action recognizer with theremin

Dependencies:   mbed

Revision:
0:b9ac53c439ed
diff -r 000000000000 -r b9ac53c439ed svm/svm.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/svm/svm.h	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,106 @@
+#ifndef _LIBSVM_H
+#define _LIBSVM_H
+
+#define LIBSVM_VERSION 300
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+extern int libsvm_version;
+
+struct svm_node
+{
+    int index;
+    double value;
+};
+
+struct svm_problem
+{
+    int l;
+    double *y;
+    struct svm_node **x;
+};
+
+enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };    /* svm_type */
+enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
+
+struct svm_parameter
+{
+    int svm_type;
+    int kernel_type;
+    int degree;    /* for poly */
+    double gamma;    /* for poly/rbf/sigmoid */
+    double coef0;    /* for poly/sigmoid */
+
+    /* these are for training only */
+    double cache_size; /* in MB */
+    double eps;    /* stopping criteria */
+    double C;    /* for C_SVC, EPSILON_SVR and NU_SVR */
+    int nr_weight;        /* for C_SVC */
+    int *weight_label;    /* for C_SVC */
+    double* weight;        /* for C_SVC */
+    double nu;    /* for NU_SVC, ONE_CLASS, and NU_SVR */
+    double p;    /* for EPSILON_SVR */
+    int shrinking;    /* use the shrinking heuristics */
+    int probability; /* do probability estimates */
+};
+
+//
+// svm_model
+// 
+struct svm_model
+{
+    struct svm_parameter param;    /* parameter */
+    int nr_class;        /* number of classes, = 2 in regression/one class svm */
+    int l;            /* total #SV */
+    struct svm_node **SV;        /* SVs (SV[l]) */
+    double **sv_coef;    /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
+    double *rho;        /* constants in decision functions (rho[k*(k-1)/2]) */
+    double *probA;        /* pariwise probability information */
+    double *probB;
+
+    /* for classification only */
+
+    int *label;        /* label of each class (label[k]) */
+    int *nSV;        /* number of SVs for each class (nSV[k]) */
+                /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
+    /* XXX */
+    int free_sv;        /* 1 if svm_model is created by svm_load_model*/
+                /* 0 if svm_model is created by svm_train */
+};
+
+struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
+void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
+
+int svm_save_model(const char *model_file_name, const struct svm_model *model);
+struct svm_model *svm_load_model(const char *model_file_name);
+struct svm_model *svm_load_model_fp(FILE *fp);
+
+int svm_get_svm_type(const struct svm_model *model);
+int svm_get_nr_class(const struct svm_model *model);
+void svm_get_labels(const struct svm_model *model, int *label);
+double svm_get_svr_probability(const struct svm_model *model);
+
+double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
+double svm_predict(const struct svm_model *model, const struct svm_node *x);
+double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
+
+void svm_free_model_content(struct svm_model *model_ptr);
+void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
+void svm_destroy_param(struct svm_parameter *param);
+
+const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
+int svm_check_probability_model(const struct svm_model *model);
+
+void svm_set_print_string_function(void (*print_func)(const char *));
+
+// deprecated
+// this function will be removed in future release
+void svm_destroy_model(struct svm_model *model_ptr); 
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _LIBSVM_H */