Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HIDScope biquadFilter mbed
main.cpp
- Committer:
- pbaardwijk
- Date:
- 2016-10-27
- Revision:
- 7:a928724ef731
- Parent:
- 6:da06585e106c
- Child:
- 8:dc0858fead9f
- Child:
- 9:81637351bbd1
File content as of revision 7:a928724ef731:
#include "mbed.h"
#include "BiQuad.h"
#include "HIDScope.h"
//Enum with states
enum states {STATE_DEFAULT , STATE_CALIBRATION, STATE_RUN};
//Variable called 'state'
states state = STATE_DEFAULT;
//Creating two scope channels
HIDScope scope(4);
//Notch filter
BiQuadChain notch_50;
BiQuad bq3( 0.98116526140, 0.00000000044, 0.98116526140, 0.00000000043, 0.95391787621);
BiQuad bq4( 0.97224232015, 0.00000000043, 0.97224232015, -0.04036799459, 0.97670000725);
BiQuad bq5( 1.00000000000, 0.00000000044, 1.00000000000, 0.04036799547, 0.9767000072);
//High pass filter
BiQuadChain high_pass;
BiQuad bq6( 0.80254782780,-1.60509565560, 0.80254782780, -1.58011656361, 0.63006219630);
BiQuad bq7( 0.90006571973,-1.80013143945, 0.900065719734, -1.77213098592, 0.8281459694);
//BiQuad bq8( 0.92490714701,-1.84981429401, 0.92490714701, -1.90032503529, 0.9352152620);
//Low pass filter
BiQuadChain low_pass;
BiQuad bq9( 0.00801840797, 0.01603681594, 0.00801840797,-1.65212256130, 0.68416767240);
BiQuad bq10( 0.00836524486, 0.01673048973, 0.00836524486,-1.72511837232, 0.75857933411);
BiQuad bq11( 0.00905039996, 0.01810079992, 0.00905039996,-1.86807725180, 0.9043110909);
//Ticker
Ticker emgSampleTicker;
//Timeout to change state after 5 seconds
Timeout change_state;
//Timeout to change state after 15 seconds
Timeout change_state2;
//LED
DigitalOut led(LED_RED);
//Emg input
AnalogIn emg0( A0 );
AnalogIn emg1( A1 );
AnalogIn emg2( A2 );
bool go_emgSample;
bool go_find_minmax;
double emg_sample[3];
double emg_low_passed_200[3];
double emg_notch[3];
double emg_high_passed[3];
double emg_low_passed[3];
double min_emg[3];
double max_emg[3];
const int n = 100;
int counter = 0;
double RMSArray0[n] = {0};
double RMSArray1[n] = {0};
double RMSArray2[n] = {0};
double RMS0;
double RMS1;
double RMS2;
double SumRMS0;
double SumRMS1;
double SumRMS2;
double input_force0;
double input_force1;
double input_force2;
//count for emg min max
int start_calibration = 0;
void emgSample() {
go_emgSample = true;
}
void calibrate() {
state = STATE_CALIBRATION;
led.write(0);
}
void run() {
state = STATE_RUN;
led.write(1);
}
void EMG_filter();
int main() {
//combine biquads in biquad chains for notch/high- low-pass filters
notch_50.add( &bq3 ).add( &bq4 ).add( &bq5 );
high_pass.add( &bq6 ).add( &bq7 );
low_pass.add( &bq9 ).add( &bq10 ).add( &bq11 );
led.write(1);
change_state.attach( &calibrate,5);
change_state2.attach( &run,15);
emgSampleTicker.attach( &emgSample, 0.005); //200Hz
while( true ){
if(go_emgSample == true){
EMG_filter();
}
}
}
void EMG_filter() {
if(go_emgSample == true){
//read the emg signal
emg_sample[0] = emg0.read();
emg_sample[1] = emg1.read();
emg_sample[2] = emg2.read();
//filter out the 50Hz components with a notch filter
emg_notch[0] = notch_50.step(emg_sample[0]);
//high pass the signal (removing motion artifacts and offset)
emg_high_passed[0] = high_pass.step(emg_notch[0]);
//low pass the rectified emg signal
emg_low_passed[0] = low_pass.step(fabs(emg_high_passed[0]));
//Calculating RMS
SumRMS0 -= pow(RMSArray0[counter],2);
SumRMS1 -= pow(RMSArray1[counter],2);
SumRMS2 -= pow(RMSArray2[counter],2);
RMSArray0[counter] = emg_high_passed[0];
RMSArray1[counter] = emg_high_passed[1];
RMSArray2[counter] = emg_high_passed[2];
SumRMS0 += pow(RMSArray0[counter],2);
SumRMS1 += pow(RMSArray1[counter],2);
SumRMS2 += pow(RMSArray2[counter],2);
counter++;
if (counter == n){
counter = 0;
}
RMS0 = sqrt(SumRMS0/n);
RMS1 = sqrt(SumRMS1/n);
RMS2 = sqrt(SumRMS2/n);
//Calculating min value and max value of emg signal
if(state == STATE_CALIBRATION)
{
if (start_calibration == 0) {
min_emg[0] = RMS0;
max_emg[0] = RMS0;
min_emg[1] = RMS1;
max_emg[1] = RMS1;
min_emg[2] = RMS2;
max_emg[2] = RMS2;
start_calibration++;
}
else {
//finding min and max of emg0
if (RMS0 < min_emg[0]) {
min_emg[0] = RMS0;
}
else if (RMS0 > max_emg[0]) {
max_emg[0] = RMS0;
}
//finding min and max of emg1
if (RMS1 < min_emg[1]) {
min_emg[1] = RMS1;
}
else if (RMS1 > max_emg[1]) {
max_emg[1] = RMS1;
}
//finding min and max of emg2
if (RMS2 < min_emg[2]) {
min_emg[2] = RMS2;
}
else if (RMS2 > max_emg[2]) {
max_emg[2] = RMS2;
}
}
}
//calculating input_forces for controller
input_force0 = (RMS0 - min_emg[0])/(max_emg[0]-min_emg[0]);
input_force1 = (RMS1 - min_emg[1])/(max_emg[1]-min_emg[1]);
input_force2 = (RMS2 - min_emg[2])/(max_emg[2]-min_emg[2]);
//Send scope data
scope.set(0,emg_sample[0]);
scope.set(1,emg_notch[0]);
scope.set(2,emg_high_passed[0]);
scope.set(3,emg_low_passed[0]);
//scope.set(2,emg_low_passed[0]);
//scope.set(3,input_force2);
scope.send();
go_emgSample = false;
}
}