Angle control and Servo control with kinematics

Dependencies:   Encoder FastPWM Servo mbed

Fork of Angle_control_v2 by Peter Knoben

main.cpp

Committer:
peterknoben
Date:
2017-10-17
Revision:
5:b4ec742aa7d4
Parent:
4:d385669b2f50

File content as of revision 5:b4ec742aa7d4:

#include "mbed.h"
#include "encoder.h"
#include "Servo.h"
#include "FastPWM.h"

Ticker MyControllerTicker1;
Ticker MyControllerTicker2;
const double PI = 3.141592653589793;
const double RAD_PER_PULSE = 0.000749425;
const double CONTROLLER_TS = 0.01;


//Motor1
PwmOut motor1(D5);
DigitalOut motor1DirectionPin(D4);
DigitalIn ENC2A(D12);
DigitalIn ENC2B(D13);
Encoder encoder1(D13,D12);
AnalogIn potmeter1(A3);
const double MOTOR1_KP = 15;
const double MOTOR1_KI = 10;
double m1_err_int = 0;
const double motor1_gain = 2*PI;


//Motor2
PwmOut motor2(D6);
DigitalOut motor2DirectionPin(D7);
DigitalIn ENC1A(D10);
DigitalIn ENC1B(D11);
Encoder encoder2(D10,D11);
AnalogIn potmeter2(A4);
const double MOTOR2_KP = 15;
const double MOTOR2_KI = 10;
double m2_err_int = 0;
const double motor2_gain = 2*PI;

//________________________________________________________________
//Kinematica

//Motor offsets (kinematica implementation)
int max_rangex = 800;
int max_rangey = 500;
int L1 = 450;
int L2 = 490;
float alphaoffset = 10;
float betaoffset = 35;
float x_offset = 0.0;
float y_offset = 0.0;


float getreferencepositionx(double potmeter){
    float x_target = potmeter * max_rangex;
    return x_target;
}
float getreferencepositiony(double potmeter){
    float y_target = potmeter * max_rangey;
    return y_target;
}

float getreferenceanglealpha(const double PI){
    float x = getreferencepositionx(potmeter1);
    float y = getreferencepositiony(potmeter2);
    float theta2 = acos((x*x + y*y - L1*L1 - L2*L2)/(2*L1*L2));
    float theta1 = asin(L2*sin(theta2)/sqrt(x*x +y*y) + atan(y/x));
    float alpha = (05.*PI) - theta1;
    return alpha;
}

float getreferenceanglebeta(const double PI){
    float x = getreferencepositionx(potmeter1);
    float y = getreferencepositiony(potmeter2);
    float theta2 = acos((x*x + y*y - L1*L1 - L2*L2)/(2*L1*L2));
    float theta1 = asin(L2*sin(theta2)/sqrt(x*x +y*y) + atan(y/x));
    float alpha = (05.*PI) - theta1;
    float beta = PI - alpha - theta2;
    return beta;
}     

//________________________________________________________________


//Servo
Servo MyServo(D9);
InterruptIn But1(D8);
int k=0;

double PI_controller(double error, const double Kp, const double Ki, double Ts, double &e_int) {
    e_int =+ Ts * error;
    return Kp * error + Ki * e_int ;
}

void motor1_control(){
    double referenceangle1 = getreferenceanglealpha(PI);
    double position1 = RAD_PER_PULSE * encoder1.getPosition();
    double magnitude1 = PI_controller(referenceangle1-position1, MOTOR1_KP, MOTOR1_KI, CONTROLLER_TS, m1_err_int) / motor1_gain;
    motor1 = fabs(magnitude1);
    
    if (magnitude1 < 0){
        motor1DirectionPin = 1;
    }
    else{
        motor1DirectionPin = 0;
    }
}


void motor2_control(){
    double referenceangle2 = getreferenceanglebeta(PI);
    double position2 = RAD_PER_PULSE * encoder2.getPosition();
    double magnitude2 = PI_controller(referenceangle2-position2, MOTOR2_KP, MOTOR2_KI, CONTROLLER_TS, m2_err_int) / motor2_gain;
    motor2 = fabs(magnitude2);
    
    if (magnitude2 < 0){
        motor2DirectionPin = 1;
    }
    else{
        motor2DirectionPin = 0;
    }
}

/*void servo_control (){
    motor1.period(0.02f);
    motor2.period(0.02f);
    if (k==0){
        MyServo = 0;
        k=1;
        motor1.period_us(200);
    }
    else{
        MyServo = 2;
        k=0;
        motor1.period_us(200);
    }        
}*/


int main(){
    //But1.rise(&servo_control);
    motor1.period(0.0002f);
    motor2.period(0.0002f);
    MyControllerTicker1.attach(&motor1_control, CONTROLLER_TS); 
    MyControllerTicker2.attach(&motor2_control, CONTROLLER_TS);
    
       
    while(1) {}   
}