Fork with intent to refactor and add support for American 902-928(915) Frequency Bands
sx1276/sx1276-hal.cpp
- Committer:
- Helmut Tschemernjak
- Date:
- 2017-05-01
- Revision:
- 31:e50929bd3f32
- Parent:
- 30:d7e36d83ec9d
- Child:
- 34:07e89f23c734
File content as of revision 31:e50929bd3f32:
/* / _____) _ | | ( (____ _____ ____ _| |_ _____ ____| |__ \____ \| ___ | (_ _) ___ |/ ___) _ \ _____) ) ____| | | || |_| ____( (___| | | | (______/|_____)_|_|_| \__)_____)\____)_| |_| (C) 2014 Semtech Description: - License: Revised BSD License, see LICENSE.TXT file include in the project Maintainers: Miguel Luis, Gregory Cristian and Nicolas Huguenin */ #include "sx1276-hal.h" const RadioRegisters_t SX1276MB1xAS::RadioRegsInit[] = RADIO_INIT_REGISTERS_VALUE; SX1276MB1xAS::SX1276MB1xAS( RadioEvents_t *events, PinName mosi, PinName miso, PinName sclk, PinName nss, PinName reset, PinName dio0, PinName dio1, PinName dio2, PinName dio3, PinName dio4, PinName dio5, #ifdef MURATA_ANT_SWITCH PinName antSwitch, PinName antSwitchTX, PinName antSwitchTXBoost ) #else PinName antSwitch ) #endif : SX1276( events, mosi, miso, sclk, nss, reset, dio0, dio1, dio2, dio3, dio4, dio5 ), #ifdef MURATA_ANT_SWITCH AntSwitch(antSwitch), AntSwitchTX(antSwitchTX), AntSwitchTXBoost(antSwitchTXBoost), #else AntSwitch( antSwitch ), #endif #if( defined ( TARGET_NUCLEO_L152RE ) ) Fake( D8 ) #else Fake( A3 ) #endif { this->RadioEvents = events; Reset( ); RxChainCalibration( ); IoInit( ); SetOpMode( RF_OPMODE_SLEEP ); IoIrqInit( dioIrq ); RadioRegistersInit( ); SetModem( MODEM_FSK ); this->settings.State = RF_IDLE ; } SX1276MB1xAS::SX1276MB1xAS( RadioEvents_t *events ) #if defined ( TARGET_NUCLEO_L152RE ) : SX1276( events, D11, D12, D13, D10, A0, D2, D3, D4, D5, A3, D9 ), // For NUCLEO L152RE dio4 is on port A3 AntSwitch( A4 ), Fake( D8 ) #elif defined( TARGET_LPC11U6X ) : SX1276( events, D11, D12, D13, D10, A0, D2, D3, D4, D5, D8, D9 ), AntSwitch( P0_23 ), Fake( A3 ) #else : SX1276( events, D11, D12, D13, D10, A0, D2, D3, D4, D5, D8, D9 ), #ifdef MURATA_ANT_SWITCH AntSwitch(A4), AntSwitchTX(NC), AntSwitchTXBoost(NC), #else AntSwitch( A4 ), #endif Fake( A3 ) #endif { this->RadioEvents = events; Reset( ); boardConnected = UNKNOWN; DetectBoardType( ); RxChainCalibration( ); IoInit( ); SetOpMode( RF_OPMODE_SLEEP ); IoIrqInit( dioIrq ); RadioRegistersInit( ); SetModem( MODEM_FSK ); this->settings.State = RF_IDLE ; } //------------------------------------------------------------------------- // Board relative functions //------------------------------------------------------------------------- uint8_t SX1276MB1xAS::DetectBoardType( void ) { if( boardConnected == UNKNOWN ) { this->AntSwitch.input( ); wait_ms( 1 ); if( this->AntSwitch == 1 ) { boardConnected = SX1276MB1LAS; } else { boardConnected = SX1276MB1MAS; } this->AntSwitch.output( ); wait_ms( 1 ); } #ifdef RFM95_MODULE boardConnected = SX1276MB1LAS; #endif return ( boardConnected ); } void SX1276MB1xAS::IoInit( void ) { AntSwInit( ); SpiInit( ); } void SX1276MB1xAS::RadioRegistersInit( ) { uint8_t i = 0; for( i = 0; i < sizeof( RadioRegsInit ) / sizeof( RadioRegisters_t ); i++ ) { SetModem( RadioRegsInit[i].Modem ); Write( RadioRegsInit[i].Addr, RadioRegsInit[i].Value ); } } void SX1276MB1xAS::SpiInit( void ) { nss = 1; spi.format( 8,0 ); uint32_t frequencyToSet = 8000000; #if( defined ( TARGET_NUCLEO_L152RE ) || defined ( TARGET_LPC11U6X ) || defined(TARGET_STM) ) spi.frequency( frequencyToSet ); #elif( defined ( TARGET_KL25Z ) ) //busclock frequency is halved -> double the spi frequency to compensate spi.frequency( frequencyToSet * 2 ); #else #warning "Check the board's SPI frequency" #endif wait(0.1); } void SX1276MB1xAS::IoIrqInit( DioIrqHandler *irqHandlers ) { #if( defined ( TARGET_NUCLEO_L152RE ) || defined ( TARGET_LPC11U6X ) ) dio0.mode( PullDown ); dio1.mode( PullDown ); dio2.mode( PullDown ); dio3.mode( PullDown ); dio4.mode( PullDown ); #endif dio0.rise(callback(this, static_cast< TriggerMB1xAS > ( irqHandlers[0] ))); dio1.rise(callback(this, static_cast< TriggerMB1xAS > ( irqHandlers[1] ))); dio2.rise(callback(this, static_cast< TriggerMB1xAS > ( irqHandlers[2] ))); dio3.rise(callback(this, static_cast< TriggerMB1xAS > ( irqHandlers[3] ))); dio4.rise(callback(this, static_cast< TriggerMB1xAS > ( irqHandlers[4] ))); } void SX1276MB1xAS::IoDeInit( void ) { //nothing } void SX1276MB1xAS::SetRfTxPower( int8_t power ) { uint8_t paConfig = 0; uint8_t paDac = 0; paConfig = Read( REG_PACONFIG ); paDac = Read( REG_PADAC ); paConfig = ( paConfig & RF_PACONFIG_PASELECT_MASK ) | GetPaSelect( this->settings.Channel ); paConfig = ( paConfig & RF_PACONFIG_MAX_POWER_MASK ) | 0x70; if( ( paConfig & RF_PACONFIG_PASELECT_PABOOST ) == RF_PACONFIG_PASELECT_PABOOST ) { if( power > 17 ) { paDac = ( paDac & RF_PADAC_20DBM_MASK ) | RF_PADAC_20DBM_ON; } else { paDac = ( paDac & RF_PADAC_20DBM_MASK ) | RF_PADAC_20DBM_OFF; } if( ( paDac & RF_PADAC_20DBM_ON ) == RF_PADAC_20DBM_ON ) { if( power < 5 ) { power = 5; } if( power > 20 ) { power = 20; } paConfig = ( paConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power - 5 ) & 0x0F ); } else { if( power < 2 ) { power = 2; } if( power > 17 ) { power = 17; } paConfig = ( paConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power - 2 ) & 0x0F ); } } else { if( power < -1 ) { power = -1; } if( power > 14 ) { power = 14; } paConfig = ( paConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power + 1 ) & 0x0F ); } Write( REG_PACONFIG, paConfig ); Write( REG_PADAC, paDac ); } uint8_t SX1276MB1xAS::GetPaSelect( uint32_t channel ) { if( channel > RF_MID_BAND_THRESH ) { if( boardConnected == SX1276MB1LAS ) { return RF_PACONFIG_PASELECT_PABOOST; } else { return RF_PACONFIG_PASELECT_RFO; } } else { return RF_PACONFIG_PASELECT_RFO; } } void SX1276MB1xAS::SetAntSwLowPower( bool status ) { if( isRadioActive != status ) { isRadioActive = status; if( status == false ) { AntSwInit( ); } else { AntSwDeInit( ); } } } void SX1276MB1xAS::AntSwInit( void ) { this->AntSwitch = 0; #ifdef MURATA_ANT_SWITCH AntSwitchTX = 0; AntSwitchTXBoost = 0; #endif } void SX1276MB1xAS::AntSwDeInit( void ) { this->AntSwitch = 0; #ifdef MURATA_ANT_SWITCH AntSwitchTX = 0; AntSwitchTXBoost = 0; #endif } void SX1276MB1xAS::SetAntSw( uint8_t opMode ) { switch( opMode ) { case RFLR_OPMODE_TRANSMITTER: #ifdef MURATA_ANT_SWITCH this->AntSwitch = 0; // Murata-RX AntSwitchTX = 1; // alternate: antSwitchTXBoost = 1 #else this->AntSwitch = 1; #endif break; case RFLR_OPMODE_RECEIVER: case RFLR_OPMODE_RECEIVER_SINGLE: case RFLR_OPMODE_CAD: #ifdef MURATA_ANT_SWITCH this->AntSwitch = 1; // Murata-RX AntSwitchTX = 0; AntSwitchTXBoost = 0; #else this->AntSwitch = 0; #endif break; default: #ifdef MURATA_ANT_SWITCH this->AntSwitch = 1; //Murata-RX AntSwitchTX = 0; AntSwitchTXBoost = 0; #else this->AntSwitch = 0; #endif break; } } bool SX1276MB1xAS::CheckRfFrequency( uint32_t frequency ) { // Implement check. Currently all frequencies are supported return true; } void SX1276MB1xAS::Reset( void ) { reset.output(); reset = 0; wait_ms( 1 ); reset.input(); wait_ms( 6 ); } void SX1276MB1xAS::Write( uint8_t addr, uint8_t data ) { Write( addr, &data, 1 ); } uint8_t SX1276MB1xAS::Read( uint8_t addr ) { uint8_t data; Read( addr, &data, 1 ); return data; } void SX1276MB1xAS::Write( uint8_t addr, uint8_t *buffer, uint8_t size ) { uint8_t i; nss = 0; spi.write( addr | 0x80 ); for( i = 0; i < size; i++ ) { spi.write( buffer[i] ); } nss = 1; } void SX1276MB1xAS::Read( uint8_t addr, uint8_t *buffer, uint8_t size ) { uint8_t i; nss = 0; spi.write( addr & 0x7F ); for( i = 0; i < size; i++ ) { buffer[i] = spi.write( 0 ); } nss = 1; } void SX1276MB1xAS::WriteFifo( uint8_t *buffer, uint8_t size ) { Write( 0, buffer, size ); } void SX1276MB1xAS::ReadFifo( uint8_t *buffer, uint8_t size ) { Read( 0, buffer, size ); }