Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: main.cpp
- Revision:
- 2:ba7945a8d1c6
- Parent:
- 0:573c02b712fe
--- a/main.cpp Fri Apr 21 19:38:58 2017 +0000 +++ b/main.cpp Tue Jun 01 16:47:31 2021 +0000 @@ -1,17 +1,155 @@ #include "mbed.h" +#include "MPU6050.h" -Ticker toggle_led_ticker; +/* + Hardware setup: + MPU6050 Breakout --------- Arduino + 3.3V --------------------- 3.3V + SDA ----------------------- A4 + SCL ----------------------- A5 + GND ---------------------- GND + + Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library. + Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. + We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. + We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. +*/ -DigitalOut led1(LED1); +MPU6050 mpu6050; +Timer t; +Serial pc(USBTX, USBRX); // tx, rx +float sum = 0; +uint32_t sumCount = 0; + +void main () +{ + pc.baud(9600); -void toggle_led() { - led1 = !led1; -} - -int main() { - // Init the ticker with the address of the function (toggle_led) to be attached and the interval (100 ms) - toggle_led_ticker.attach(&toggle_led, 0.1); - while (true) { - // Do other things... + //Set up I2C + i2c.frequency(400000); // use fast (400 kHz) I2C + + t.start(); + // Read the WHO_AM_I register, this is a good test of communication + uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050 + pc.printf("I AM 0x%x\n", whoami); + pc.printf("I SHOULD BE 0x68\n"); + + if (whoami == 0x68) // WHO_AM_I should always be 0x68 + { + pc.printf("MPU6050 is online") + wait(1); + mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values + pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r"); + pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r"); + pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r"); + pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r"); + pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r"); + pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r"); + wait(1); + if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) + { + mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration + mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + wait(2); + } + else + { + pc.printf("Device did not the pass self-test!\n"); + } + } + else + { + pc.printf("Could not connect to MPU6050: \n"); + pc.printf("%#x \n", whoami); + while(true) ; // Loop forever if communication doesn't happen + } + while(true) { + // If data ready bit set, all data registers have new data + if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) // check if data ready interrupt + { + mpu6050.readAccelData(accelCount); // Read the x/y/z adc values + mpu6050.getAres(); + + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + + mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values + mpu6050.getGres(); + + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes; // - gyroBias[1]; + gz = (float)gyroCount[2]*gRes; // - gyroBias[2]; + + tempCount = mpu6050.readTempData(); // Read the x/y/z adc values + temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade + } + Now = t.read_us(); + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update + lastUpdate = Now; + + sum += deltat; + sumCount++; + + if(lastUpdate - firstUpdate > 10000000.0f) { + beta = 0.04; // decrease filter gain after stabilized + zeta = 0.015; // increasey bias drift gain after stabilized + } + + mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); + // Serial print and/or display at 0.5 s rate independent of data rates + delt_t = t.read_ms() - count; + + if (delt_t > 500) // update once per half-second independent of read rate + { + /* + pc.printf("ax = %f", 1000*ax); + pc.printf(" ay = %f", 1000*ay); + pc.printf(" az = %f mg\n\r", 1000*az); + + pc.printf("gx = %f", gx); + pc.printf(" gy = %f", gy); + pc.printf(" gz = %f deg/s\n\r", gz); + + pc.printf(" temperature = %f C\n\r", temperature); + + pc.printf("q0 = %f\n\r", q[0]); + pc.printf("q1 = %f\n\r", q[1]); + pc.printf("q2 = %f\n\r", q[2]); + pc.printf("q3 = %f\n\r", q[3]); + */ + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + roll *= 180.0f / PI; + // pc.printf("Yaw, Pitch, Roll: \n\r"); + // pc.printf("%f", yaw); + // pc.printf(", "); + // pc.printf("%f", pitch); + // pc.printf(", "); + // pc.printf("%f\n\r", roll); + // pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r"); + + pc.printf("X, Y, Z, Yaw, Pitch, Roll: %f %f %f %f %f %f\n\r", gx, gy, gz, yaw, pitch, roll); + //pc.printf("average rate = %f\n\r", (float) sumCount/sum); + + count = t.read_ms(); + sum = 0; + sumCount = 0; + } } } \ No newline at end of file