Angle control and Servo control with kinematics

Dependencies:   Encoder FastPWM Servo mbed

Fork of Angle_control_v2 by Peter Knoben

main.cpp

Committer:
peterknoben
Date:
2017-10-16
Revision:
3:1514725c8cc8
Parent:
2:47ec66bbe8f9
Child:
4:d385669b2f50

File content as of revision 3:1514725c8cc8:

#include "mbed.h"
#include "encoder.h"
#include "Servo.h"
#include "FastPWM.h"

Ticker MyControllerTicker1;
Ticker MyControllerTicker2;
const double PI = 3.141592653589793;
const double RAD_PER_PULSE = 0.000749425;
const double CONTROLLER_TS = 0.01;


//Motor1
PwmOut motor1(D5);
DigitalOut motor1DirectionPin(D4);
DigitalIn ENC2A(D12);
DigitalIn ENC2B(D13);
Encoder encoder1(D13,D12);
AnalogIn potmeter1(A3);
const double MOTOR1_KP = 15;
const double MOTOR1_KI = 10;
double m1_err_int = 0;
const double motor1_gain = 2*PI;


//Motor2
PwmOut motor2(D6);
DigitalOut motor2DirectionPin(D7);
DigitalIn ENC1A(D10);
DigitalIn ENC1B(D11);
Encoder encoder2(D10,D11);
AnalogIn potmeter2(A4);
const double MOTOR2_KP = 15;
const double MOTOR2_KI = 10;
double m2_err_int = 0;
const double motor2_gain = 2*PI;

//________________________________________________________________
//Test kinematica

//Motor offsets (kinematica implementation)
float alphaoffset = 10;
float betaoffset = 35;
float x_target, y_target;
float x, y;
int max_rangex = 800;
int max_rangey = 500;

float L1 = 450;
float L2 = 490;
float x_offset = 0.0;
float y_offset = 0.0;


float getreferencepositionx(double potmeter){
    x_target = potmeter * max_rangex;
    return x_target;
}
float getreferencepositiony(double potmeter){
    y_target = potmeter * max_rangey;
    return y_target;
}

float getreferenceangle(){
    x_target = getreferencepositionx(potmeter1);
    y_target = getreferencepositiony(potmeter2);
    float x = x_target - x_offset;
    float y = y_target - y_offset;
    float L3_ = sqrt(x*x + y*y);
    float L3 = L3_;
    
    float beta = 3.1415 - acos(((L1*L1 + L2*L2 - L3*L3)/(2 * L1 * L2)));
    beta =  beta * 180 / 3.1415;
    
    float alpha = (acos((L1*L1+L3*L3-L2*L2)/(2*L1*L3))) *180 / 3.1415;
    float beta_ = beta - alpha;
}

//________________________________________________________________

//Servo
Servo MyServo(D9);
InterruptIn But1(D8);
int k=0;


/*float getreferenceangle(const double PI, double potmeter){
    float max_angle = 2*PI;
    float  reference_angle = max_angle * potmeter;
    return reference_angle;    
}*/

double PI_controller(double error, const double Kp, const double Ki, double Ts, double &e_int) {
    e_int =+ Ts * error;
    return Kp * error + Ki * e_int ;
}

void motor1_control(){
    double referenceangle1 = getreferenceangle(PI, potmeter1);
    double position1 = RAD_PER_PULSE * encoder1.getPosition();
    double magnitude1 = PI_controller(referenceangle1-position1, MOTOR1_KP, MOTOR1_KI, CONTROLLER_TS, m1_err_int) / motor1_gain;
    motor1 = fabs(magnitude1);
    
    if (magnitude1 < 0){
        motor1DirectionPin = 1;
    }
    else{
        motor1DirectionPin = 0;
    }
}


void motor2_control(){
    double referenceangle2 = getreferenceangle(PI, potmeter2);
    double position2 = RAD_PER_PULSE * encoder2.getPosition();
    double magnitude2 = PI_controller(referenceangle2-position2, MOTOR2_KP, MOTOR2_KI, CONTROLLER_TS, m2_err_int) / motor2_gain;
    motor2 = fabs(magnitude2);
    
    if (magnitude2 < 0){
        motor2DirectionPin = 1;
    }
    else{
        motor2DirectionPin = 0;
    }
}

/*void servo_control (){
    motor1.period(0.02f);
    motor2.period(0.02f);
    if (k==0){
        MyServo = 0;
        k=1;
        motor1.period_us(200);
    }
    else{
        MyServo = 2;
        k=0;
        motor1.period_us(200);
    }        
}*/


int main(){
    But1.rise(&servo_control);
    motor1.period(0.0002f);
    motor2.period(0.0002f);
    MyControllerTicker1.attach(&motor1_control, CONTROLLER_TS); 
    MyControllerTicker2.attach(&motor2_control, CONTROLLER_TS);
    
       
    while(1) {}   
}