Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/hal/TARGET_Silicon_Labs/TARGET_EFM32/emlib/src/em_dma.c
- Committer:
- bogdanm
- Date:
- 2015-10-01
- Revision:
- 0:9b334a45a8ff
- Child:
- 50:a417edff4437
File content as of revision 0:9b334a45a8ff:
/***************************************************************************//** * @file em_dma.c * @brief Direct memory access (DMA) module peripheral API * @version 3.20.12 ******************************************************************************* * @section License * <b>(C) Copyright 2014 Silicon Labs, http://www.silabs.com</b> ******************************************************************************* * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Silicon Labs has no * obligation to support this Software. Silicon Labs is providing the * Software "AS IS", with no express or implied warranties of any kind, * including, but not limited to, any implied warranties of merchantability * or fitness for any particular purpose or warranties against infringement * of any proprietary rights of a third party. * * Silicon Labs will not be liable for any consequential, incidental, or * special damages, or any other relief, or for any claim by any third party, * arising from your use of this Software. * ******************************************************************************/ #include "em_dma.h" #if defined( DMA_PRESENT ) #include "em_cmu.h" #include "em_assert.h" #include "em_bitband.h" /***************************************************************************//** * @addtogroup EM_Library * @{ ******************************************************************************/ /***************************************************************************//** * @addtogroup DMA * @brief Direct Memory Access (DMA) Peripheral API * @details * These DMA access functions provide basic support for the following * types of DMA cycles: * * @li @b Basic, used for transferring data between memory and peripherals. * @li @b Auto-request, used for transferring data between memory locations. * @li @b Ping-pong, used for for continuous transfer of data between memory * and peripherals, automatically toggling between primary and alternate * descriptors. * @li @b Memory @b scatter-gather, used for transferring a number of buffers * between memory locations. * @li @b Peripheral @b scatter-gather, used for transferring a number of * buffers between memory and peripherals. * * A basic understanding of the DMA controller is assumed. Please refer to * the EFM32 reference manual for further details. * * The term 'descriptor' is used as a synonym to the 'channel control data * structure' term. * * In order to use the DMA controller, the initialization function must have * been executed once (normally during system init): * @verbatim * DMA_Init(); * @endverbatim * * Then, normally a user of a DMA channel configures the channel: * @verbatim * DMA_CfgChannel(); * @endverbatim * * The channel configuration only has to be done once, if reusing the channel * for the same purpose later. * * In order to set up a DMA cycle, the primary and/or alternate descriptor * has to be set up as indicated below. * * For basic or auto-request cycles, use once on either primary or alternate * descriptor: * @verbatim * DMA_CfgDescr(); * @endverbatim * * For ping-pong cycles, configure both primary or alternate descriptors: * @verbatim * DMA_CfgDescr(); // Primary descriptor config * DMA_CfgDescr(); // Alternate descriptor config * @endverbatim * * For scatter-gather cycles, the alternate descriptor array must be programmed: * @verbatim * // 'n' is the number of scattered buffers * // 'descr' points to the start of the alternate descriptor array * * // Fill in 'cfg' * DMA_CfgDescrScatterGather(descr, 0, cfg); * // Fill in 'cfg' * DMA_CfgDescrScatterGather(descr, 1, cfg); * : * // Fill in 'cfg' * DMA_CfgDescrScatterGather(descr, n - 1, cfg); * @endverbatim * * In many cases, the descriptor configuration only has to be done once, if * re-using the channel for the same type of DMA cycles later. * * In order to activate the DMA cycle, use the respective DMA_Activate...() * function. * * For ping-pong DMA cycles, use DMA_RefreshPingPong() from the callback to * prepare the completed descriptor for reuse. Notice that the refresh must * be done prior to the other active descriptor completes, otherwise the * ping-pong DMA cycle will halt. * @{ ******************************************************************************/ /******************************************************************************* ************************** LOCAL FUNCTIONS ******************************** ******************************************************************************/ /** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */ /***************************************************************************//** * @brief * Prepare descriptor for DMA cycle. * * @details * This function prepares the last pieces of configuration required to start a * DMA cycle. Since the DMA controller itself modifies some parts of the * descriptor during use, those parts need to be refreshed if reusing a * descriptor configuration. * * @note * If using this function on a descriptor already activated and in use by the * DMA controller, the behaviour is undefined. * * @param[in] channel * DMA channel to prepare for DMA cycle. * * @param[in] cycleCtrl * DMA cycle type to prepare for. * * @param[in] primary * @li true - prepare primary descriptor * @li false - prepare alternate descriptor * * @param[in] useBurst * The burst feature is only used on peripherals supporting DMA bursts. * Bursts must not be used if the total length (as given by nMinus1) is * less than the arbitration rate configured for the descriptor. Please * refer to the reference manual for further details on burst usage. * * @param[in] dst * Address to start location to transfer data to. If NULL, leave setting in * descriptor as is. * * @param[in] src * Address to start location to transfer data from. If NULL, leave setting in * descriptor as is. * * @param[in] nMinus1 * Number of elements (minus 1) to transfer (<= 1023). ******************************************************************************/ static void DMA_Prepare(unsigned int channel, DMA_CycleCtrl_TypeDef cycleCtrl, bool primary, bool useBurst, void *dst, void *src, unsigned int nMinus1) { DMA_DESCRIPTOR_TypeDef *descr; DMA_DESCRIPTOR_TypeDef *primDescr; DMA_CB_TypeDef *cb; uint32_t inc; uint32_t chBit; uint32_t tmp; primDescr = ((DMA_DESCRIPTOR_TypeDef *)(DMA->CTRLBASE)) + channel; /* Find descriptor to configure */ if (primary) { descr = primDescr; } else { descr = ((DMA_DESCRIPTOR_TypeDef *)(DMA->ALTCTRLBASE)) + channel; } /* If callback defined, update info on whether callback is issued */ /* for primary or alternate descriptor. Mainly needed for ping-pong */ /* cycles. */ cb = (DMA_CB_TypeDef *)(primDescr->USER); if (cb) { cb->primary = (uint8_t)primary; } if (src) { inc = (descr->CTRL & _DMA_CTRL_SRC_INC_MASK) >> _DMA_CTRL_SRC_INC_SHIFT; if (inc == _DMA_CTRL_SRC_INC_NONE) { descr->SRCEND = src; } else { descr->SRCEND = (void *)((uint32_t)src + (nMinus1 << inc)); } } if (dst) { inc = (descr->CTRL & _DMA_CTRL_DST_INC_MASK) >> _DMA_CTRL_DST_INC_SHIFT; if (inc == _DMA_CTRL_DST_INC_NONE) { descr->DSTEND = dst; } else { descr->DSTEND = (void *)((uint32_t)dst + (nMinus1 << inc)); } } chBit = 1 << channel; if (useBurst) { DMA->CHUSEBURSTS = chBit; } else { DMA->CHUSEBURSTC = chBit; } if (primary) { DMA->CHALTC = chBit; } else { DMA->CHALTS = chBit; } /* Set cycle control */ tmp = descr->CTRL & ~(_DMA_CTRL_CYCLE_CTRL_MASK | _DMA_CTRL_N_MINUS_1_MASK); tmp |= nMinus1 << _DMA_CTRL_N_MINUS_1_SHIFT; tmp |= (uint32_t)cycleCtrl << _DMA_CTRL_CYCLE_CTRL_SHIFT; descr->CTRL = tmp; } /** @endcond */ /******************************************************************************* ************************ INTERRUPT FUNCTIONS ****************************** ******************************************************************************/ #ifndef EXCLUDE_DEFAULT_DMA_IRQ_HANDLER /***************************************************************************//** * @brief * Interrupt handler for DMA cycle completion handling. * * @details * Clears any pending flags and calls registered callback (if any). * * If using the default interrupt vector table setup provided, this function * is automatically placed in the IRQ table due to weak linking. If taking * control over the interrupt vector table in some other way, this interrupt * handler must be installed in order to be able to support callback actions. * * In order for the user to implement a custom IRQ handler or run without * a DMA IRQ handler, the user can define EXCLUDE_DEFAULT_DMA_IRQ_HANDLER * with a \#define statement or with the compiler option -D. * ******************************************************************************/ void DMA_IRQHandler(void) { int channel; DMA_CB_TypeDef *cb; uint32_t pending; uint32_t pendingPrio; uint32_t prio; uint32_t primaryCpy; int i; /* Get all pending and enabled interrupts */ pending = DMA->IF; pending &= DMA->IEN; /* Check for bus error */ if (pending & DMA_IF_ERR) { /* Loop here to enable the debugger to see what has happened */ while (1) ; } /* Process all pending channel interrupts. First process channels */ /* defined with high priority, then those with default priority. */ prio = DMA->CHPRIS; pendingPrio = pending & prio; for (i = 0; i < 2; i++) { channel = 0; /* Process pending interrupts within high/default priority group */ /* honouring priority within group. */ while (pendingPrio) { if (pendingPrio & 1) { DMA_DESCRIPTOR_TypeDef *descr = (DMA_DESCRIPTOR_TypeDef *)(DMA->CTRLBASE); uint32_t chmask = 1 << channel; /* Clear pending interrupt prior to invoking callback, in case it */ /* sets up another DMA cycle. */ DMA->IFC = chmask; /* Normally, no point in enabling interrupt without callback, but */ /* check if callback is defined anyway. Callback info is always */ /* located in primary descriptor. */ cb = (DMA_CB_TypeDef *)(descr[channel].USER); if (cb) { /* Toggle next-descriptor indicator always prior to invoking */ /* callback (in case callback reconfigurs something) */ primaryCpy = cb->primary; cb->primary ^= 1; if (cb->cbFunc) { cb->cbFunc(channel, (bool)primaryCpy, cb->userPtr); } } } pendingPrio >>= 1; channel++; } /* On second iteration, process default priority channels */ pendingPrio = pending & ~prio; } } #endif /* EXCLUDE_DEFAULT_DMA_IRQ_HANDLER */ /******************************************************************************* ************************** GLOBAL FUNCTIONS ******************************* ******************************************************************************/ /***************************************************************************//** * @brief * Activate DMA auto-request cycle (used for memory-memory transfers). * * @details * Prior to activating the DMA cycle, the channel and descriptor to be used * must have been properly configured. * * @note * If using this function on a channel already activated and in use by the * DMA controller, the behaviour is undefined. * * @param[in] channel * DMA channel to activate DMA cycle for. * * @param[in] primary * @li true - activate using primary descriptor * @li false - activate using alternate descriptor * * @param[in] dst * Address to start location to transfer data to. If NULL, leave setting in * descriptor as is from a previous activation. * * @param[in] src * Address to start location to transfer data from. If NULL, leave setting in * descriptor as is from a previous activation. * * @param[in] nMinus1 * Number of DMA transfer elements (minus 1) to transfer (<= 1023). The * size of the DMA transfer element (1, 2 or 4 bytes) is configured with * DMA_CfgDescr(). ******************************************************************************/ void DMA_ActivateAuto(unsigned int channel, bool primary, void *dst, void *src, unsigned int nMinus1) { uint32_t chBit; EFM_ASSERT(channel < DMA_CHAN_COUNT); EFM_ASSERT(nMinus1 <= (_DMA_CTRL_N_MINUS_1_MASK >> _DMA_CTRL_N_MINUS_1_SHIFT)); DMA_Prepare(channel, dmaCycleCtrlAuto, primary, false, dst, src, nMinus1); chBit = 1 << channel; DMA->CHENS = chBit; /* Enable channel */ DMA->CHSWREQ = chBit; /* Activate with SW request */ } /***************************************************************************//** * @brief * Activate DMA basic cycle (used for memory-peripheral transfers). * * @details * Prior to activating the DMA cycle, the channel and descriptor to be used * must have been properly configured. * * @note * If using this function on a channel already activated and in use by the * DMA controller, the behaviour is undefined. * * @param[in] channel * DMA channel to activate DMA cycle for. * * @param[in] primary * @li true - activate using primary descriptor * @li false - activate using alternate descriptor * * @param[in] useBurst * The burst feature is only used on peripherals supporting DMA bursts. * Bursts must not be used if the total length (as given by nMinus1) is * less than the arbitration rate configured for the descriptor. Please * refer to the reference manual for further details on burst usage. * * @param[in] dst * Address to start location to transfer data to. If NULL, leave setting in * descriptor as is from a previous activation. * * @param[in] src * Address to start location to transfer data from. If NULL, leave setting in * descriptor as is from a previous activation. * * @param[in] nMinus1 * Number of DMA transfer elements (minus 1) to transfer (<= 1023). The * size of the DMA transfer element (1, 2 or 4 bytes) is configured with * DMA_CfgDescr(). ******************************************************************************/ void DMA_ActivateBasic(unsigned int channel, bool primary, bool useBurst, void *dst, void *src, unsigned int nMinus1) { EFM_ASSERT(channel < DMA_CHAN_COUNT); EFM_ASSERT(nMinus1 <= (_DMA_CTRL_N_MINUS_1_MASK >> _DMA_CTRL_N_MINUS_1_SHIFT)); DMA_Prepare(channel, dmaCycleCtrlBasic, primary, useBurst, dst, src, nMinus1); /* Enable channel, request signal is provided by peripheral device */ DMA->CHENS = 1 << channel; } /***************************************************************************//** * @brief * Activate DMA ping-pong cycle (used for memory-peripheral transfers). * * @details * Prior to activating the DMA cycle, the channel and both descriptors must * have been properly configured. The primary descriptor is always the first * descriptor to be used by the DMA controller. * * @note * If using this function on a channel already activated and in use by the * DMA controller, the behaviour is undefined. * * @param[in] channel * DMA channel to activate DMA cycle for. * * @param[in] useBurst * The burst feature is only used on peripherals supporting DMA bursts. * Bursts must not be used if the total length (as given by nMinus1) is * less than the arbitration rate configured for the descriptors. Please * refer to the reference manual for further details on burst usage. Notice * that this setting is used for both the primary and alternate descriptors. * * @param[in] primDst * Address to start location to transfer data to, for primary descriptor. * If NULL, leave setting in descriptor as is from a previous activation. * * @param[in] primSrc * Address to start location to transfer data from, for primary descriptor. * If NULL, leave setting in descriptor as is from a previous activation. * * @param[in] primNMinus1 * Number of DMA transfer elements (minus 1) to transfer (<= 1023), for * primary descriptor. The size of the DMA transfer element (1, 2 or 4 bytes) * is configured with DMA_CfgDescr(). * * @param[in] altDst * Address to start location to transfer data to, for alternate descriptor. * If NULL, leave setting in descriptor as is from a previous activation. * * @param[in] altSrc * Address to start location to transfer data from, for alternate descriptor. * If NULL, leave setting in descriptor as is from a previous activation. * * @param[in] altNMinus1 * Number of DMA transfer elements (minus 1) to transfer (<= 1023), for * alternate descriptor. The size of the DMA transfer element (1, 2 or 4 bytes) * is configured with DMA_CfgDescr(). ******************************************************************************/ void DMA_ActivatePingPong(unsigned int channel, bool useBurst, void *primDst, void *primSrc, unsigned int primNMinus1, void *altDst, void *altSrc, unsigned int altNMinus1) { EFM_ASSERT(channel < DMA_CHAN_COUNT); EFM_ASSERT(primNMinus1 <= (_DMA_CTRL_N_MINUS_1_MASK >> _DMA_CTRL_N_MINUS_1_SHIFT)); EFM_ASSERT(altNMinus1 <= (_DMA_CTRL_N_MINUS_1_MASK >> _DMA_CTRL_N_MINUS_1_SHIFT)); /* Prepare alternate descriptor first */ DMA_Prepare(channel, dmaCycleCtrlPingPong, false, useBurst, altDst, altSrc, altNMinus1); /* Prepare primary descriptor last in order to start cycle using it */ DMA_Prepare(channel, dmaCycleCtrlPingPong, true, useBurst, primDst, primSrc, primNMinus1); /* Enable channel, request signal is provided by peripheral device */ DMA->CHENS = 1 << channel; } /***************************************************************************//** * @brief * Activate DMA scatter-gather cycle (used for either memory-peripheral * or memory-memory transfers). * * @details * Prior to activating the DMA cycle, the array with alternate descriptors * must have been properly configured. This function can be reused without * reconfiguring the alternate descriptors, as long as @p count is the same. * * @note * If using this function on a channel already activated and in use by the * DMA controller, the behaviour is undefined. * * @param[in] channel * DMA channel to activate DMA cycle for. * * @param[in] useBurst * The burst feature is only used on peripherals supporting DMA bursts * (and thus this parameter is ignored for memory scatter-gather cycles). * This parameter determines if bursts should be enabled during DMA transfers * using the alternate descriptors. Bursts must not be used if the total * length (as given by nMinus1 for the alternate descriptor) is * less than the arbitration rate configured for the descriptor. Please * refer to the reference manual for further details on burst usage. * * @param[in,out] altDescr * Pointer to start of array with prepared alternate descriptors. The last * descriptor will have its cycle control type reprogrammed to basic type. * * @param[in] count * Number of alternate descriptors in @p altDescr array. Maximum number of * alternate descriptors is 256. ******************************************************************************/ void DMA_ActivateScatterGather(unsigned int channel, bool useBurst, DMA_DESCRIPTOR_TypeDef *altDescr, unsigned int count) { DMA_DESCRIPTOR_TypeDef *descr; DMA_CB_TypeDef *cb; uint32_t cycleCtrl; uint32_t chBit; EFM_ASSERT(channel < DMA_CHAN_COUNT); EFM_ASSERT(altDescr); EFM_ASSERT(count && (count <= 256)); /* We have to configure the primary descriptor properly in order to */ /* transfer one complete alternate descriptor from the alternate */ /* descriptor table into the actual alternate descriptor. */ descr = (DMA_DESCRIPTOR_TypeDef *)(DMA->CTRLBASE) + channel; /* Set source end address to point to alternate descriptor array */ descr->SRCEND = (uint32_t *)altDescr + (count * 4) - 1; /* The destination end address in the primary descriptor MUST point */ /* to the corresponding alternate descriptor in scatter-gather mode. */ descr->DSTEND = (uint32_t *)((DMA_DESCRIPTOR_TypeDef *)(DMA->ALTCTRLBASE) + channel + 1) - 1; /* The user field of the descriptor is used for callback configuration, */ /* and already configured when channel is configured. Do not modify it. */ /* Determine from alternate configuration whether this is a memory or */ /* peripheral scatter-gather, by looking at the first alternate descriptor. */ cycleCtrl = altDescr->CTRL & _DMA_CTRL_CYCLE_CTRL_MASK; cycleCtrl &= ~(1 << _DMA_CTRL_CYCLE_CTRL_SHIFT); EFM_ASSERT((cycleCtrl == dmaCycleCtrlMemScatterGather) || (cycleCtrl == dmaCycleCtrlPerScatterGather)); /* Set last alternate descriptor to basic or auto-request cycle type in */ /* order to have dma_done signal asserted when complete. Otherwise interrupt */ /* will not be triggered when done. */ altDescr[count - 1].CTRL &= ~_DMA_CTRL_CYCLE_CTRL_MASK; if (cycleCtrl == dmaCycleCtrlMemScatterGather) { altDescr[count - 1].CTRL |= (uint32_t)dmaCycleCtrlAuto << _DMA_CTRL_CYCLE_CTRL_SHIFT; } else { altDescr[count - 1].CTRL |= (uint32_t)dmaCycleCtrlBasic << _DMA_CTRL_CYCLE_CTRL_SHIFT; } /* If callback defined, update info on whether callback is issued for */ /* primary or alternate descriptor. Not really useful for scatter-gather, */ /* but do for consistency. Always set to alternate, since that is the last */ /* descriptor actually used. */ cb = (DMA_CB_TypeDef *)(descr->USER); if (cb) { cb->primary = false; } /* Configure primary descriptor control word */ descr->CTRL = ((uint32_t)dmaDataInc4 << _DMA_CTRL_DST_INC_SHIFT) | ((uint32_t)dmaDataSize4 << _DMA_CTRL_DST_SIZE_SHIFT) | ((uint32_t)dmaDataInc4 << _DMA_CTRL_SRC_INC_SHIFT) | ((uint32_t)dmaDataSize4 << _DMA_CTRL_SRC_SIZE_SHIFT) | /* Use same protection scheme as for alternate descriptors */ (altDescr->CTRL & _DMA_CTRL_SRC_PROT_CTRL_MASK) | ((uint32_t)dmaArbitrate4 << _DMA_CTRL_R_POWER_SHIFT) | (((count * 4) - 1) << _DMA_CTRL_N_MINUS_1_SHIFT) | (((uint32_t)useBurst & 1) << _DMA_CTRL_NEXT_USEBURST_SHIFT) | cycleCtrl; chBit = 1 << channel; /* Start with primary descriptor */ DMA->CHALTC = chBit; /* Enable channel */ DMA->CHENS = chBit; /* Send request if memory scatter-gather, otherwise request signal is */ /* provided by peripheral. */ if (cycleCtrl == dmaCycleCtrlMemScatterGather) { DMA->CHSWREQ = chBit; } } /***************************************************************************//** * @brief * Configure a DMA channel. * * @details * Configure miscellaneous issues for a DMA channel. This function is typically * used once to setup a channel for a certain type of use. * * @note * If using this function on a channel already in use by the DMA controller, * the behaviour is undefined. * * @param[in] channel * DMA channel to configure. * * @param[in] cfg * Configuration to use. ******************************************************************************/ void DMA_CfgChannel(unsigned int channel, DMA_CfgChannel_TypeDef *cfg) { DMA_DESCRIPTOR_TypeDef *descr; EFM_ASSERT(channel < DMA_CHAN_COUNT); EFM_ASSERT(cfg); /* Always keep callback configuration reference in primary descriptor */ descr = (DMA_DESCRIPTOR_TypeDef *)(DMA->CTRLBASE); descr[channel].USER = (uint32_t)(cfg->cb); /* Set to specified priority for channel */ if (cfg->highPri) { DMA->CHPRIS = 1 << channel; } else { DMA->CHPRIC = 1 << channel; } /* Set DMA signal source select */ DMA->CH[channel].CTRL = cfg->select; /* Enable/disable interrupt as specified */ if (cfg->enableInt) { DMA->IFC = (1 << channel); BITBAND_Peripheral(&(DMA->IEN), channel, 1); } else { BITBAND_Peripheral(&(DMA->IEN), channel, 0); } } /***************************************************************************//** * @brief * Configure DMA descriptor for auto-request, basic or ping-pong DMA cycles. * * @details * This function is used for configuration of a descriptor for the following * DMA cycle types: * * @li auto-request - used for memory/memory transfer * @li basic - used for a peripheral/memory transfer * @li ping-pong - used for a ping-pong based peripheral/memory transfer * style providing time to refresh one descriptor while the other is * in use. * * The DMA cycle is not activated, please see DMA_ActivateAuto(), * DMA_ActivateBasic() or DMA_ActivatePingPong() to activate the DMA cycle. * In many cases, the configuration only has to be done once, and all * subsequent cycles may be activated with the activate function. * * For ping-pong DMA cycles, this function must be used both on the primary * and the alternate descriptor prior to activating the DMA cycle. * * Notice that the DMA channel must also be configured, see DMA_CfgChannel(). * * @note * If using this function on a descriptor already activated and in use by * the DMA controller, the behaviour is undefined. * * @param[in] channel * DMA channel to configure for. * * @param[in] primary * @li true - configure primary descriptor * @li false - configure alternate descriptor * * @param[in] cfg * Configuration to use. ******************************************************************************/ void DMA_CfgDescr(unsigned int channel, bool primary, DMA_CfgDescr_TypeDef *cfg) { DMA_DESCRIPTOR_TypeDef *descr; EFM_ASSERT(channel < DMA_CHAN_COUNT); EFM_ASSERT(cfg); /* Find descriptor to configure */ if (primary) { descr = (DMA_DESCRIPTOR_TypeDef *)DMA->CTRLBASE; } else { descr = (DMA_DESCRIPTOR_TypeDef *)DMA->ALTCTRLBASE; } descr += channel; /* Prepare the descriptor */ /* Source/destination end addresses set when started */ descr->CTRL = (cfg->dstInc << _DMA_CTRL_DST_INC_SHIFT) | (cfg->size << _DMA_CTRL_DST_SIZE_SHIFT) | (cfg->srcInc << _DMA_CTRL_SRC_INC_SHIFT) | (cfg->size << _DMA_CTRL_SRC_SIZE_SHIFT) | ((uint32_t)(cfg->hprot) << _DMA_CTRL_SRC_PROT_CTRL_SHIFT) | (cfg->arbRate << _DMA_CTRL_R_POWER_SHIFT) | (0 << _DMA_CTRL_N_MINUS_1_SHIFT) | /* Set when activated */ (0 << _DMA_CTRL_NEXT_USEBURST_SHIFT) | /* Set when activated */ DMA_CTRL_CYCLE_CTRL_INVALID; /* Set when activated */ } #if defined( _DMA_LOOP0_MASK ) && defined( _DMA_LOOP1_MASK ) /***************************************************************************//** * @brief Configure DMA channel for Loop mode or 2D transfer. * * @details * For 2D transfer, set cfg->enable to "false", and only configure nMinus1 * to same width as channel descriptor. * * @param[in] channel * DMA channel to configure for. * * @param[in] cfg * Configuration to use. ******************************************************************************/ void DMA_CfgLoop(unsigned int channel, DMA_CfgLoop_TypeDef *cfg) { EFM_ASSERT(channel <= 1); EFM_ASSERT(cfg->nMinus1 <= 1023); /* Configure LOOP setting */ switch( channel ) { case 0: DMA->LOOP0 = (cfg->enable << _DMA_LOOP0_EN_SHIFT| cfg->nMinus1 << _DMA_LOOP0_WIDTH_SHIFT); break; case 1: DMA->LOOP1 = (cfg->enable << _DMA_LOOP1_EN_SHIFT| cfg->nMinus1 << _DMA_LOOP1_WIDTH_SHIFT); break; } } #endif #if defined( _DMA_RECT0_MASK ) /***************************************************************************//** * @brief Configure DMA channel 2D transfer properties. * * @param[in] channel * DMA channel to configure for. * * @param[in] cfg * Configuration to use. ******************************************************************************/ void DMA_CfgRect(unsigned int channel, DMA_CfgRect_TypeDef *cfg) { (void)channel; /* Unused parameter */ EFM_ASSERT(channel == 0); EFM_ASSERT(cfg->dstStride <= 2047); EFM_ASSERT(cfg->srcStride <= 2047); EFM_ASSERT(cfg->height <= 1023); /* Configure rectangular/2D copy */ DMA->RECT0 = (cfg->dstStride << _DMA_RECT0_DSTSTRIDE_SHIFT| cfg->srcStride << _DMA_RECT0_SRCSTRIDE_SHIFT| cfg->height << _DMA_RECT0_HEIGHT_SHIFT); } #endif /***************************************************************************//** * @brief * Configure an alternate DMA descriptor for use with scatter-gather DMA * cycles. * * @details * In scatter-gather mode, the alternate descriptors are located in one * contiguous memory area. Each of the alternate descriptor must be fully * configured prior to starting the scatter-gather DMA cycle. * * The DMA cycle is not activated by this function, please see * DMA_ActivateScatterGather() to activate the DMA cycle. In some cases, the * alternate configuration only has to be done once, and all subsequent * transfers may be activated with the activate function. * * Notice that the DMA channel must also be configured, see DMA_CfgChannel(). * * @param[in] descr * Points to start of memory area holding the alternate descriptors. * * @param[in] indx * Alternate descriptor index number to configure (numbered from 0). * * @param[in] cfg * Configuration to use. ******************************************************************************/ void DMA_CfgDescrScatterGather(DMA_DESCRIPTOR_TypeDef *descr, unsigned int indx, DMA_CfgDescrSGAlt_TypeDef *cfg) { uint32_t cycleCtrl; EFM_ASSERT(descr); EFM_ASSERT(cfg); /* Point to selected entry in alternate descriptor table */ descr += indx; if (cfg->srcInc == dmaDataIncNone) { descr->SRCEND = cfg->src; } else { descr->SRCEND = (void *)((uint32_t)(cfg->src) + ((uint32_t)(cfg->nMinus1) << cfg->srcInc)); } if (cfg->dstInc == dmaDataIncNone) { descr->DSTEND = cfg->dst; } else { descr->DSTEND = (void *)((uint32_t)(cfg->dst) + ((uint32_t)(cfg->nMinus1) << cfg->dstInc)); } /* User definable part not used */ descr->USER = 0; if (cfg->peripheral) { cycleCtrl = (uint32_t)dmaCycleCtrlPerScatterGather + 1; } else { cycleCtrl = (uint32_t)dmaCycleCtrlMemScatterGather + 1; } descr->CTRL = (cfg->dstInc << _DMA_CTRL_DST_INC_SHIFT) | (cfg->size << _DMA_CTRL_DST_SIZE_SHIFT) | (cfg->srcInc << _DMA_CTRL_SRC_INC_SHIFT) | (cfg->size << _DMA_CTRL_SRC_SIZE_SHIFT) | ((uint32_t)(cfg->hprot) << _DMA_CTRL_SRC_PROT_CTRL_SHIFT) | (cfg->arbRate << _DMA_CTRL_R_POWER_SHIFT) | ((uint32_t)(cfg->nMinus1) << _DMA_CTRL_N_MINUS_1_SHIFT) | /* Never set next useburst bit, since the descriptor used after the */ /* alternate descriptor is the primary descriptor which operates on */ /* memory. If the alternate descriptors need to have useBurst set, this */ /* done when setting up the primary descriptor, ie when activating. */ (0 << _DMA_CTRL_NEXT_USEBURST_SHIFT) | (cycleCtrl << _DMA_CTRL_CYCLE_CTRL_SHIFT); } /***************************************************************************//** * @brief * Enable or disable a DMA channel. * * @details * Use this function to explicitly enable or disable a DMA channel. A DMA * channel is automatically disabled when the DMA controller has finished a * transaction. * * @param[in] channel * DMA channel to enable or disable. * * @param[in] enable * If 'true' the channel will be enabled. If 'false' the channel will be * disabled. ******************************************************************************/ void DMA_ChannelEnable(unsigned int channel, bool enable) { EFM_ASSERT(channel < DMA_CHAN_COUNT); if (enable) { DMA->CHENS = 1<<channel; } else { DMA->CHENC = 1<<channel; } } /***************************************************************************//** * @brief * Check if DMA channel is enabled. * * @details * The DMA channel is disabled when the DMA controller has finished a DMA * cycle. * * @param[in] channel * DMA channel to check. * * @return * true if channel is enabled, false if not. ******************************************************************************/ bool DMA_ChannelEnabled(unsigned int channel) { EFM_ASSERT(channel < DMA_CHAN_COUNT); return (bool)((DMA->CHENS >> channel) & 1); } /***************************************************************************//** * @brief * Initializes DMA controller. * * @details * This function will reset and prepare the DMA controller for use. Although * it may be used several times, it is normally only used during system * init. If reused during normal operation, notice that any ongoing DMA * transfers will be aborted. When completed, the DMA controller is in * an enabled state. * * @note * Must be invoked before using the DMA controller. * * @param[in] init * Pointer to a structure containing DMA init information. ******************************************************************************/ void DMA_Init(DMA_Init_TypeDef *init) { EFM_ASSERT(init); /* Make sure control block is properly aligned */ #if (DMA_CHAN_COUNT <= 4) EFM_ASSERT(!((uint32_t)(init->controlBlock) & (128 - 1))); #elif (DMA_CHAN_COUNT <= 8) || (DMA_CHAN_COUNT <= 12) EFM_ASSERT(!((uint32_t)(init->controlBlock) & (256 - 1))); #else #error "Unsupported DMA channel count (em_dma.c)." #endif /* Make sure DMA clock is enabled prior to accessing DMA module */ CMU_ClockEnable(cmuClock_DMA, true); /* Make sure DMA controller is set to a known reset state */ DMA_Reset(); /* Clear/enable DMA interrupts */ NVIC_ClearPendingIRQ(DMA_IRQn); NVIC_EnableIRQ(DMA_IRQn); /* Enable bus error interrupt */ DMA->IEN = DMA_IEN_ERR; /* Set pointer to control block, notice that this ptr must have been */ /* properly aligned, according to requirements defined in the reference */ /* manual. */ DMA->CTRLBASE = (uint32_t)(init->controlBlock); /* Configure and enable the DMA controller */ DMA->CONFIG = ((uint32_t)(init->hprot) << _DMA_CONFIG_CHPROT_SHIFT) | DMA_CONFIG_EN; } /***************************************************************************//** * @brief * Refresh a descriptor used in a DMA ping-pong cycle. * * @details * During a ping-pong DMA cycle, the DMA controller automatically alternates * between primary and alternate descriptors, when completing use of a * descriptor. While the other descriptor is in use by the DMA controller, * the SW should refresh the completed descriptor. This is typically done from * the callback defined for the ping-pong cycle. * * @param[in] channel * DMA channel to refresh ping-pong descriptor for. * * @param[in] primary * @li true - refresh primary descriptor * @li false - refresh alternate descriptor * * @param[in] useBurst * The burst feature is only used on peripherals supporting DMA bursts. * Bursts must not be used if the total length (as given by nMinus1) is * less than the arbitration rate configured for the descriptor. Please * refer to the reference manual for further details on burst usage. * * @param[in] dst * Address to start location to transfer data to. If NULL, leave setting in * descriptor as is. * * @param[in] src * Address to start location to transfer data from. If NULL, leave setting in * descriptor as is. * * @param[in] nMinus1 * Number of DMA transfer elements (minus 1) to transfer (<= 1023). The * size of the DMA transfer element (1, 2 or 4 bytes) is configured with * DMA_CfgDescr(). * * @param[in] stop * Indicate that the DMA ping-pong cycle shall stop @b after completing use * of this descriptor. ******************************************************************************/ void DMA_RefreshPingPong(unsigned int channel, bool primary, bool useBurst, void *dst, void *src, unsigned int nMinus1, bool stop) { DMA_CycleCtrl_TypeDef cycleCtrl; DMA_DESCRIPTOR_TypeDef *descr; uint32_t inc; uint32_t chBit; uint32_t tmp; EFM_ASSERT(channel < DMA_CHAN_COUNT); EFM_ASSERT(nMinus1 <= (_DMA_CTRL_N_MINUS_1_MASK >> _DMA_CTRL_N_MINUS_1_SHIFT)); /* The ping-pong DMA cycle may be stopped by issuing a basic cycle type */ if (stop) { cycleCtrl = dmaCycleCtrlBasic; } else { cycleCtrl = dmaCycleCtrlPingPong; } /* Find descriptor to configure */ if (primary) { descr = ((DMA_DESCRIPTOR_TypeDef *)(DMA->CTRLBASE)) + channel; } else { descr = ((DMA_DESCRIPTOR_TypeDef *)(DMA->ALTCTRLBASE)) + channel; } if (src) { inc = (descr->CTRL & _DMA_CTRL_SRC_INC_MASK) >> _DMA_CTRL_SRC_INC_SHIFT; if (inc == _DMA_CTRL_SRC_INC_NONE) { descr->SRCEND = src; } else { descr->SRCEND = (void *)((uint32_t)src + (nMinus1 << inc)); } } if (dst) { inc = (descr->CTRL & _DMA_CTRL_DST_INC_MASK) >> _DMA_CTRL_DST_INC_SHIFT; if (inc == _DMA_CTRL_DST_INC_NONE) { descr->DSTEND = dst; } else { descr->DSTEND = (void *)((uint32_t)dst + (nMinus1 << inc)); } } chBit = 1 << channel; if (useBurst) { DMA->CHUSEBURSTS = chBit; } else { DMA->CHUSEBURSTC = chBit; } /* Set cycle control */ tmp = descr->CTRL & ~(_DMA_CTRL_CYCLE_CTRL_MASK | _DMA_CTRL_N_MINUS_1_MASK); tmp |= nMinus1 << _DMA_CTRL_N_MINUS_1_SHIFT; tmp |= cycleCtrl << _DMA_CTRL_CYCLE_CTRL_SHIFT; descr->CTRL = tmp; } /***************************************************************************//** * @brief * Reset the DMA controller. * * @details * This functions will disable the DMA controller and set it to a reset * state. * * @note * Notice that any ongoing transfers will be aborted. ******************************************************************************/ void DMA_Reset(void) { int i; /* Disable DMA interrupts */ NVIC_DisableIRQ(DMA_IRQn); /* Put the DMA controller into a known state, first disabling it. */ DMA->CONFIG = _DMA_CONFIG_RESETVALUE; DMA->CHUSEBURSTC = _DMA_CHUSEBURSTC_MASK; DMA->CHREQMASKC = _DMA_CHREQMASKC_MASK; DMA->CHENC = _DMA_CHENC_MASK; DMA->CHALTC = _DMA_CHALTC_MASK; DMA->CHPRIC = _DMA_CHPRIC_MASK; DMA->ERRORC = DMA_ERRORC_ERRORC; DMA->IEN = _DMA_IEN_RESETVALUE; DMA->IFC = _DMA_IFC_MASK; /* Clear channel control flags */ for (i = 0; i < DMA_CHAN_COUNT; i++) { DMA->CH[i].CTRL = _DMA_CH_CTRL_RESETVALUE; } } /** @} (end addtogroup DMA) */ /** @} (end addtogroup EM_Library) */ #endif /* defined( DMA_PRESENT ) */