File content as of revision 3:ed09123d603f:
/*
* Instruction List interpreter library
* Copyright (c) 2011 Hiroshi Suga
* Released under the MIT License: http://mbed.org/license/mit
*/
/** @file
* @brief Instruction List interpreter
*/
#include "mbed.h"
#include "ILinterpreter.h"
#undef DEBUG
struct MNE_str {
eMNEMONIC mne;
char str[5];
};
#define IL_MNE_NUM 22
static const struct MNE_str mne_str[IL_MNE_NUM] = {
{MNE_DEF, "DEF"},
{MNE_LD, "LD"}, {MNE_LDI, "LDI"}, {MNE_LDP, "LDP"}, {MNE_LDF, "LDF"},
{MNE_OR, "OR"}, {MNE_ORI, "ORI"}, {MNE_ORP, "ORP"}, {MNE_ORF, "ORF"},
{MNE_AND, "AND"}, {MNE_ANI, "ANI"}, {MNE_ANDP, "ANDP"}, {MNE_ANDF, "ANDF"},
{MNE_ORB, "ORB"}, {MNE_ANB, "ANB"}, {MNE_INV, "INV"},
{MNE_MPS, "MPS"}, {MNE_MRD, "MRD"}, {MNE_MPP, "MPP"},
{MNE_OUT, "OUT"}, {MNE_SET, "SET"}, {MNE_RST, "RST"},
};
struct EXP_str {
eEXPRESSION exp;
char str[3];
};
#define IL_EXP_NUM 10
static const struct EXP_str exp_str[IL_EXP_NUM] = {
{EXP_EQ, "=="}, {EXP_EQ, "="}, {EXP_NE, "!="}, {EXP_NE, "<>"},
{EXP_LT, "<="}, {EXP_LE, "<"}, {EXP_GT, ">"}, {EXP_GE, ">="},
{EXP_MOD, "%"}, {EXP_NMOD, "!%"},
};
ILinterpreter::ILinterpreter () {
il_count = 0;
memset(&inout, 0, sizeof(inout));
inout.sec = time(NULL) + (60 * 60 * 9);
inout_old = inout;
cb_input = NULL;
cb_output = NULL;
}
// input relay, expression
int ILinterpreter::input (tInOut *io, int i, int old) {
int keynum;
float value, check;
struct tm *tim;
tim = localtime(&io->sec);
keynum = il[i].keynum;
// right value
check = il[i].value;
// left value
value = 0;
switch (il[i].key) {
case 'y':
value = tim->tm_year + 1900;
break;
case 'm':
value = tim->tm_mon + 1;
break;
case 'd':
value = tim->tm_mday;
break;
case 'h':
value = tim->tm_hour;
break;
case 'i':
value = tim->tm_min;
break;
case 's':
value = tim->tm_sec;
break;
case '0':
value = 0;
break;
case '1':
value = 1;
break;
case 'M': // RELAY
if (keynum >= IL_RELAY_NUM) break;
value = io->relay[keynum];
break;
case 'T': // Timer
if (keynum >= IL_TIMER_NUM) break;
if (il[i].expression == EXP_NULL) {
value = io->timer_flg[keynum] && io->timer_set[keynum] && io->timer_cnt[keynum] >= io->timer_set[keynum];
} else {
value = (float)io->timer_cnt[keynum] / 10.0;
}
break;
case 'C': // Counter
if (keynum >= IL_COUNTER_NUM) break;
if (il[i].expression == EXP_NULL) {
value = io->count_cnt[keynum] >= io->count_set[keynum];
} else {
value = io->count_cnt[keynum];
}
break;
default: // order input
if (cb_input) {
value = (*cb_input)(il[i].key, keynum, il[i].expression, old);
}
break;
}
// expression
switch (il[i].expression) {
case EXP_EQ:
return value == check;
case EXP_NE:
return value != check;
case EXP_LE:
return value <= check;
case EXP_LT:
return value < check;
case EXP_GE:
return value >= check;
case EXP_GT:
return value > check;
case EXP_MOD:
return (int)value % (int)check;
case EXP_NMOD:
return ! ((int)value % (int)check);
}
return value != 0;
}
// output relay
void ILinterpreter::output (int i, int reg, eMNEMONIC mne) {
int keynum;
keynum = il[i].keynum;
#ifdef DEBUG
printf("output [%c%d] reg=%d sr=%d\r\n", il[i].key, keynum, reg, mne);
#endif
switch (il[i].key) {
case 'M': // relay
if (keynum >= IL_RELAY_NUM) break;
if (mne == MNE_OUT) {
inout.relay[keynum] = reg;
} else
if (mne == MNE_SET && reg) {
inout.relay[keynum] = 1;
} else
if (mne == MNE_RST && reg) {
inout.relay[keynum] = 0;
}
break;
case 'T': // Timer
if (keynum >= IL_TIMER_NUM) break;
if (mne == MNE_OUT) {
if (! inout.timer_flg[keynum]) {
// set timer
inout.timer_cnt[keynum] = 0;
}
inout.timer_flg[keynum] = reg;
} else
if (mne == MNE_RST && reg) {
inout.timer_cnt[keynum] = 0;
}
break;
case 'C': // Counter
if (keynum >= IL_COUNTER_NUM) break;
if (mne == MNE_OUT && reg) {
if (inout.count_rev[keynum]) {
inout.count_cnt[keynum] --;
} else {
inout.count_cnt[keynum] ++;
}
} else
if (mne == MNE_RST && reg) {
inout.count_cnt[keynum] = 0;
}
case 'R': // Counter (reverse)
if (keynum >= IL_COUNTER_NUM) break;
if (mne == MNE_OUT) {
inout.count_rev[keynum] = reg;
}
break;
default: // order output
if (cb_output) {
(*cb_output)(il[i].key, keynum, reg, mne);
}
break;
}
}
// execute IL
int ILinterpreter::exec () {
int i, j, reg = -1;
tInOut inout_tmp;
if (! il_count) return 0;
addr = 0;
inout.sec = time(NULL);
inout_tmp = inout;
#ifdef DEBUG
printf("timer0=%d(%d) timer1=%d(%d)\r\n", inout.timer_cnt[0], inout.timer_set[0], inout.timer_cnt[1], inout.timer_set[1]);
#endif
// mnemonic decode
for(i = 0; i < il_count; i ++) {
switch (il[i].mnemonic) {
case MNE_LD:
push(reg);
reg = input(&inout, i);
break;
case MNE_LDI:
push(reg);
reg = ! input(&inout, i);
break;
case MNE_LDP:
push(reg);
reg = input(&inout, i) && ! input(&inout_old, i, 1);
break;
case MNE_LDF:
push(reg);
reg = ! input(&inout, i) && input(&inout_old, i, 1);
break;
case MNE_AND:
reg = reg && input(&inout, i);
break;
case MNE_ANI:
reg = reg && ! input(&inout, i);
break;
case MNE_ANDP:
reg = reg && (input(&inout, i) && ! input(&inout_old, i, 1));
break;
case MNE_ANDF:
reg = reg && (! input(&inout, i) && input(&inout_old, i, 1));
break;
case MNE_OR:
reg = reg || input(&inout, i);
break;
case MNE_ORI:
reg = reg || ! input(&inout, i);
break;
case MNE_ORP:
reg = reg || (input(&inout, i) && ! input(&inout_old, i, 1));
break;
case MNE_ORF:
reg = reg || (! input(&inout, i) && input(&inout_old, i, 1));
break;
case MNE_ANB:
if (pop(&j) || j == -1) return -1;
reg = reg && j;
break;
case MNE_ORB:
if (pop(&j) || j == -1) return -1;
reg = reg || j;
break;
case MNE_INV:
reg = ! reg;
break;
case MNE_MPS:
if (push(reg)) return -1;
break;
case MNE_MRD:
if (read(®) || reg == -1) return -1;
break;
case MNE_MPP:
if (pop(®) || reg == -1) return -1;
break;
case MNE_OUT:
case MNE_SET:
case MNE_RST:
output(i, reg, il[i].mnemonic);
break;
}
}
inout_old = inout_tmp;
return 0;
}
// set callback function
struct tInOut* ILinterpreter::attach (float (*pf_i)(char, int, eEXPRESSION, int), void (*pf_o)(char, int, int, eMNEMONIC)) {
cb_input = pf_i;
cb_output = pf_o;
return &inout;
}
// timer 10Hz
void ILinterpreter::pool () {
int i;
if (! il_count) return;
// timer
for (i = 0; i < IL_TIMER_NUM; i ++) {
if (inout.timer_flg[i] && inout.timer_cnt[i] < inout.timer_set[i]) {
inout.timer_cnt[i] ++;
}
}
}
// load sub
void ILinterpreter::load_exp (int i, char *buf) {
int j, len;
char *tmp;
// MNEMONIC "KEY""num"==value
il[i].key = buf[0];
il[i].keynum = strtol(&buf[1], &tmp, 10);
il[i].expression = EXP_NULL;
il[i].value = 0;
if (tmp) {
// expression
for (j = 0; j < IL_EXP_NUM; j ++) {
len = strlen(exp_str[j].str);
if (strncmp(tmp, exp_str[j].str, len) == 0 && tmp[len] >= '0' && tmp[len] <= '9') {
// MNEMONIC KEYnum"==""value"
il[i].expression = exp_str[j].exp;
il[i].value = atof(&tmp[len]);
break;
}
}
}
}
// load IL file
int ILinterpreter::load (char *file) {
FILE *fp;
char c;
int i, j, len;
char buf[20];
il_count = 0;
fp = fopen(file, "r");
if (fp == NULL) return -1;
i = 0;
for (;;) {
if (il_count >= IL_NUM) break;
c = fgetc(fp);
if (feof(fp)) break;
if (c != '\r' && c != '\n' && i < 40 - 1) {
// load
buf[i] = c;
i ++;
continue;
}
buf[i] = 0;
if (i == 0 || buf[0] == '#' || buf[0] == ';') {
// comment
i = 0;
continue;
}
// mnemonic
for (j = 0; j < IL_MNE_NUM; j ++) {
len = strlen(mne_str[j].str);
if (strncmp(buf, mne_str[j].str, len) == 0 && (buf[len] == ' ' || buf[len] == 0)) {
// "MNEMONIC" KEYnum==value
il[il_count].mnemonic = mne_str[j].mne;
load_exp(il_count, &buf[len + 1]);
#ifdef DEBUG
printf("%d: M=%d [%c%d] E=%d V=%f\r\n", il_count, il[il_count].mnemonic, il[il_count].key, il[il_count].keynum, il[il_count].expression, il[il_count].value);
#endif
il_count ++;
break;
}
}
if (strncmp(buf, "END", 3) == 0) break;
if (j == IL_MNE_NUM) return -1;
i = 0;
}
// init
for (i = 0; i < il_count; i ++) {
if (il[i].mnemonic == MNE_DEF) {
switch (il[i].key) {
case 'T': // Timer
inout.timer_set[il[i].keynum] = (int)il[i].value * 10;
break;
case 'C': // Counter
inout.count_set[il[i].keynum] = (int)il[i].value;
break;
}
}
}
fclose(fp);
return il_count;
}
int ILinterpreter::push (int dat) {
if (addr >= IL_STACK) {
return -1;
}
stack[addr] = dat;
addr ++;
return dat;
}
int ILinterpreter::pop (int *dat) {
if (addr == 0) {
return -1;
}
addr --;
*dat = stack[addr];
return 0;
}
int ILinterpreter::read (int *dat) {
if (addr == 0) {
return -1;
}
*dat = stack[addr];
return 0;
}