Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- oscarsun
- Date:
- 2015-05-10
- Revision:
- 0:a5f38f79c701
File content as of revision 0:a5f38f79c701:
/**
Project D-Weather Station
Temperature measuring meter
@file main.cpp
@brief headfile contain the functions prototypys,defines and global variable
@author Sun Yizhi
@date May 2015
*/
#include "mbed.h"
#include "BMP180.h"
#include "N5110.h"
/**
@namespace lcd
@brief initialize the lcd display
@namespace leds
@brief GPIO led for the green led
@namespace button
@brief use the ISR for the button
*/
// LCD control
N5110::N5110(PinName pwrPin, PinName scePin, PinName rstPin, PinName dcPin, PinName mosiPin, PinName sclkPin, PinName ledPin)
{
spi = new SPI(mosiPin,NC,sclkPin); // create new SPI instance and initialise
initSPI();
// set up pins as required
led = new PwmOut(ledPin);
pwr = new DigitalOut(pwrPin);
sce = new DigitalOut(scePin);
rst = new DigitalOut(rstPin);
dc = new DigitalOut(dcPin);
}
// initialise function - powers up and sends the initialisation commands
void N5110::init()
{
turnOn(); // power up
wait_ms(10); // small delay seems to prevent spurious pixels during mbed reset
reset(); // reset LCD - must be done within 100 ms
// function set - extended
sendCommand(0x20 | CMD_FS_ACTIVE_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_EXTENDED_MODE);
// Don't completely understand these parameters - they seem to work as they are
// Consult the datasheet if you need to change them
sendCommand(CMD_VOP_7V38); // operating voltage - these values are from Chris Yan's Library
sendCommand(CMD_TC_TEMP_2); // temperature control
sendCommand(CMD_BI_MUX_48); // bias
// function set - basic
sendCommand(0x20 | CMD_FS_ACTIVE_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_BASIC_MODE);
normalMode(); // normal video mode by default
sendCommand(CMD_DC_NORMAL_MODE); // black on white
// RAM is undefined at power-up so clear
clearRAM();
}
// sets normal video mode (black on white)
void N5110::normalMode()
{
sendCommand(CMD_DC_NORMAL_MODE);
}
// sets normal video mode (white on black)
void N5110::inverseMode()
{
sendCommand(CMD_DC_INVERT_VIDEO);
}
// function to power up the LCD and backlight
void N5110::turnOn()
{
// set brightness of LED - 0.0 to 1.0 - default is 50%
setBrightness(0.5);
pwr->write(1); // apply power
}
// function to power down LCD
void N5110::turnOff()
{
setBrightness(0.0); // turn backlight off
clearRAM(); // clear RAM to ensure specified current consumption
// send command to ensure we are in basic mode
sendCommand(0x20 | CMD_FS_ACTIVE_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_BASIC_MODE);
// clear the display
sendCommand(CMD_DC_CLEAR_DISPLAY);
// enter the extended mode and power down
sendCommand(0x20 | CMD_FS_POWER_DOWN_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_EXTENDED_MODE);
// small delay and then turn off the power pin
wait_ms(10);
pwr->write(0);
}
// function to change LED backlight brightness
void N5110::setBrightness(float brightness)
{
// check whether brightness is within range
if (brightness < 0.0)
brightness = 0.0;
if (brightness > 1.0)
brightness = 1.0;
// set PWM duty cycle
led->write(brightness);
}
// pulse the active low reset line
void N5110::reset()
{
rst->write(0); // reset the LCD
rst->write(1);
}
// function to initialise SPI peripheral
void N5110::initSPI()
{
spi->format(8,1); // 8 bits, Mode 1 - polarity 0, phase 1 - base value of clock is 0, data captured on falling edge/propagated on rising edge
spi->frequency(4000000); // maximum of screen is 4 MHz
}
// send a command to the display
void N5110::sendCommand(unsigned char command)
{
dc->write(0); // set DC low for command
sce->write(0); // set CE low to begin frame
spi->write(command); // send command
dc->write(1); // turn back to data by default
sce->write(1); // set CE high to end frame (expected for transmission of single byte)
}
// send data to the display at the current XY address
// dc is set to 1 (i.e. data) after sending a command and so should
// be the default mode.
void N5110::sendData(unsigned char data)
{
sce->write(0); // set CE low to begin frame
spi->write(data);
sce->write(1); // set CE high to end frame (expected for transmission of single byte)
}
// this function writes 0 to the 504 bytes to clear the RAM
void N5110::clearRAM()
{
int i;
sce->write(0); //set CE low to begin frame
for(i = 0; i < WIDTH * HEIGHT; i++) { // 48 x 84 bits = 504 bytes
spi->write(0x00); // send 0's
}
sce->write(1); // set CE high to end frame
}
// function to set the XY address in RAM for subsequenct data write
void N5110::setXYAddress(int x, int y)
{
if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range
sendCommand(0x80 | x); // send addresses to display with relevant mask
sendCommand(0x40 | y);
}
}
// These functions are used to set, clear and get the value of pixels in the display
// Pixels are addressed in the range of 0 to 47 (y) and 0 to 83 (x). The refresh()
// function must be called after set and clear in order to update the display
void N5110::setPixel(int x, int y)
{
if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range
// calculate bank and shift 1 to required position in the data byte
buffer[x][y/8] |= (1 << y%8);
}
}
void N5110::clearPixel(int x, int y)
{
if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range
// calculate bank and shift 1 to required position (using bit clear)
buffer[x][y/8] &= ~(1 << y%8);
}
}
int N5110::getPixel(int x, int y)
{
if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range
// return relevant bank and mask required bit
return (int) buffer[x][y/8] & (1 << y%8);
} else {
return 0;
}
}
// function to refresh the display
void N5110::refresh()
{
int i,j;
setXYAddress(0,0); // important to set address back to 0,0 before refreshing display
// address auto increments after printing string, so buffer[0][0] will not coincide
// with top-left pixel after priting string
sce->write(0); //set CE low to begin frame
for(j = 0; j < BANKS; j++) { // be careful to use correct order (j,i) for horizontal addressing
for(i = 0; i < WIDTH; i++) {
spi->write(buffer[i][j]); // send buffer
}
}
sce->write(1); // set CE high to end frame
}
// fills the buffer with random bytes. Can be used to test the display.
// The rand() function isn't seeded so it probably creates the same pattern everytime
void N5110::randomiseBuffer()
{
int i,j;
for(j = 0; j < BANKS; j++) { // be careful to use correct order (j,i) for horizontal addressing
for(i = 0; i < WIDTH; i++) {
buffer[i][j] = rand()%256; // generate random byte
}
}
}
// function to print 5x7 font
void N5110::printChar(char c,int x,int y)
{
if (y>=0 && y<6) { // check if printing in range of y banks
for (int i = 0; i < 5 ; i++ ) {
int pixel_x = x+i;
if (pixel_x > 83) // ensure pixel isn't outside the buffer size (0 - 83)
break;
buffer[pixel_x][y] = font5x7[(c - 32)*5 + i];
// array is offset by 32 relative to ASCII, each character is 5 pixels wide
}
refresh(); // this sends the buffer to the display and sets address (cursor) back to 0,0
}
}
// function to print string at specified position
void N5110::printString(const char * str,int x,int y)
{
if (y>=0 && y<6) { // check if printing in range of y banks
int n = 0 ; // counter for number of characters in string
// loop through string and print character
while(*str) {
// writes the character bitmap data to the buffer, so that
// text and pixels can be displayed at the same time
for (int i = 0; i < 5 ; i++ ) {
int pixel_x = x+i+n*6;
if (pixel_x > 83) // ensure pixel isn't outside the buffer size (0 - 83)
break;
buffer[pixel_x][y] = font5x7[(*str - 32)*5 + i];
}
str++; // go to next character in string
n++; // increment index
}
refresh(); // this sends the buffer to the display and sets address (cursor) back to 0,0
}
}
// function to clear the screen
void N5110::clear()
{
clearBuffer(); // clear the buffer then call the refresh function
refresh();
}
// function to clear the buffer
void N5110::clearBuffer()
{
int i,j;
for (i=0; i<WIDTH; i++) { // loop through the banks and set the buffer to 0
for (j=0; j<BANKS; j++) {
buffer[i][j]=0;
}
}
}
// function to plot array on display
void N5110::plotArray(float array[])
{
int i;
for (i=0; i<WIDTH; i++) { // loop through array
// elements are normalised from 0.0 to 1.0, so multiply
// by 47 to convert to pixel range, and subtract from 47
// since top-left is 0,0 in the display geometry
setPixel(i,47 - int(array[i]*47.0));
}
refresh();
}
// function to draw circle
void N5110:: drawCircle(int x0,int y0,int radius,int fill)
{
// from http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
int x = radius;
int y = 0;
int radiusError = 1-x;
while(x >= y) {
// if transparent, just draw outline
if (fill == 0) {
setPixel( x + x0, y + y0);
setPixel(-x + x0, y + y0);
setPixel( y + x0, x + y0);
setPixel(-y + x0, x + y0);
setPixel(-y + x0, -x + y0);
setPixel( y + x0, -x + y0);
setPixel( x + x0, -y + y0);
setPixel(-x + x0, -y + y0);
} else { // drawing filled circle, so draw lines between points at same y value
int type = (fill==1) ? 1:0; // black or white fill
drawLine(x+x0,y+y0,-x+x0,y+y0,type);
drawLine(y+x0,x+y0,-y+x0,x+y0,type);
drawLine(y+x0,-x+y0,-y+x0,-x+y0,type);
drawLine(x+x0,-y+y0,-x+x0,-y+y0,type);
}
y++;
if (radiusError<0) {
radiusError += 2 * y + 1;
} else {
x--;
radiusError += 2 * (y - x) + 1;
}
}
refresh();
}
void N5110::drawLine(int x0,int y0,int x1,int y1,int type)
{
int y_range = y1-y0; // calc range of y and x
int x_range = x1-x0;
int start,stop,step;
// if dotted line, set step to 2, else step is 1
step = (type==2) ? 2:1;
// make sure we loop over the largest range to get the most pixels on the display
// for instance, if drawing a vertical line (x_range = 0), we need to loop down the y pixels
// or else we'll only end up with 1 pixel in the x column
if ( abs(x_range) > abs(y_range) ) {
// ensure we loop from smallest to largest or else for-loop won't run as expected
start = x1>x0 ? x0:x1;
stop = x1>x0 ? x1:x0;
// loop between x pixels
for (int x = start; x<= stop ; x+=step) {
// do linear interpolation
int y = y0 + (y1-y0)*(x-x0)/(x1-x0);
if (type == 0) // if 'white' line, turn off pixel
clearPixel(x,y);
else
setPixel(x,y); // else if 'black' or 'dotted' turn on pixel
}
} else {
// ensure we loop from smallest to largest or else for-loop won't run as expected
start = y1>y0 ? y0:y1;
stop = y1>y0 ? y1:y0;
for (int y = start; y<= stop ; y+=step) {
// do linear interpolation
int x = x0 + (x1-x0)*(y-y0)/(y1-y0);
if (type == 0) // if 'white' line, turn off pixel
clearPixel(x,y);
else
setPixel(x,y); // else if 'black' or 'dotted' turn on pixel
}
}
refresh();
}
void N5110::drawRect(int x0,int y0,int width,int height,int fill)
{
if (fill == 0) { // transparent, just outline
drawLine(x0,y0,x0+width,y0,1); // top
drawLine(x0,y0+height,x0+width,y0+height,1); // bottom
drawLine(x0,y0,x0,y0+height,1); // left
drawLine(x0+width,y0,x0+width,y0+height,1); // right
} else { // filled rectangle
int type = (fill==1) ? 1:0; // black or white fill
for (int y = y0; y<= y0+height; y++) { // loop through rows of rectangle
drawLine(x0,y,x0+width,y,type); // draw line across screen
}
}
}
// Sensor control
BMP180::BMP180(PinName sdaPin, PinName sclPin)
{
i2c = new I2C(sdaPin,sclPin); // create new I2C instance and initialise
i2c->frequency(400000); // I2C Fast Mode - 400kHz
leds = new BusOut(LED4,LED3,LED2,LED1);
}
Measurement BMP180::readValues()
{
// algorithm for taking measurement is taken from datasheet
int32_t UT = readUncompensatedTemperatureValue();
int32_t UP = readUncompensatedPressureValue();
// once you have the uncompensated T and P, you can calculate the true T and P
// using the equations from the datasheet
int32_t T = calcTrueTemperature(UT);
int32_t P = calcTruePressure(UP);
Measurement measurement;
measurement.temperature = T*0.1; // scaled by 0.1 C
measurement.pressure = P*0.01; // Put pressure in mb
return measurement;
}
int32_t BMP180::readUncompensatedTemperatureValue()
{
// from algorithm in datasheet - p15
sendByteToRegister(0x2E,0xF4);
wait_ms(5); // 4.5 ms delay for OSS = 1
char MSB = readByteFromRegister(0xF6);
char LSB = readByteFromRegister(0xF7);
// combine in 16-bit value
int UT = (MSB << 8) | LSB;
#ifdef DEBUG
UT = 27898; // test data from datasheet
printf("****DEBUG MODE****\nUT = %d\n",UT);
#endif
return UT;
}
int32_t BMP180::readUncompensatedPressureValue()
{
// from datasheet
char byte = 0x34 + (oss << 6);
sendByteToRegister(byte,0xF4);
wait_ms(8); // 7.5 ms delay for OSS = 1
char MSB = readByteFromRegister(0xF6);
char LSB = readByteFromRegister(0xF7);
char XLSB = readByteFromRegister(0xF7);
int UP = (MSB << 16 | LSB << 8 | XLSB) >> (8 - oss);
#ifdef DEBUG
UP = 23843; // test data from datasheet
printf("UP = %d\n",UP);
#endif
return UP;
}
int32_t BMP180::calcTrueTemperature(int32_t UT)
{
// equations from data sheet
X1 = ((UT - calibration.AC6)*calibration.AC5) >> 15;
X2 = (calibration.MC << 11) / (X1 + calibration.MD);
B5 = X1 + X2;
int32_t T = (B5 + 8) >> 4;
#ifdef DEBUG
printf("****\nX1=%d\nX2=%d\nB5=%d\nT=%d\n",X1,X2,B5,T);
#endif
return T;
}
int32_t BMP180::calcTruePressure(int32_t UP)
{
// equations from data sheet
B6 = B5 - 4000;
X1 = (calibration.B2 * ((B6*B6) >> 12))>>11;
X2 = (calibration.AC2*B6)>>11;
X3 = X1 + X2;
B3 = (((calibration.AC1*4 + X3) << oss)+2)/4;
#ifdef DEBUG
printf("*****\nB6=%d\nX1=%d\nX2=%d\nX3=%d\nB3=%d\n",B6,X1,X2,X3,B3);
#endif
X1 = (calibration.AC3*B6)>>13;
X2 = (calibration.B1*((B6*B6)>>12))>>16;
X3 = ((X1+X2)+2)/4;
B4 = (calibration.AC4*(uint32_t)(X3+32768))>>15;
#ifdef DEBUG
printf("X1=%d\nX2=%d\nX3=%d\nB4=%u\n",X1,X2,X3,B4);
#endif
B7 = ((uint32_t)UP - B3)*(50000>>oss);
#ifdef DEBUG
printf("B7=%u\n",B7);
#endif
int32_t P;
if (B7 < 0x80000000)
P = (B7*2)/B4;
else
P = (B7/B4)*2;
#ifdef DEBUG
printf("P=%d\n",P);
#endif
X1 = (P>>8)*(P>>8);
#ifdef DEBUG
printf("X1=%d\n",X1);
#endif
X1 = (X1*3038)>>16;
#ifdef DEBUG
printf("X1=%d\n",X1);
#endif
X2 = (-7357*P)>>16;
#ifdef DEBUG
printf("X2=%d\n",X2);
#endif
P = P + (X1+X2+3791)/16;
#ifdef DEBUG
printf("P=%d\n",P);
#endif
return P;
}
// configure the barometer
void BMP180::init()
{
i2c->frequency(400000); // set Fast Mode I2C frequency
char data = readByteFromRegister(ID_REG); // Section 4 - datasheet
if (data != 0x55) { // if correct ID not found, hang and flash error message
error();
}
readCalibrationData();
oss = 1; // standard power oversampling setting
#ifdef DEBUG
oss = 0; // used when testing data sheet example
#endif
}
// Reads factory calibrated data
void BMP180::readCalibrationData()
{
char eeprom[22];
readBytesFromRegister(EEPROM_REG_ADD,22,eeprom);
// store calibration data in structure
calibration.AC1 = (int16_t) (eeprom[0] << 8) | eeprom[1];
calibration.AC2 = (int16_t) (eeprom[2] << 8) | eeprom[3];
calibration.AC3 = (int16_t) (eeprom[4] << 8) | eeprom[5];
calibration.AC4 = (uint16_t) (eeprom[6] << 8) | eeprom[7];
calibration.AC5 = (uint16_t) (eeprom[8] << 8) | eeprom[9];
calibration.AC6 = (uint16_t) (eeprom[10] << 8) | eeprom[11];
calibration.B1 = (int16_t) (eeprom[12] << 8) | eeprom[13];
calibration.B2 = (int16_t) (eeprom[14] << 8) | eeprom[15];
calibration.MB = (int16_t) (eeprom[16] << 8) | eeprom[17];
calibration.MC = (int16_t) (eeprom[18] << 8) | eeprom[19];
calibration.MD = (int16_t) (eeprom[20] << 8) | eeprom[21];
// test data from data sheet
#ifdef DEBUG
calibration.AC1 = 408;
calibration.AC2 = -72;
calibration.AC3 = -14383;
calibration.AC4 = 32741;
calibration.AC5 = 32757;
calibration.AC6 = 23153;
calibration.B1 = 6190;
calibration.B2 = 4;
calibration.MB = -32768;
calibration.MC = -8711;
calibration.MD = 2868;
printf("****EXAMPLE CALIBRATION DATA****\n");
printf("AC1=%d\nAC2=%d\nAC3=%d\nAC4=%u\nAC5=%u\nAC6=%u\nB1=%d\nB2=%d\nMB=%d\nMC=%d\nMD=%d\n",
calibration.AC1,calibration.AC2,calibration.AC3,calibration.AC4,calibration.AC5,calibration.AC6,
calibration.B1,calibration.B2,calibration.MB,calibration.MC,calibration.MD);
#endif
}
// reads a byte from a specific register
char BMP180::readByteFromRegister(char reg)
{
int nack = i2c->write(BMP180_W_ADDRESS,®,1,true); // send the register address to the slave
if (nack)
error(); // if we don't receive acknowledgement, flash error message
char rx;
nack = i2c->read(BMP180_W_ADDRESS,&rx,1); // read a byte from the register and store in buffer
if (nack)
error(); // if we don't receive acknowledgement, flash error message
return rx;
}
// reads a series of bytes, starting from a specific register
void BMP180::readBytesFromRegister(char reg,int numberOfBytes,char bytes[])
{
int nack = i2c->write(BMP180_W_ADDRESS,®,1,true); // send the slave write address and the configuration register address
if (nack)
error(); // if we don't receive acknowledgement, flash error message
nack = i2c->read(BMP180_W_ADDRESS,bytes,numberOfBytes); // read bytes
if (nack)
error(); // if we don't receive acknowledgement, flash error message
}
// sends a byte to a specific register
void BMP180::sendByteToRegister(char byte,char reg)
{
char data[2];
data[0] = reg;
data[1] = byte;
// send the register address, followed by the data
int nack = i2c->write(BMP180_W_ADDRESS,data,2);
if (nack)
error(); // if we don't receive acknowledgement, flash error message
}
void BMP180::error()
{
while(1) {
leds->write(15);
wait(0.1);
leds->write(0);
wait(0.1);
}
}
N5110 lcd(p7,p8,p9,p10,p11,p13,p26);//initialize the NOKIA 5110 lcd screen
BMP180 bmp(p28,p27);//initialize the specific temperature sensor
BusOut leds(LED4,LED3,LED2,LED1);//initialize the leds of the mbed
DigitalOut led(p24);//initialize the green led on the printed circuit board
InterruptIn button(p18);//initialize the button on the printed circuit board
#define up 1 // define up is 1
#define down 0 // define down is 0
int state = up;//initialize state to up
int buttonFlag = 0;//initialize buttonFlag to down
/**
@Interrupt Service Routine
*/
void buttonPressed()
{
state = !state;//when button is pressed state will be changed
}
int main()
{
lcd.init();//initialize the display screen
bmp.init();//initialize the temperature sensor
lcd.printString("Temperature",2,2);//the opening word is temperature
wait(3.0);//after three seconds start to measuring temperature
Measurement measurement;//Measurement is a function and measurement is a variable
button.rise(&buttonPressed);//event generated on rising edge
led = 1;//set the green led on when turn on the deivce
while(1)
{
measurement = bmp.readValues();//initialize the value of variable measurement from the function bmp.readValues()
char t[14];//create a buffer 't' to store 14 characters
int length = sprintf(t,"T = %.2f C",measurement.temperature);//print formatted data to buffer 't'
// it is important the format specifier ensures the length will fit in the buffer
float k = measurement.temperature + 273;//a transform function make the unit from Centigrade to Kelvin
char kel[14];//create a buffer 'kel' to store 14 characters
length = sprintf(kel,"T = %.2f K",k);//print formatted data to buffer 'kel'
// it is important the format specifier ensures the length will fit in the buffer
char p[14];//create a buffer 'p' to store 14 characters
length = sprintf(p,"P = %.2f mb",measurement.pressure);//print formatted data to buffer'p'
// it is important the format specifier ensures the length will fit in the buffer
wait(0.5);//after one second to do next measurement
lcd.clear();//clear the buffer
switch(state)
{
case up:// at up case
state = 1;//let state to 1
lcd.printString(t,0,1);//display the temperature in centigrade on the lcd screen
lcd.printString(p,0,3);//display the atmospheric pressure on the lcd screen
break;//out of the function
case down://at down case
state = 0;//let state to 0
lcd.printString(kel,0,1);//display the temperature in kelvin on the lcd screen
lcd.printString(p,0,3);//display the atmospheric pressure on the lcd screen
break;//out of the function
default:
break;
}
if(measurement.temperature > 25.00)//when the value of variable temperature is bigger than 25
{
led =1;//led will be on state
wait(0.1);//led will blink in each 0.1 second
led =0;//led will be down state
wait(0.1);//led will blink in each 0.1 second
}
}
}