
phungductung 0:e87aa4c49e95 6722 * @param[out] *realResult real part of the result returned here
phungductung 0:e87aa4c49e95 6723 * @param[out] *imagResult imaginary part of the result returned here
phungductung 0:e87aa4c49e95 6724 * @return none.
phungductung 0:e87aa4c49e95 6725 */
phungductung 0:e87aa4c49e95 6726
phungductung 0:e87aa4c49e95 6727 void arm_cmplx_dot_prod_q15(
phungductung 0:e87aa4c49e95 6728 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 6729 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 6730 uint32_t numSamples,
phungductung 0:e87aa4c49e95 6731 q31_t * realResult,
phungductung 0:e87aa4c49e95 6732 q31_t * imagResult);
phungductung 0:e87aa4c49e95 6733
phungductung 0:e87aa4c49e95 6734 /**
phungductung 0:e87aa4c49e95 6735 * @brief Q31 complex dot product
phungductung 0:e87aa4c49e95 6736 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 6737 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 6738 * @param[in] numSamples number of complex samples in each vector
phungductung 0:e87aa4c49e95 6739 * @param[out] *realResult real part of the result returned here
phungductung 0:e87aa4c49e95 6740 * @param[out] *imagResult imaginary part of the result returned here
phungductung 0:e87aa4c49e95 6741 * @return none.
phungductung 0:e87aa4c49e95 6742 */
phungductung 0:e87aa4c49e95 6743
phungductung 0:e87aa4c49e95 6744 void arm_cmplx_dot_prod_q31(
phungductung 0:e87aa4c49e95 6745 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 6746 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 6747 uint32_t numSamples,
phungductung 0:e87aa4c49e95 6748 q63_t * realResult,
phungductung 0:e87aa4c49e95 6749 q63_t * imagResult);
phungductung 0:e87aa4c49e95 6750
phungductung 0:e87aa4c49e95 6751 /**
phungductung 0:e87aa4c49e95 6752 * @brief Floating-point complex dot product
phungductung 0:e87aa4c49e95 6753 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 6754 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 6755 * @param[in] numSamples number of complex samples in each vector
phungductung 0:e87aa4c49e95 6756 * @param[out] *realResult real part of the result returned here
phungductung 0:e87aa4c49e95 6757 * @param[out] *imagResult imaginary part of the result returned here
phungductung 0:e87aa4c49e95 6758 * @return none.
phungductung 0:e87aa4c49e95 6759 */
phungductung 0:e87aa4c49e95 6760
phungductung 0:e87aa4c49e95 6761 void arm_cmplx_dot_prod_f32(
phungductung 0:e87aa4c49e95 6762 float32_t * pSrcA,
phungductung 0:e87aa4c49e95 6763 float32_t * pSrcB,
phungductung 0:e87aa4c49e95 6764 uint32_t numSamples,
phungductung 0:e87aa4c49e95 6765 float32_t * realResult,
phungductung 0:e87aa4c49e95 6766 float32_t * imagResult);
phungductung 0:e87aa4c49e95 6767
phungductung 0:e87aa4c49e95 6768 /**
phungductung 0:e87aa4c49e95 6769 * @brief Q15 complex-by-real multiplication
phungductung 0:e87aa4c49e95 6770 * @param[in] *pSrcCmplx points to the complex input vector
phungductung 0:e87aa4c49e95 6771 * @param[in] *pSrcReal points to the real input vector
phungductung 0:e87aa4c49e95 6772 * @param[out] *pCmplxDst points to the complex output vector
phungductung 0:e87aa4c49e95 6773 * @param[in] numSamples number of samples in each vector
phungductung 0:e87aa4c49e95 6774 * @return none.
phungductung 0:e87aa4c49e95 6775 */
phungductung 0:e87aa4c49e95 6776
phungductung 0:e87aa4c49e95 6777 void arm_cmplx_mult_real_q15(
phungductung 0:e87aa4c49e95 6778 q15_t * pSrcCmplx,
phungductung 0:e87aa4c49e95 6779 q15_t * pSrcReal,
phungductung 0:e87aa4c49e95 6780 q15_t * pCmplxDst,
phungductung 0:e87aa4c49e95 6781 uint32_t numSamples);
phungductung 0:e87aa4c49e95 6782
phungductung 0:e87aa4c49e95 6783 /**
phungductung 0:e87aa4c49e95 6784 * @brief Q31 complex-by-real multiplication
phungductung 0:e87aa4c49e95 6785 * @param[in] *pSrcCmplx points to the complex input vector
phungductung 0:e87aa4c49e95 6786 * @param[in] *pSrcReal points to the real input vector
phungductung 0:e87aa4c49e95 6787 * @param[out] *pCmplxDst points to the complex output vector
phungductung 0:e87aa4c49e95 6788 * @param[in] numSamples number of samples in each vector
phungductung 0:e87aa4c49e95 6789 * @return none.
phungductung 0:e87aa4c49e95 6790 */
phungductung 0:e87aa4c49e95 6791
phungductung 0:e87aa4c49e95 6792 void arm_cmplx_mult_real_q31(
phungductung 0:e87aa4c49e95 6793 q31_t * pSrcCmplx,
phungductung 0:e87aa4c49e95 6794 q31_t * pSrcReal,
phungductung 0:e87aa4c49e95 6795 q31_t * pCmplxDst,
phungductung 0:e87aa4c49e95 6796 uint32_t numSamples);
phungductung 0:e87aa4c49e95 6797
phungductung 0:e87aa4c49e95 6798 /**
phungductung 0:e87aa4c49e95 6799 * @brief Floating-point complex-by-real multiplication
phungductung 0:e87aa4c49e95 6800 * @param[in] *pSrcCmplx points to the complex input vector
phungductung 0:e87aa4c49e95 6801 * @param[in] *pSrcReal points to the real input vector
phungductung 0:e87aa4c49e95 6802 * @param[out] *pCmplxDst points to the complex output vector
phungductung 0:e87aa4c49e95 6803 * @param[in] numSamples number of samples in each vector
phungductung 0:e87aa4c49e95 6804 * @return none.
phungductung 0:e87aa4c49e95 6805 */
phungductung 0:e87aa4c49e95 6806
phungductung 0:e87aa4c49e95 6807 void arm_cmplx_mult_real_f32(
phungductung 0:e87aa4c49e95 6808 float32_t * pSrcCmplx,
phungductung 0:e87aa4c49e95 6809 float32_t * pSrcReal,
phungductung 0:e87aa4c49e95 6810 float32_t * pCmplxDst,
phungductung 0:e87aa4c49e95 6811 uint32_t numSamples);
phungductung 0:e87aa4c49e95 6812
phungductung 0:e87aa4c49e95 6813 /**
phungductung 0:e87aa4c49e95 6814 * @brief Minimum value of a Q7 vector.
phungductung 0:e87aa4c49e95 6815 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6816 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6817 * @param[out] *result is output pointer
phungductung 0:e87aa4c49e95 6818 * @param[in] index is the array index of the minimum value in the input buffer.
phungductung 0:e87aa4c49e95 6819 * @return none.
phungductung 0:e87aa4c49e95 6820 */
phungductung 0:e87aa4c49e95 6821
phungductung 0:e87aa4c49e95 6822 void arm_min_q7(
phungductung 0:e87aa4c49e95 6823 q7_t * pSrc,
phungductung 0:e87aa4c49e95 6824 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6825 q7_t * result,
phungductung 0:e87aa4c49e95 6826 uint32_t * index);
phungductung 0:e87aa4c49e95 6827
phungductung 0:e87aa4c49e95 6828 /**
phungductung 0:e87aa4c49e95 6829 * @brief Minimum value of a Q15 vector.
phungductung 0:e87aa4c49e95 6830 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6831 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6832 * @param[out] *pResult is output pointer
phungductung 0:e87aa4c49e95 6833 * @param[in] *pIndex is the array index of the minimum value in the input buffer.
phungductung 0:e87aa4c49e95 6834 * @return none.
phungductung 0:e87aa4c49e95 6835 */
phungductung 0:e87aa4c49e95 6836
phungductung 0:e87aa4c49e95 6837 void arm_min_q15(
phungductung 0:e87aa4c49e95 6838 q15_t * pSrc,
phungductung 0:e87aa4c49e95 6839 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6840 q15_t * pResult,
phungductung 0:e87aa4c49e95 6841 uint32_t * pIndex);
phungductung 0:e87aa4c49e95 6842
phungductung 0:e87aa4c49e95 6843 /**
phungductung 0:e87aa4c49e95 6844 * @brief Minimum value of a Q31 vector.
phungductung 0:e87aa4c49e95 6845 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6846 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6847 * @param[out] *pResult is output pointer
phungductung 0:e87aa4c49e95 6848 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
phungductung 0:e87aa4c49e95 6849 * @return none.
phungductung 0:e87aa4c49e95 6850 */
phungductung 0:e87aa4c49e95 6851 void arm_min_q31(
phungductung 0:e87aa4c49e95 6852 q31_t * pSrc,
phungductung 0:e87aa4c49e95 6853 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6854 q31_t * pResult,
phungductung 0:e87aa4c49e95 6855 uint32_t * pIndex);
phungductung 0:e87aa4c49e95 6856
phungductung 0:e87aa4c49e95 6857 /**
phungductung 0:e87aa4c49e95 6858 * @brief Minimum value of a floating-point vector.
phungductung 0:e87aa4c49e95 6859 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 6860 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 6861 * @param[out] *pResult is output pointer
phungductung 0:e87aa4c49e95 6862 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
phungductung 0:e87aa4c49e95 6863 * @return none.
phungductung 0:e87aa4c49e95 6864 */
phungductung 0:e87aa4c49e95 6865
phungductung 0:e87aa4c49e95 6866 void arm_min_f32(
phungductung 0:e87aa4c49e95 6867 float32_t * pSrc,
phungductung 0:e87aa4c49e95 6868 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6869 float32_t * pResult,
phungductung 0:e87aa4c49e95 6870 uint32_t * pIndex);
phungductung 0:e87aa4c49e95 6871
phungductung 0:e87aa4c49e95 6872 /**
phungductung 0:e87aa4c49e95 6873 * @brief Maximum value of a Q7 vector.
phungductung 0:e87aa4c49e95 6874 * @param[in] *pSrc points to the input buffer
phungductung 0:e87aa4c49e95 6875 * @param[in] blockSize length of the input vector
phungductung 0:e87aa4c49e95 6876 * @param[out] *pResult maximum value returned here
phungductung 0:e87aa4c49e95 6877 * @param[out] *pIndex index of maximum value returned here
phungductung 0:e87aa4c49e95 6878 * @return none.
phungductung 0:e87aa4c49e95 6879 */
phungductung 0:e87aa4c49e95 6880
phungductung 0:e87aa4c49e95 6881 void arm_max_q7(
phungductung 0:e87aa4c49e95 6882 q7_t * pSrc,
phungductung 0:e87aa4c49e95 6883 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6884 q7_t * pResult,
phungductung 0:e87aa4c49e95 6885 uint32_t * pIndex);
phungductung 0:e87aa4c49e95 6886
phungductung 0:e87aa4c49e95 6887 /**
phungductung 0:e87aa4c49e95 6888 * @brief Maximum value of a Q15 vector.
phungductung 0:e87aa4c49e95 6889 * @param[in] *pSrc points to the input buffer
phungductung 0:e87aa4c49e95 6890 * @param[in] blockSize length of the input vector
phungductung 0:e87aa4c49e95 6891 * @param[out] *pResult maximum value returned here
phungductung 0:e87aa4c49e95 6892 * @param[out] *pIndex index of maximum value returned here
phungductung 0:e87aa4c49e95 6893 * @return none.
phungductung 0:e87aa4c49e95 6894 */
phungductung 0:e87aa4c49e95 6895
phungductung 0:e87aa4c49e95 6896 void arm_max_q15(
phungductung 0:e87aa4c49e95 6897 q15_t * pSrc,
phungductung 0:e87aa4c49e95 6898 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6899 q15_t * pResult,
phungductung 0:e87aa4c49e95 6900 uint32_t * pIndex);
phungductung 0:e87aa4c49e95 6901
phungductung 0:e87aa4c49e95 6902 /**
phungductung 0:e87aa4c49e95 6903 * @brief Maximum value of a Q31 vector.
phungductung 0:e87aa4c49e95 6904 * @param[in] *pSrc points to the input buffer
phungductung 0:e87aa4c49e95 6905 * @param[in] blockSize length of the input vector
phungductung 0:e87aa4c49e95 6906 * @param[out] *pResult maximum value returned here
phungductung 0:e87aa4c49e95 6907 * @param[out] *pIndex index of maximum value returned here
phungductung 0:e87aa4c49e95 6908 * @return none.
phungductung 0:e87aa4c49e95 6909 */
phungductung 0:e87aa4c49e95 6910
phungductung 0:e87aa4c49e95 6911 void arm_max_q31(
phungductung 0:e87aa4c49e95 6912 q31_t * pSrc,
phungductung 0:e87aa4c49e95 6913 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6914 q31_t * pResult,
phungductung 0:e87aa4c49e95 6915 uint32_t * pIndex);
phungductung 0:e87aa4c49e95 6916
phungductung 0:e87aa4c49e95 6917 /**
phungductung 0:e87aa4c49e95 6918 * @brief Maximum value of a floating-point vector.
phungductung 0:e87aa4c49e95 6919 * @param[in] *pSrc points to the input buffer
phungductung 0:e87aa4c49e95 6920 * @param[in] blockSize length of the input vector
phungductung 0:e87aa4c49e95 6921 * @param[out] *pResult maximum value returned here
phungductung 0:e87aa4c49e95 6922 * @param[out] *pIndex index of maximum value returned here
phungductung 0:e87aa4c49e95 6923 * @return none.
phungductung 0:e87aa4c49e95 6924 */
phungductung 0:e87aa4c49e95 6925
phungductung 0:e87aa4c49e95 6926 void arm_max_f32(
phungductung 0:e87aa4c49e95 6927 float32_t * pSrc,
phungductung 0:e87aa4c49e95 6928 uint32_t blockSize,
phungductung 0:e87aa4c49e95 6929 float32_t * pResult,
phungductung 0:e87aa4c49e95 6930 uint32_t * pIndex);
phungductung 0:e87aa4c49e95 6931
phungductung 0:e87aa4c49e95 6932 /**
phungductung 0:e87aa4c49e95 6933 * @brief Q15 complex-by-complex multiplication
phungductung 0:e87aa4c49e95 6934 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 6935 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 6936 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 6937 * @param[in] numSamples number of complex samples in each vector
phungductung 0:e87aa4c49e95 6938 * @return none.
phungductung 0:e87aa4c49e95 6939 */
phungductung 0:e87aa4c49e95 6940
phungductung 0:e87aa4c49e95 6941 void arm_cmplx_mult_cmplx_q15(
phungductung 0:e87aa4c49e95 6942 q15_t * pSrcA,
phungductung 0:e87aa4c49e95 6943 q15_t * pSrcB,
phungductung 0:e87aa4c49e95 6944 q15_t * pDst,
phungductung 0:e87aa4c49e95 6945 uint32_t numSamples);
phungductung 0:e87aa4c49e95 6946
phungductung 0:e87aa4c49e95 6947 /**
phungductung 0:e87aa4c49e95 6948 * @brief Q31 complex-by-complex multiplication
phungductung 0:e87aa4c49e95 6949 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 6950 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 6951 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 6952 * @param[in] numSamples number of complex samples in each vector
phungductung 0:e87aa4c49e95 6953 * @return none.
phungductung 0:e87aa4c49e95 6954 */
phungductung 0:e87aa4c49e95 6955
phungductung 0:e87aa4c49e95 6956 void arm_cmplx_mult_cmplx_q31(
phungductung 0:e87aa4c49e95 6957 q31_t * pSrcA,
phungductung 0:e87aa4c49e95 6958 q31_t * pSrcB,
phungductung 0:e87aa4c49e95 6959 q31_t * pDst,
phungductung 0:e87aa4c49e95 6960 uint32_t numSamples);
phungductung 0:e87aa4c49e95 6961
phungductung 0:e87aa4c49e95 6962 /**
phungductung 0:e87aa4c49e95 6963 * @brief Floating-point complex-by-complex multiplication
phungductung 0:e87aa4c49e95 6964 * @param[in] *pSrcA points to the first input vector
phungductung 0:e87aa4c49e95 6965 * @param[in] *pSrcB points to the second input vector
phungductung 0:e87aa4c49e95 6966 * @param[out] *pDst points to the output vector
phungductung 0:e87aa4c49e95 6967 * @param[in] numSamples number of complex samples in each vector
phungductung 0:e87aa4c49e95 6968 * @return none.
phungductung 0:e87aa4c49e95 6969 */
phungductung 0:e87aa4c49e95 6970
phungductung 0:e87aa4c49e95 6971 void arm_cmplx_mult_cmplx_f32(
phungductung 0:e87aa4c49e95 6972 float32_t * pSrcA,
phungductung 0:e87aa4c49e95 6973 float32_t * pSrcB,
phungductung 0:e87aa4c49e95 6974 float32_t * pDst,
phungductung 0:e87aa4c49e95 6975 uint32_t numSamples);
phungductung 0:e87aa4c49e95 6976
phungductung 0:e87aa4c49e95 6977 /**
phungductung 0:e87aa4c49e95 6978 * @brief Converts the elements of the floating-point vector to Q31 vector.
phungductung 0:e87aa4c49e95 6979 * @param[in] *pSrc points to the floating-point input vector
phungductung 0:e87aa4c49e95 6980 * @param[out] *pDst points to the Q31 output vector
phungductung 0:e87aa4c49e95 6981 * @param[in] blockSize length of the input vector
phungductung 0:e87aa4c49e95 6982 * @return none.
phungductung 0:e87aa4c49e95 6983 */
phungductung 0:e87aa4c49e95 6984 void arm_float_to_q31(
phungductung 0:e87aa4c49e95 6985 float32_t * pSrc,
phungductung 0:e87aa4c49e95 6986 q31_t * pDst,
phungductung 0:e87aa4c49e95 6987 uint32_t blockSize);
phungductung 0:e87aa4c49e95 6988
phungductung 0:e87aa4c49e95 6989 /**
phungductung 0:e87aa4c49e95 6990 * @brief Converts the elements of the floating-point vector to Q15 vector.
phungductung 0:e87aa4c49e95 6991 * @param[in] *pSrc points to the floating-point input vector
phungductung 0:e87aa4c49e95 6992 * @param[out] *pDst points to the Q15 output vector
phungductung 0:e87aa4c49e95 6993 * @param[in] blockSize length of the input vector
phungductung 0:e87aa4c49e95 6994 * @return none
phungductung 0:e87aa4c49e95 6995 */
phungductung 0:e87aa4c49e95 6996 void arm_float_to_q15(
phungductung 0:e87aa4c49e95 6997 float32_t * pSrc,
phungductung 0:e87aa4c49e95 6998 q15_t * pDst,
phungductung 0:e87aa4c49e95 6999 uint32_t blockSize);
phungductung 0:e87aa4c49e95 7000
phungductung 0:e87aa4c49e95 7001 /**
phungductung 0:e87aa4c49e95 7002 * @brief Converts the elements of the floating-point vector to Q7 vector.
phungductung 0:e87aa4c49e95 7003 * @param[in] *pSrc points to the floating-point input vector
phungductung 0:e87aa4c49e95 7004 * @param[out] *pDst points to the Q7 output vector
phungductung 0:e87aa4c49e95 7005 * @param[in] blockSize length of the input vector
phungductung 0:e87aa4c49e95 7006 * @return none
phungductung 0:e87aa4c49e95 7007 */
phungductung 0:e87aa4c49e95 7008 void arm_float_to_q7(
phungductung 0:e87aa4c49e95 7009 float32_t * pSrc,
phungductung 0:e87aa4c49e95 7010 q7_t * pDst,
phungductung 0:e87aa4c49e95 7011 uint32_t blockSize);
phungductung 0:e87aa4c49e95 7012
phungductung 0:e87aa4c49e95 7013
phungductung 0:e87aa4c49e95 7014 /**
phungductung 0:e87aa4c49e95 7015 * @brief Converts the elements of the Q31 vector to Q15 vector.
phungductung 0:e87aa4c49e95 7016 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 7017 * @param[out] *pDst is output pointer
phungductung 0:e87aa4c49e95 7018 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 7019 * @return none.
phungductung 0:e87aa4c49e95 7020 */
phungductung 0:e87aa4c49e95 7021 void arm_q31_to_q15(
phungductung 0:e87aa4c49e95 7022 q31_t * pSrc,
phungductung 0:e87aa4c49e95 7023 q15_t * pDst,
phungductung 0:e87aa4c49e95 7024 uint32_t blockSize);
phungductung 0:e87aa4c49e95 7025
phungductung 0:e87aa4c49e95 7026 /**
phungductung 0:e87aa4c49e95 7027 * @brief Converts the elements of the Q31 vector to Q7 vector.
phungductung 0:e87aa4c49e95 7028 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 7029 * @param[out] *pDst is output pointer
phungductung 0:e87aa4c49e95 7030 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 7031 * @return none.
phungductung 0:e87aa4c49e95 7032 */
phungductung 0:e87aa4c49e95 7033 void arm_q31_to_q7(
phungductung 0:e87aa4c49e95 7034 q31_t * pSrc,
phungductung 0:e87aa4c49e95 7035 q7_t * pDst,
phungductung 0:e87aa4c49e95 7036 uint32_t blockSize);
phungductung 0:e87aa4c49e95 7037
phungductung 0:e87aa4c49e95 7038 /**
phungductung 0:e87aa4c49e95 7039 * @brief Converts the elements of the Q15 vector to floating-point vector.
phungductung 0:e87aa4c49e95 7040 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 7041 * @param[out] *pDst is output pointer
phungductung 0:e87aa4c49e95 7042 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 7043 * @return none.
phungductung 0:e87aa4c49e95 7044 */
phungductung 0:e87aa4c49e95 7045 void arm_q15_to_float(
phungductung 0:e87aa4c49e95 7046 q15_t * pSrc,
phungductung 0:e87aa4c49e95 7047 float32_t * pDst,
phungductung 0:e87aa4c49e95 7048 uint32_t blockSize);
phungductung 0:e87aa4c49e95 7049
phungductung 0:e87aa4c49e95 7050
phungductung 0:e87aa4c49e95 7051 /**
phungductung 0:e87aa4c49e95 7052 * @brief Converts the elements of the Q15 vector to Q31 vector.
phungductung 0:e87aa4c49e95 7053 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 7054 * @param[out] *pDst is output pointer
phungductung 0:e87aa4c49e95 7055 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 7056 * @return none.
phungductung 0:e87aa4c49e95 7057 */
phungductung 0:e87aa4c49e95 7058 void arm_q15_to_q31(
phungductung 0:e87aa4c49e95 7059 q15_t * pSrc,
phungductung 0:e87aa4c49e95 7060 q31_t * pDst,
phungductung 0:e87aa4c49e95 7061 uint32_t blockSize);
phungductung 0:e87aa4c49e95 7062
phungductung 0:e87aa4c49e95 7063
phungductung 0:e87aa4c49e95 7064 /**
phungductung 0:e87aa4c49e95 7065 * @brief Converts the elements of the Q15 vector to Q7 vector.
phungductung 0:e87aa4c49e95 7066 * @param[in] *pSrc is input pointer
phungductung 0:e87aa4c49e95 7067 * @param[out] *pDst is output pointer
phungductung 0:e87aa4c49e95 7068 * @param[in] blockSize is the number of samples to process
phungductung 0:e87aa4c49e95 7069 * @return none.
phungductung 0:e87aa4c49e95 7070 */
phungductung 0:e87aa4c49e95 7071 void arm_q15_to_q7(
phungductung 0:e87aa4c49e95 7072 q15_t * pSrc,
phungductung 0:e87aa4c49e95 7073 q7_t * pDst,
phungductung 0:e87aa4c49e95 7074 uint32_t blockSize);
phungductung 0:e87aa4c49e95 7075
phungductung 0:e87aa4c49e95 7076
phungductung 0:e87aa4c49e95 7077 /**
phungductung 0:e87aa4c49e95 7078 * @ingroup groupInterpolation
phungductung 0:e87aa4c49e95 7079 */
phungductung 0:e87aa4c49e95 7080
phungductung 0:e87aa4c49e95 7081 /**
phungductung 0:e87aa4c49e95 7082 * @defgroup BilinearInterpolate Bilinear Interpolation
phungductung 0:e87aa4c49e95 7083 *
phungductung 0:e87aa4c49e95 7084 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
phungductung 0:e87aa4c49e95 7085 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
phungductung 0:e87aa4c49e95 7086 * determines values between the grid points.
phungductung 0:e87aa4c49e95 7087 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
phungductung 0:e87aa4c49e95 7088 * Bilinear interpolation is often used in image processing to rescale images.
phungductung 0:e87aa4c49e95 7089 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
phungductung 0:e87aa4c49e95 7090 *
phungductung 0:e87aa4c49e95 7091 * <b>Algorithm</b>
phungductung 0:e87aa4c49e95 7092 * \par
phungductung 0:e87aa4c49e95 7093 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
phungductung 0:e87aa4c49e95 7094 * For floating-point, the instance structure is defined as:
phungductung 0:e87aa4c49e95 7095 * <pre>
phungductung 0:e87aa4c49e95 7096 * typedef struct
phungductung 0:e87aa4c49e95 7097 * {
phungductung 0:e87aa4c49e95 7098 * uint16_t numRows;
phungductung 0:e87aa4c49e95 7099 * uint16_t numCols;
phungductung 0:e87aa4c49e95 7100 * float32_t *pData;
phungductung 0:e87aa4c49e95 7101 * } arm_bilinear_interp_instance_f32;
phungductung 0:e87aa4c49e95 7102 * </pre>
phungductung 0:e87aa4c49e95 7103 *
phungductung 0:e87aa4c49e95 7104 * \par
phungductung 0:e87aa4c49e95 7105 * where <code>numRows</code> specifies the number of rows in the table;
phungductung 0:e87aa4c49e95 7106 * <code>numCols</code> specifies the number of columns in the table;
phungductung 0:e87aa4c49e95 7107 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
phungductung 0:e87aa4c49e95 7108 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
phungductung 0:e87aa4c49e95 7109 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
phungductung 0:e87aa4c49e95 7110 *
phungductung 0:e87aa4c49e95 7111 * \par
phungductung 0:e87aa4c49e95 7112 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
phungductung 0:e87aa4c49e95 7113 * <pre>
phungductung 0:e87aa4c49e95 7114 * XF = floor(x)
phungductung 0:e87aa4c49e95 7115 * YF = floor(y)
phungductung 0:e87aa4c49e95 7116 * </pre>
phungductung 0:e87aa4c49e95 7117 * \par
phungductung 0:e87aa4c49e95 7118 * The interpolated output point is computed as:
phungductung 0:e87aa4c49e95 7119 * <pre>
phungductung 0:e87aa4c49e95 7120 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
phungductung 0:e87aa4c49e95 7121 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
phungductung 0:e87aa4c49e95 7122 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
phungductung 0:e87aa4c49e95 7123 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
phungductung 0:e87aa4c49e95 7124 * </pre>
phungductung 0:e87aa4c49e95 7125 * Note that the coordinates (x, y) contain integer and fractional components.
phungductung 0:e87aa4c49e95 7126 * The integer components specify which portion of the table to use while the
phungductung 0:e87aa4c49e95 7127 * fractional components control the interpolation processor.
phungductung 0:e87aa4c49e95 7128 *
phungductung 0:e87aa4c49e95 7129 * \par
phungductung 0:e87aa4c49e95 7130 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
phungductung 0:e87aa4c49e95 7131 */
phungductung 0:e87aa4c49e95 7132
phungductung 0:e87aa4c49e95 7133 /**
phungductung 0:e87aa4c49e95 7134 * @addtogroup BilinearInterpolate
phungductung 0:e87aa4c49e95 7135 * @{
phungductung 0:e87aa4c49e95 7136 */
phungductung 0:e87aa4c49e95 7137
phungductung 0:e87aa4c49e95 7138 /**
phungductung 0:e87aa4c49e95 7139 *
phungductung 0:e87aa4c49e95 7140 * @brief Floating-point bilinear interpolation.
phungductung 0:e87aa4c49e95 7141 * @param[in,out] *S points to an instance of the interpolation structure.
phungductung 0:e87aa4c49e95 7142 * @param[in] X interpolation coordinate.
phungductung 0:e87aa4c49e95 7143 * @param[in] Y interpolation coordinate.
phungductung 0:e87aa4c49e95 7144 * @return out interpolated value.
phungductung 0:e87aa4c49e95 7145 */
phungductung 0:e87aa4c49e95 7146
phungductung 0:e87aa4c49e95 7147
phungductung 0:e87aa4c49e95 7148 static __INLINE float32_t arm_bilinear_interp_f32(
phungductung 0:e87aa4c49e95 7149 const arm_bilinear_interp_instance_f32 * S,
phungductung 0:e87aa4c49e95 7150 float32_t X,
phungductung 0:e87aa4c49e95 7151 float32_t Y)
phungductung 0:e87aa4c49e95 7152 {
phungductung 0:e87aa4c49e95 7153 float32_t out;
phungductung 0:e87aa4c49e95 7154 float32_t f00, f01, f10, f11;
phungductung 0:e87aa4c49e95 7155 float32_t *pData = S->pData;
phungductung 0:e87aa4c49e95 7156 int32_t xIndex, yIndex, index;
phungductung 0:e87aa4c49e95 7157 float32_t xdiff, ydiff;
phungductung 0:e87aa4c49e95 7158 float32_t b1, b2, b3, b4;
phungductung 0:e87aa4c49e95 7159
phungductung 0:e87aa4c49e95 7160 xIndex = (int32_t) X;
phungductung 0:e87aa4c49e95 7161 yIndex = (int32_t) Y;
phungductung 0:e87aa4c49e95 7162
phungductung 0:e87aa4c49e95 7163 /* Care taken for table outside boundary */
phungductung 0:e87aa4c49e95 7164 /* Returns zero output when values are outside table boundary */
phungductung 0:e87aa4c49e95 7165 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
phungductung 0:e87aa4c49e95 7166 || yIndex > (S->numCols - 1))
phungductung 0:e87aa4c49e95 7167 {
phungductung 0:e87aa4c49e95 7168 return (0);
phungductung 0:e87aa4c49e95 7169 }
phungductung 0:e87aa4c49e95 7170
phungductung 0:e87aa4c49e95 7171 /* Calculation of index for two nearest points in X-direction */
phungductung 0:e87aa4c49e95 7172 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
phungductung 0:e87aa4c49e95 7173
phungductung 0:e87aa4c49e95 7174
phungductung 0:e87aa4c49e95 7175 /* Read two nearest points in X-direction */
phungductung 0:e87aa4c49e95 7176 f00 = pData[index];
phungductung 0:e87aa4c49e95 7177 f01 = pData[index + 1];
phungductung 0:e87aa4c49e95 7178
phungductung 0:e87aa4c49e95 7179 /* Calculation of index for two nearest points in Y-direction */
phungductung 0:e87aa4c49e95 7180 index = (xIndex - 1) + (yIndex) * S->numCols;
phungductung 0:e87aa4c49e95 7181
phungductung 0:e87aa4c49e95 7182
phungductung 0:e87aa4c49e95 7183 /* Read two nearest points in Y-direction */
phungductung 0:e87aa4c49e95 7184 f10 = pData[index];
phungductung 0:e87aa4c49e95 7185 f11 = pData[index + 1];
phungductung 0:e87aa4c49e95 7186
phungductung 0:e87aa4c49e95 7187 /* Calculation of intermediate values */
phungductung 0:e87aa4c49e95 7188 b1 = f00;
phungductung 0:e87aa4c49e95 7189 b2 = f01 - f00;
phungductung 0:e87aa4c49e95 7190 b3 = f10 - f00;
phungductung 0:e87aa4c49e95 7191 b4 = f00 - f01 - f10 + f11;
phungductung 0:e87aa4c49e95 7192
phungductung 0:e87aa4c49e95 7193 /* Calculation of fractional part in X */
phungductung 0:e87aa4c49e95 7194 xdiff = X - xIndex;
phungductung 0:e87aa4c49e95 7195
phungductung 0:e87aa4c49e95 7196 /* Calculation of fractional part in Y */
phungductung 0:e87aa4c49e95 7197 ydiff = Y - yIndex;
phungductung 0:e87aa4c49e95 7198
phungductung 0:e87aa4c49e95 7199 /* Calculation of bi-linear interpolated output */
phungductung 0:e87aa4c49e95 7200 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
phungductung 0:e87aa4c49e95 7201
phungductung 0:e87aa4c49e95 7202 /* return to application */
phungductung 0:e87aa4c49e95 7203 return (out);
phungductung 0:e87aa4c49e95 7204
phungductung 0:e87aa4c49e95 7205 }
phungductung 0:e87aa4c49e95 7206
phungductung 0:e87aa4c49e95 7207 /**
phungductung 0:e87aa4c49e95 7208 *
phungductung 0:e87aa4c49e95 7209 * @brief Q31 bilinear interpolation.
phungductung 0:e87aa4c49e95 7210 * @param[in,out] *S points to an instance of the interpolation structure.
phungductung 0:e87aa4c49e95 7211 * @param[in] X interpolation coordinate in 12.20 format.
phungductung 0:e87aa4c49e95 7212 * @param[in] Y interpolation coordinate in 12.20 format.
phungductung 0:e87aa4c49e95 7213 * @return out interpolated value.
phungductung 0:e87aa4c49e95 7214 */
phungductung 0:e87aa4c49e95 7215
phungductung 0:e87aa4c49e95 7216 static __INLINE q31_t arm_bilinear_interp_q31(
phungductung 0:e87aa4c49e95 7217 arm_bilinear_interp_instance_q31 * S,
phungductung 0:e87aa4c49e95 7218 q31_t X,
phungductung 0:e87aa4c49e95 7219 q31_t Y)
phungductung 0:e87aa4c49e95 7220 {
phungductung 0:e87aa4c49e95 7221 q31_t out; /* Temporary output */
phungductung 0:e87aa4c49e95 7222 q31_t acc = 0; /* output */
phungductung 0:e87aa4c49e95 7223 q31_t xfract, yfract; /* X, Y fractional parts */
phungductung 0:e87aa4c49e95 7224 q31_t x1, x2, y1, y2; /* Nearest output values */
phungductung 0:e87aa4c49e95 7225 int32_t rI, cI; /* Row and column indices */
phungductung 0:e87aa4c49e95 7226 q31_t *pYData = S->pData; /* pointer to output table values */
phungductung 0:e87aa4c49e95 7227 uint32_t nCols = S->numCols; /* num of rows */
phungductung 0:e87aa4c49e95 7228
phungductung 0:e87aa4c49e95 7229
phungductung 0:e87aa4c49e95 7230 /* Input is in 12.20 format */
phungductung 0:e87aa4c49e95 7231 /* 12 bits for the table index */
phungductung 0:e87aa4c49e95 7232 /* Index value calculation */
phungductung 0:e87aa4c49e95 7233 rI = ((X & 0xFFF00000) >> 20u);
phungductung 0:e87aa4c49e95 7234
phungductung 0:e87aa4c49e95 7235 /* Input is in 12.20 format */
phungductung 0:e87aa4c49e95 7236 /* 12 bits for the table index */
phungductung 0:e87aa4c49e95 7237 /* Index value calculation */
phungductung 0:e87aa4c49e95 7238 cI = ((Y & 0xFFF00000) >> 20u);
phungductung 0:e87aa4c49e95 7239
phungductung 0:e87aa4c49e95 7240 /* Care taken for table outside boundary */
phungductung 0:e87aa4c49e95 7241 /* Returns zero output when values are outside table boundary */
phungductung 0:e87aa4c49e95 7242 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
phungductung 0:e87aa4c49e95 7243 {
phungductung 0:e87aa4c49e95 7244 return (0);
phungductung 0:e87aa4c49e95 7245 }
phungductung 0:e87aa4c49e95 7246
phungductung 0:e87aa4c49e95 7247 /* 20 bits for the fractional part */
phungductung 0:e87aa4c49e95 7248 /* shift left xfract by 11 to keep 1.31 format */
phungductung 0:e87aa4c49e95 7249 xfract = (X & 0x000FFFFF) << 11u;
phungductung 0:e87aa4c49e95 7250
phungductung 0:e87aa4c49e95 7251 /* Read two nearest output values from the index */
phungductung 0:e87aa4c49e95 7252 x1 = pYData[(rI) + nCols * (cI)];
phungductung 0:e87aa4c49e95 7253 x2 = pYData[(rI) + nCols * (cI) + 1u];
phungductung 0:e87aa4c49e95 7254
phungductung 0:e87aa4c49e95 7255 /* 20 bits for the fractional part */
phungductung 0:e87aa4c49e95 7256 /* shift left yfract by 11 to keep 1.31 format */
phungductung 0:e87aa4c49e95 7257 yfract = (Y & 0x000FFFFF) << 11u;
phungductung 0:e87aa4c49e95 7258
phungductung 0:e87aa4c49e95 7259 /* Read two nearest output values from the index */
phungductung 0:e87aa4c49e95 7260 y1 = pYData[(rI) + nCols * (cI + 1)];
phungductung 0:e87aa4c49e95 7261 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
phungductung 0:e87aa4c49e95 7262
phungductung 0:e87aa4c49e95 7263 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
phungductung 0:e87aa4c49e95 7264 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
phungductung 0:e87aa4c49e95 7265 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
phungductung 0:e87aa4c49e95 7266
phungductung 0:e87aa4c49e95 7267 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
phungductung 0:e87aa4c49e95 7268 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
phungductung 0:e87aa4c49e95 7269 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
phungductung 0:e87aa4c49e95 7270
phungductung 0:e87aa4c49e95 7271 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
phungductung 0:e87aa4c49e95 7272 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
phungductung 0:e87aa4c49e95 7273 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
phungductung 0:e87aa4c49e95 7274
phungductung 0:e87aa4c49e95 7275 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
phungductung 0:e87aa4c49e95 7276 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
phungductung 0:e87aa4c49e95 7277 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
phungductung 0:e87aa4c49e95 7278
phungductung 0:e87aa4c49e95 7279 /* Convert acc to 1.31(q31) format */
phungductung 0:e87aa4c49e95 7280 return (acc << 2u);
phungductung 0:e87aa4c49e95 7281
phungductung 0:e87aa4c49e95 7282 }
phungductung 0:e87aa4c49e95 7283
phungductung 0:e87aa4c49e95 7284 /**
phungductung 0:e87aa4c49e95 7285 * @brief Q15 bilinear interpolation.
phungductung 0:e87aa4c49e95 7286 * @param[in,out] *S points to an instance of the interpolation structure.
phungductung 0:e87aa4c49e95 7287 * @param[in] X interpolation coordinate in 12.20 format.
phungductung 0:e87aa4c49e95 7288 * @param[in] Y interpolation coordinate in 12.20 format.
phungductung 0:e87aa4c49e95 7289 * @return out interpolated value.
phungductung 0:e87aa4c49e95 7290 */
phungductung 0:e87aa4c49e95 7291
phungductung 0:e87aa4c49e95 7292 static __INLINE q15_t arm_bilinear_interp_q15(
phungductung 0:e87aa4c49e95 7293 arm_bilinear_interp_instance_q15 * S,
phungductung 0:e87aa4c49e95 7294 q31_t X,
phungductung 0:e87aa4c49e95 7295 q31_t Y)
phungductung 0:e87aa4c49e95 7296 {
phungductung 0:e87aa4c49e95 7297 q63_t acc = 0; /* output */
phungductung 0:e87aa4c49e95 7298 q31_t out; /* Temporary output */
phungductung 0:e87aa4c49e95 7299 q15_t x1, x2, y1, y2; /* Nearest output values */
phungductung 0:e87aa4c49e95 7300 q31_t xfract, yfract; /* X, Y fractional parts */
phungductung 0:e87aa4c49e95 7301 int32_t rI, cI; /* Row and column indices */
phungductung 0:e87aa4c49e95 7302 q15_t *pYData = S->pData; /* pointer to output table values */
phungductung 0:e87aa4c49e95 7303 uint32_t nCols = S->numCols; /* num of rows */
phungductung 0:e87aa4c49e95 7304
phungductung 0:e87aa4c49e95 7305 /* Input is in 12.20 format */
phungductung 0:e87aa4c49e95 7306 /* 12 bits for the table index */
phungductung 0:e87aa4c49e95 7307 /* Index value calculation */
phungductung 0:e87aa4c49e95 7308 rI = ((X & 0xFFF00000) >> 20);
phungductung 0:e87aa4c49e95 7309
phungductung 0:e87aa4c49e95 7310 /* Input is in 12.20 format */
phungductung 0:e87aa4c49e95 7311 /* 12 bits for the table index */
phungductung 0:e87aa4c49e95 7312 /* Index value calculation */
phungductung 0:e87aa4c49e95 7313 cI = ((Y & 0xFFF00000) >> 20);
phungductung 0:e87aa4c49e95 7314
phungductung 0:e87aa4c49e95 7315 /* Care taken for table outside boundary */
phungductung 0:e87aa4c49e95 7316 /* Returns zero output when values are outside table boundary */
phungductung 0:e87aa4c49e95 7317 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
phungductung 0:e87aa4c49e95 7318 {
phungductung 0:e87aa4c49e95 7319 return (0);
phungductung 0:e87aa4c49e95 7320 }
phungductung 0:e87aa4c49e95 7321
phungductung 0:e87aa4c49e95 7322 /* 20 bits for the fractional part */
phungductung 0:e87aa4c49e95 7323 /* xfract should be in 12.20 format */
phungductung 0:e87aa4c49e95 7324 xfract = (X & 0x000FFFFF);
phungductung 0:e87aa4c49e95 7325
phungductung 0:e87aa4c49e95 7326 /* Read two nearest output values from the index */
phungductung 0:e87aa4c49e95 7327 x1 = pYData[(rI) + nCols * (cI)];
phungductung 0:e87aa4c49e95 7328 x2 = pYData[(rI) + nCols * (cI) + 1u];
phungductung 0:e87aa4c49e95 7329
phungductung 0:e87aa4c49e95 7330
phungductung 0:e87aa4c49e95 7331 /* 20 bits for the fractional part */
phungductung 0:e87aa4c49e95 7332 /* yfract should be in 12.20 format */
phungductung 0:e87aa4c49e95 7333 yfract = (Y & 0x000FFFFF);
phungductung 0:e87aa4c49e95 7334
phungductung 0:e87aa4c49e95 7335 /* Read two nearest output values from the index */
phungductung 0:e87aa4c49e95 7336 y1 = pYData[(rI) + nCols * (cI + 1)];
phungductung 0:e87aa4c49e95 7337 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
phungductung 0:e87aa4c49e95 7338
phungductung 0:e87aa4c49e95 7339 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
phungductung 0:e87aa4c49e95 7340
phungductung 0:e87aa4c49e95 7341 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
phungductung 0:e87aa4c49e95 7342 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
phungductung 0:e87aa4c49e95 7343 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
phungductung 0:e87aa4c49e95 7344 acc = ((q63_t) out * (0xFFFFF - yfract));
phungductung 0:e87aa4c49e95 7345
phungductung 0:e87aa4c49e95 7346 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
phungductung 0:e87aa4c49e95 7347 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
phungductung 0:e87aa4c49e95 7348 acc += ((q63_t) out * (xfract));
phungductung 0:e87aa4c49e95 7349
phungductung 0:e87aa4c49e95 7350 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
phungductung 0:e87aa4c49e95 7351 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
phungductung 0:e87aa4c49e95 7352 acc += ((q63_t) out * (yfract));
phungductung 0:e87aa4c49e95 7353
phungductung 0:e87aa4c49e95 7354 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
phungductung 0:e87aa4c49e95 7355 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
phungductung 0:e87aa4c49e95 7356 acc += ((q63_t) out * (yfract));
phungductung 0:e87aa4c49e95 7357
phungductung 0:e87aa4c49e95 7358 /* acc is in 13.51 format and down shift acc by 36 times */
phungductung 0:e87aa4c49e95 7359 /* Convert out to 1.15 format */
phungductung 0:e87aa4c49e95 7360 return (acc >> 36);
phungductung 0:e87aa4c49e95 7361
phungductung 0:e87aa4c49e95 7362 }
phungductung 0:e87aa4c49e95 7363
phungductung 0:e87aa4c49e95 7364 /**
phungductung 0:e87aa4c49e95 7365 * @brief Q7 bilinear interpolation.
phungductung 0:e87aa4c49e95 7366 * @param[in,out] *S points to an instance of the interpolation structure.
phungductung 0:e87aa4c49e95 7367 * @param[in] X interpolation coordinate in 12.20 format.
phungductung 0:e87aa4c49e95 7368 * @param[in] Y interpolation coordinate in 12.20 format.
phungductung 0:e87aa4c49e95 7369 * @return out interpolated value.
phungductung 0:e87aa4c49e95 7370 */
phungductung 0:e87aa4c49e95 7371
phungductung 0:e87aa4c49e95 7372 static __INLINE q7_t arm_bilinear_interp_q7(
phungductung 0:e87aa4c49e95 7373 arm_bilinear_interp_instance_q7 * S,
phungductung 0:e87aa4c49e95 7374 q31_t X,
phungductung 0:e87aa4c49e95 7375 q31_t Y)
phungductung 0:e87aa4c49e95 7376 {
phungductung 0:e87aa4c49e95 7377 q63_t acc = 0; /* output */
phungductung 0:e87aa4c49e95 7378 q31_t out; /* Temporary output */
phungductung 0:e87aa4c49e95 7379 q31_t xfract, yfract; /* X, Y fractional parts */
phungductung 0:e87aa4c49e95 7380 q7_t x1, x2, y1, y2; /* Nearest output values */
phungductung 0:e87aa4c49e95 7381 int32_t rI, cI; /* Row and column indices */
phungductung 0:e87aa4c49e95 7382 q7_t *pYData = S->pData; /* pointer to output table values */
phungductung 0:e87aa4c49e95 7383 uint32_t nCols = S->numCols; /* num of rows */
phungductung 0:e87aa4c49e95 7384
phungductung 0:e87aa4c49e95 7385 /* Input is in 12.20 format */
phungductung 0:e87aa4c49e95 7386 /* 12 bits for the table index */
phungductung 0:e87aa4c49e95 7387 /* Index value calculation */
phungductung 0:e87aa4c49e95 7388 rI = ((X & 0xFFF00000) >> 20);
phungductung 0:e87aa4c49e95 7389
phungductung 0:e87aa4c49e95 7390 /* Input is in 12.20 format */
phungductung 0:e87aa4c49e95 7391 /* 12 bits for the table index */
phungductung 0:e87aa4c49e95 7392 /* Index value calculation */
phungductung 0:e87aa4c49e95 7393 cI = ((Y & 0xFFF00000) >> 20);
phungductung 0:e87aa4c49e95 7394
phungductung 0:e87aa4c49e95 7395 /* Care taken for table outside boundary */
phungductung 0:e87aa4c49e95 7396 /* Returns zero output when values are outside table boundary */
phungductung 0:e87aa4c49e95 7397 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
phungductung 0:e87aa4c49e95 7398 {
phungductung 0:e87aa4c49e95 7399 return (0);
phungductung 0:e87aa4c49e95 7400 }
phungductung 0:e87aa4c49e95 7401
phungductung 0:e87aa4c49e95 7402 /* 20 bits for the fractional part */
phungductung 0:e87aa4c49e95 7403 /* xfract should be in 12.20 format */
phungductung 0:e87aa4c49e95 7404 xfract = (X & 0x000FFFFF);
phungductung 0:e87aa4c49e95 7405
phungductung 0:e87aa4c49e95 7406 /* Read two nearest output values from the index */
phungductung 0:e87aa4c49e95 7407 x1 = pYData[(rI) + nCols * (cI)];
phungductung 0:e87aa4c49e95 7408 x2 = pYData[(rI) + nCols * (cI) + 1u];
phungductung 0:e87aa4c49e95 7409
phungductung 0:e87aa4c49e95 7410
phungductung 0:e87aa4c49e95 7411 /* 20 bits for the fractional part */
phungductung 0:e87aa4c49e95 7412 /* yfract should be in 12.20 format */
phungductung 0:e87aa4c49e95 7413 yfract = (Y & 0x000FFFFF);
phungductung 0:e87aa4c49e95 7414
phungductung 0:e87aa4c49e95 7415 /* Read two nearest output values from the index */
phungductung 0:e87aa4c49e95 7416 y1 = pYData[(rI) + nCols * (cI + 1)];
phungductung 0:e87aa4c49e95 7417 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
phungductung 0:e87aa4c49e95 7418
phungductung 0:e87aa4c49e95 7419 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
phungductung 0:e87aa4c49e95 7420 out = ((x1 * (0xFFFFF - xfract)));
phungductung 0:e87aa4c49e95 7421 acc = (((q63_t) out * (0xFFFFF - yfract)));
phungductung 0:e87aa4c49e95 7422
phungductung 0:e87aa4c49e95 7423 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
phungductung 0:e87aa4c49e95 7424 out = ((x2 * (0xFFFFF - yfract)));
phungductung 0:e87aa4c49e95 7425 acc += (((q63_t) out * (xfract)));
phungductung 0:e87aa4c49e95 7426
phungductung 0:e87aa4c49e95 7427 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
phungductung 0:e87aa4c49e95 7428 out = ((y1 * (0xFFFFF - xfract)));
phungductung 0:e87aa4c49e95 7429 acc += (((q63_t) out * (yfract)));
phungductung 0:e87aa4c49e95 7430
phungductung 0:e87aa4c49e95 7431 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
phungductung 0:e87aa4c49e95 7432 out = ((y2 * (yfract)));
phungductung 0:e87aa4c49e95 7433 acc += (((q63_t) out * (xfract)));
phungductung 0:e87aa4c49e95 7434
phungductung 0:e87aa4c49e95 7435 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
phungductung 0:e87aa4c49e95 7436 return (acc >> 40);
phungductung 0:e87aa4c49e95 7437
phungductung 0:e87aa4c49e95 7438 }
phungductung 0:e87aa4c49e95 7439
phungductung 0:e87aa4c49e95 7440 /**
phungductung 0:e87aa4c49e95 7441 * @} end of BilinearInterpolate group
phungductung 0:e87aa4c49e95 7442 */
phungductung 0:e87aa4c49e95 7443
phungductung 0:e87aa4c49e95 7444
phungductung 0:e87aa4c49e95 7445 //SMMLAR
phungductung 0:e87aa4c49e95 7446 #define multAcc_32x32_keep32_R(a, x, y) \
phungductung 0:e87aa4c49e95 7447 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
phungductung 0:e87aa4c49e95 7448
phungductung 0:e87aa4c49e95 7449 //SMMLSR
phungductung 0:e87aa4c49e95 7450 #define multSub_32x32_keep32_R(a, x, y) \
phungductung 0:e87aa4c49e95 7451 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
phungductung 0:e87aa4c49e95 7452
phungductung 0:e87aa4c49e95 7453 //SMMULR
phungductung 0:e87aa4c49e95 7454 #define mult_32x32_keep32_R(a, x, y) \
phungductung 0:e87aa4c49e95 7455 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
phungductung 0:e87aa4c49e95 7456
phungductung 0:e87aa4c49e95 7457 //SMMLA
phungductung 0:e87aa4c49e95 7458 #define multAcc_32x32_keep32(a, x, y) \
phungductung 0:e87aa4c49e95 7459 a += (q31_t) (((q63_t) x * y) >> 32)
phungductung 0:e87aa4c49e95 7460
phungductung 0:e87aa4c49e95 7461 //SMMLS
phungductung 0:e87aa4c49e95 7462 #define multSub_32x32_keep32(a, x, y) \
phungductung 0:e87aa4c49e95 7463 a -= (q31_t) (((q63_t) x * y) >> 32)
phungductung 0:e87aa4c49e95 7464
phungductung 0:e87aa4c49e95 7465 //SMMUL
phungductung 0:e87aa4c49e95 7466 #define mult_32x32_keep32(a, x, y) \
phungductung 0:e87aa4c49e95 7467 a = (q31_t) (((q63_t) x * y ) >> 32)
phungductung 0:e87aa4c49e95 7468
phungductung 0:e87aa4c49e95 7469
phungductung 0:e87aa4c49e95 7470 #if defined ( __CC_ARM ) //Keil
phungductung 0:e87aa4c49e95 7471
phungductung 0:e87aa4c49e95 7472 //Enter low optimization region - place directly above function definition
phungductung 0:e87aa4c49e95 7473 #ifdef ARM_MATH_CM4
phungductung 0:e87aa4c49e95 7474 #define LOW_OPTIMIZATION_ENTER \
phungductung 0:e87aa4c49e95 7475 _Pragma ("push") \
phungductung 0:e87aa4c49e95 7476 _Pragma ("O1")
phungductung 0:e87aa4c49e95 7477 #else
phungductung 0:e87aa4c49e95 7478 #define LOW_OPTIMIZATION_ENTER
phungductung 0:e87aa4c49e95 7479 #endif
phungductung 0:e87aa4c49e95 7480
phungductung 0:e87aa4c49e95 7481 //Exit low optimization region - place directly after end of function definition
phungductung 0:e87aa4c49e95 7482 #ifdef ARM_MATH_CM4
phungductung 0:e87aa4c49e95 7483 #define LOW_OPTIMIZATION_EXIT \
phungductung 0:e87aa4c49e95 7484 _Pragma ("pop")
phungductung 0:e87aa4c49e95 7485 #else
phungductung 0:e87aa4c49e95 7486 #define LOW_OPTIMIZATION_EXIT
phungductung 0:e87aa4c49e95 7487 #endif
phungductung 0:e87aa4c49e95 7488
phungductung 0:e87aa4c49e95 7489 //Enter low optimization region - place directly above function definition
phungductung 0:e87aa4c49e95 7490 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
phungductung 0:e87aa4c49e95 7491
phungductung 0:e87aa4c49e95 7492 //Exit low optimization region - place directly after end of function definition
phungductung 0:e87aa4c49e95 7493 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
phungductung 0:e87aa4c49e95 7494
phungductung 0:e87aa4c49e95 7495 #elif defined(__ICCARM__) //IAR
phungductung 0:e87aa4c49e95 7496
phungductung 0:e87aa4c49e95 7497 //Enter low optimization region - place directly above function definition
phungductung 0:e87aa4c49e95 7498 #ifdef ARM_MATH_CM4
phungductung 0:e87aa4c49e95 7499 #define LOW_OPTIMIZATION_ENTER \
phungductung 0:e87aa4c49e95 7500 _Pragma ("optimize=low")
phungductung 0:e87aa4c49e95 7501 #else
phungductung 0:e87aa4c49e95 7502 #define LOW_OPTIMIZATION_ENTER
phungductung 0:e87aa4c49e95 7503 #endif
phungductung 0:e87aa4c49e95 7504
phungductung 0:e87aa4c49e95 7505 //Exit low optimization region - place directly after end of function definition
phungductung 0:e87aa4c49e95 7506 #define LOW_OPTIMIZATION_EXIT
phungductung 0:e87aa4c49e95 7507
phungductung 0:e87aa4c49e95 7508 //Enter low optimization region - place directly above function definition
phungductung 0:e87aa4c49e95 7509 #ifdef ARM_MATH_CM4
phungductung 0:e87aa4c49e95 7510 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
phungductung 0:e87aa4c49e95 7511 _Pragma ("optimize=low")
phungductung 0:e87aa4c49e95 7512 #else
phungductung 0:e87aa4c49e95 7513 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
phungductung 0:e87aa4c49e95 7514 #endif
phungductung 0:e87aa4c49e95 7515
phungductung 0:e87aa4c49e95 7516 //Exit low optimization region - place directly after end of function definition
phungductung 0:e87aa4c49e95 7517 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
phungductung 0:e87aa4c49e95 7518
phungductung 0:e87aa4c49e95 7519 #elif defined(__GNUC__)
phungductung 0:e87aa4c49e95 7520
phungductung 0:e87aa4c49e95 7521 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
phungductung 0:e87aa4c49e95 7522
phungductung 0:e87aa4c49e95 7523 #define LOW_OPTIMIZATION_EXIT
phungductung 0:e87aa4c49e95 7524
phungductung 0:e87aa4c49e95 7525 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
phungductung 0:e87aa4c49e95 7526
phungductung 0:e87aa4c49e95 7527 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
phungductung 0:e87aa4c49e95 7528
phungductung 0:e87aa4c49e95 7529 #elif defined(__CSMC__) // Cosmic
phungductung 0:e87aa4c49e95 7530
phungductung 0:e87aa4c49e95 7531 #define LOW_OPTIMIZATION_ENTER
phungductung 0:e87aa4c49e95 7532 #define LOW_OPTIMIZATION_EXIT
phungductung 0:e87aa4c49e95 7533 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
phungductung 0:e87aa4c49e95 7534 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
phungductung 0:e87aa4c49e95 7535
phungductung 0:e87aa4c49e95 7536 #elif defined(__TASKING__) // TASKING
phungductung 0:e87aa4c49e95 7537
phungductung 0:e87aa4c49e95 7538 #define LOW_OPTIMIZATION_ENTER
phungductung 0:e87aa4c49e95 7539 #define LOW_OPTIMIZATION_EXIT
phungductung 0:e87aa4c49e95 7540 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
phungductung 0:e87aa4c49e95 7541 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
phungductung 0:e87aa4c49e95 7542
phungductung 0:e87aa4c49e95 7543 #endif
phungductung 0:e87aa4c49e95 7544
phungductung 0:e87aa4c49e95 7545
phungductung 0:e87aa4c49e95 7546 #ifdef __cplusplus
phungductung 0:e87aa4c49e95 7547 }
phungductung 0:e87aa4c49e95 7548 #endif
phungductung 0:e87aa4c49e95 7549
phungductung 0:e87aa4c49e95 7550
phungductung 0:e87aa4c49e95 7551 #endif /* _ARM_MATH_H */
phungductung 0:e87aa4c49e95 7552
phungductung 0:e87aa4c49e95 7553 /**
phungductung 0:e87aa4c49e95 7554 *
phungductung 0:e87aa4c49e95 7555 * End of file.
phungductung 0:e87aa4c49e95 7556 */