Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of USBDevice by
USBDevice/USBHAL_STM32F4.cpp
- Committer:
- mbed_official
- Date:
- 2013-12-05
- Revision:
- 16:4f6df64750bd
- Child:
- 25:7c72828865f3
File content as of revision 16:4f6df64750bd:
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#if defined(TARGET_STM32F4XX)
#include "USBHAL.h"
#include "USBRegs_STM32.h"
#include "pinmap.h"
USBHAL * USBHAL::instance;
static volatile int epComplete = 0;
static uint32_t bufferEnd = 0;
static const uint32_t rxFifoSize = 512;
static uint32_t rxFifoCount = 0;
static uint32_t setupBuffer[MAX_PACKET_SIZE_EP0 >> 2];
uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
return 0;
}
USBHAL::USBHAL(void) {
NVIC_DisableIRQ(OTG_FS_IRQn);
epCallback[0] = &USBHAL::EP1_OUT_callback;
epCallback[1] = &USBHAL::EP1_IN_callback;
epCallback[2] = &USBHAL::EP2_OUT_callback;
epCallback[3] = &USBHAL::EP2_IN_callback;
epCallback[4] = &USBHAL::EP3_OUT_callback;
epCallback[5] = &USBHAL::EP3_IN_callback;
// Enable power and clocking
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN;
pin_function(PA_8, STM_PIN_DATA(2, 10));
pin_function(PA_9, STM_PIN_DATA(0, 0));
pin_function(PA_10, STM_PIN_DATA(2, 10));
pin_function(PA_11, STM_PIN_DATA(2, 10));
pin_function(PA_12, STM_PIN_DATA(2, 10));
// Set ID pin to open drain with pull-up resistor
pin_mode(PA_10, OpenDrain);
GPIOA->PUPDR &= ~(0x3 << 20);
GPIOA->PUPDR |= 1 << 20;
// Set VBUS pin to open drain
pin_mode(PA_9, OpenDrain);
RCC->AHB2ENR |= RCC_AHB2ENR_OTGFSEN;
// Enable interrupts
OTG_FS->GREGS.GAHBCFG |= (1 << 0);
// Turnaround time to maximum value - too small causes packet loss
OTG_FS->GREGS.GUSBCFG |= (0xF << 10);
// Unmask global interrupts
OTG_FS->GREGS.GINTMSK |= (1 << 3) | // SOF
(1 << 4) | // RX FIFO not empty
(1 << 12); // USB reset
OTG_FS->DREGS.DCFG |= (0x3 << 0) | // Full speed
(1 << 2); // Non-zero-length status OUT handshake
OTG_FS->GREGS.GCCFG |= (1 << 19) | // Enable VBUS sensing
(1 << 16); // Power Up
instance = this;
NVIC_SetVector(OTG_FS_IRQn, (uint32_t)&_usbisr);
NVIC_SetPriority(OTG_FS_IRQn, 1);
}
USBHAL::~USBHAL(void) {
}
void USBHAL::connect(void) {
NVIC_EnableIRQ(OTG_FS_IRQn);
}
void USBHAL::disconnect(void) {
NVIC_DisableIRQ(OTG_FS_IRQn);
}
void USBHAL::configureDevice(void) {
// Not needed
}
void USBHAL::unconfigureDevice(void) {
// Not needed
}
void USBHAL::setAddress(uint8_t address) {
OTG_FS->DREGS.DCFG |= (address << 4);
EP0write(0, 0);
}
bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket,
uint32_t flags) {
uint32_t epIndex = endpoint >> 1;
uint32_t type;
switch (endpoint) {
case EP0IN:
case EP0OUT:
type = 0;
break;
case EPISO_IN:
case EPISO_OUT:
type = 1;
case EPBULK_IN:
case EPBULK_OUT:
type = 2;
break;
case EPINT_IN:
case EPINT_OUT:
type = 3;
break;
}
// Generic in or out EP controls
uint32_t control = (maxPacket << 0) | // Packet size
(1 << 15) | // Active endpoint
(type << 18); // Endpoint type
if (endpoint & 0x1) { // In Endpoint
// Set up the Tx FIFO
if (endpoint == EP0IN) {
OTG_FS->GREGS.DIEPTXF0_HNPTXFSIZ = ((maxPacket >> 2) << 16) |
(bufferEnd << 0);
}
else {
OTG_FS->GREGS.DIEPTXF[epIndex - 1] = ((maxPacket >> 2) << 16) |
(bufferEnd << 0);
}
bufferEnd += maxPacket >> 2;
// Set the In EP specific control settings
if (endpoint != EP0IN) {
control |= (1 << 28); // SD0PID
}
control |= (epIndex << 22) | // TxFIFO index
(1 << 27); // SNAK
OTG_FS->INEP_REGS[epIndex].DIEPCTL = control;
// Unmask the interrupt
OTG_FS->DREGS.DAINTMSK |= (1 << epIndex);
}
else { // Out endpoint
// Set the out EP specific control settings
control |= (1 << 26); // CNAK
OTG_FS->OUTEP_REGS[epIndex].DOEPCTL = control;
// Unmask the interrupt
OTG_FS->DREGS.DAINTMSK |= (1 << (epIndex + 16));
}
return true;
}
// read setup packet
void USBHAL::EP0setup(uint8_t *buffer) {
memcpy(buffer, setupBuffer, MAX_PACKET_SIZE_EP0);
}
void USBHAL::EP0readStage(void) {
}
void USBHAL::EP0read(void) {
}
uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
uint32_t* buffer32 = (uint32_t *) buffer;
uint32_t length = rxFifoCount;
for (uint32_t i = 0; i < length; i += 4) {
buffer32[i >> 2] = OTG_FS->FIFO[0][0];
}
rxFifoCount = 0;
return length;
}
void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
endpointWrite(0, buffer, size);
}
void USBHAL::EP0getWriteResult(void) {
}
void USBHAL::EP0stall(void) {
// If we stall the out endpoint here then we have problems transferring
// and setup requests after the (stalled) get device qualifier requests.
// TODO: Find out if this is correct behavior, or whether we are doing
// something else wrong
stallEndpoint(EP0IN);
// stallEndpoint(EP0OUT);
}
EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
uint32_t epIndex = endpoint >> 1;
uint32_t size = (1 << 19) | // 1 packet
(maximumSize << 0); // Packet size
// if (endpoint == EP0OUT) {
size |= (1 << 29); // 1 setup packet
// }
OTG_FS->OUTEP_REGS[epIndex].DOEPTSIZ = size;
OTG_FS->OUTEP_REGS[epIndex].DOEPCTL |= (1 << 31) | // Enable endpoint
(1 << 26); // Clear NAK
epComplete &= ~(1 << endpoint);
return EP_PENDING;
}
EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
if (!(epComplete & (1 << endpoint))) {
return EP_PENDING;
}
uint32_t* buffer32 = (uint32_t *) buffer;
uint32_t length = rxFifoCount;
for (uint32_t i = 0; i < length; i += 4) {
buffer32[i >> 2] = OTG_FS->FIFO[endpoint >> 1][0];
}
rxFifoCount = 0;
*bytesRead = length;
return EP_COMPLETED;
}
EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
uint32_t epIndex = endpoint >> 1;
OTG_FS->INEP_REGS[epIndex].DIEPTSIZ = (1 << 19) | // 1 packet
(size << 0); // Size of packet
OTG_FS->INEP_REGS[epIndex].DIEPCTL |= (1 << 31) | // Enable endpoint
(1 << 26); // CNAK
OTG_FS->DREGS.DIEPEMPMSK = (1 << epIndex);
while ((OTG_FS->INEP_REGS[epIndex].DTXFSTS & 0XFFFF) < ((size + 3) >> 2));
for (uint32_t i=0; i<(size + 3) >> 2; i++, data+=4) {
OTG_FS->FIFO[epIndex][0] = *(uint32_t *)data;
}
epComplete &= ~(1 << endpoint);
return EP_PENDING;
}
EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
if (epComplete & (1 << endpoint)) {
epComplete &= ~(1 << endpoint);
return EP_COMPLETED;
}
return EP_PENDING;
}
void USBHAL::stallEndpoint(uint8_t endpoint) {
if (endpoint & 0x1) { // In EP
OTG_FS->INEP_REGS[endpoint >> 1].DIEPCTL |= (1 << 30) | // Disable
(1 << 21); // Stall
}
else { // Out EP
OTG_FS->DREGS.DCTL |= (1 << 9); // Set global out NAK
OTG_FS->OUTEP_REGS[endpoint >> 1].DOEPCTL |= (1 << 30) | // Disable
(1 << 21); // Stall
}
}
void USBHAL::unstallEndpoint(uint8_t endpoint) {
}
bool USBHAL::getEndpointStallState(uint8_t endpoint) {
return false;
}
void USBHAL::remoteWakeup(void) {
}
void USBHAL::_usbisr(void) {
instance->usbisr();
}
void USBHAL::usbisr(void) {
if (OTG_FS->GREGS.GINTSTS & (1 << 12)) { // USB Reset
// Set SNAK bits
OTG_FS->OUTEP_REGS[0].DOEPCTL |= (1 << 27);
OTG_FS->OUTEP_REGS[1].DOEPCTL |= (1 << 27);
OTG_FS->OUTEP_REGS[2].DOEPCTL |= (1 << 27);
OTG_FS->OUTEP_REGS[3].DOEPCTL |= (1 << 27);
OTG_FS->DREGS.DIEPMSK = (1 << 0);
bufferEnd = 0;
// Set the receive FIFO size
OTG_FS->GREGS.GRXFSIZ = rxFifoSize >> 2;
bufferEnd += rxFifoSize >> 2;
// Create the endpoints, and wait for setup packets on out EP0
realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0);
OTG_FS->GREGS.GINTSTS = (1 << 12);
}
if (OTG_FS->GREGS.GINTSTS & (1 << 4)) { // RX FIFO not empty
uint32_t status = OTG_FS->GREGS.GRXSTSP;
uint32_t endpoint = (status & 0xF) << 1;
uint32_t length = (status >> 4) & 0x7FF;
uint32_t type = (status >> 17) & 0xF;
rxFifoCount = length;
if (type == 0x6) {
// Setup packet
for (uint32_t i=0; i<length; i+=4) {
setupBuffer[i >> 2] = OTG_FS->FIFO[0][i >> 2];
}
rxFifoCount = 0;
}
if (type == 0x4) {
// Setup complete
EP0setupCallback();
endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0);
}
if (type == 0x2) {
// Out packet
if (endpoint == EP0OUT) {
EP0out();
}
else {
epComplete |= (1 << endpoint);
if ((instance->*(epCallback[endpoint - 2]))()) {
epComplete &= (1 << endpoint);
}
}
}
for (uint32_t i=0; i<rxFifoCount; i+=4) {
(void) OTG_FS->FIFO[0][0];
}
OTG_FS->GREGS.GINTSTS = (1 << 4);
}
if (OTG_FS->GREGS.GINTSTS & (1 << 18)) { // In endpoint interrupt
// Loop through the in endpoints
for (uint32_t i=0; i<4; i++) {
if (OTG_FS->DREGS.DAINT & (1 << i)) { // Interrupt is on endpoint
if (OTG_FS->INEP_REGS[i].DIEPINT & (1 << 7)) {// Tx FIFO empty
// If the Tx FIFO is empty on EP0 we need to send a further
// packet, so call EP0in()
if (i == 0) {
EP0in();
}
// Clear the interrupt
OTG_FS->INEP_REGS[i].DIEPINT = (1 << 7);
// Stop firing Tx empty interrupts
// Will get turned on again if another write is called
OTG_FS->DREGS.DIEPEMPMSK &= ~(1 << i);
}
// If the transfer is complete
if (OTG_FS->INEP_REGS[i].DIEPINT & (1 << 0)) { // Tx Complete
epComplete |= (1 << (1 + (i << 1)));
OTG_FS->INEP_REGS[i].DIEPINT = (1 << 0);
}
}
}
OTG_FS->GREGS.GINTSTS = (1 << 18);
}
if (OTG_FS->GREGS.GINTSTS & (1 << 3)) { // Start of frame
SOF((OTG_FS->GREGS.GRXSTSR >> 17) & 0xF);
OTG_FS->GREGS.GINTSTS = (1 << 3);
}
}
#endif
