for LPC1114FN28 (Cortex-M0)
Fork of UIT_FFT_Real by
fftReal.cpp
- Committer:
- MikamiUitOpen
- Date:
- 2014-12-19
- Revision:
- 0:982a9acf3a07
- Child:
- 1:ba9ce95ec9a4
File content as of revision 0:982a9acf3a07:
//------------------------------------------------------------------------------ // FFT class for real data usind decimation-in-frequency algorithm // This class can execute FFT and IFFT // Copyright (c) 2014 MIKAMI, Naoki, 2014/12/19 //------------------------------------------------------------------------------ #include "fftReal.hpp" namespace Mikami { // Constructor FftReal::FftReal(int16_t n) : N_FFT_(n), N_INV_(1.0f/n) { // __clz(): Count leading zeros uint32_t shifted = n << (__clz(n)+1); if (shifted != 0) { fprintf(stderr, "\r\nNot power of 2, in FftReal class."); fprintf(stderr, "\r\nForce to exit the program."); exit(EXIT_FAILURE); // Terminate program } wTable_ = new Complex[n/2]; bTable_ = new uint16_t[n]; u_ = new Complex[n]; // calculation of twiddle factor Complex arg = Complex(0, -6.283185f/N_FFT_); for (int k=0; k<N_FFT_/2; k++) wTable_[k] = exp(arg*(float)k); // for bit reversal table uint16_t nShift = __clz(n) + 1; for (int k=0; k<n; k++) // __rbit(k): Reverse the bit order in a 32-bit word bTable_[k] = __rbit(k) >> nShift; } // Destructor FftReal::~FftReal() { delete[] wTable_; delete[] bTable_; delete[] u_; } // Execute FFT void FftReal::Execute(const float x[], Complex y[]) { for (int n=0; n<N_FFT_; n++) u_[n] = x[n]; // except for last stage ExcludeLastTtage(); // Last stage y[0] = u_[0] + u_[1]; y[N_FFT_/2] = u_[0] - u_[1]; for (int k=2; k<N_FFT_; k+=2) u_[k] = u_[k] + u_[k+1]; // Reorder to bit reversal for (int k=1; k<N_FFT_/2; k++) y[k] = u_[bTable_[k]]; } // Execute IFFT void FftReal::ExecuteIfft(const Complex y[], float x[]) { int half = N_FFT_/2; for (int n=0; n<=half; n++) u_[n] = y[n]; for (int n=half+1; n<N_FFT_; n++) u_[n] = conj(y[N_FFT_-n]); // except for last stage ExcludeLastTtage(); // Last stage including bit reversal x[0] = N_INV_*(u_[0].real() + u_[1].real()); x[half] = N_INV_*(u_[0].real() - u_[1].real()); for (int n=2; n<N_FFT_; n+=2) { float un = u_[n].real(); float un1 = u_[n+1].real(); x[Index(n)] = N_INV_*(un + un1); x[Index(n+1)] = N_INV_*(un - un1); } } // Processing except for last stage void FftReal::ExcludeLastTtage() { uint16_t nHalf = N_FFT_/2; for (int stg=1; stg<N_FFT_/2; stg*=2) { uint16_t nHalf2 = nHalf*2; for (int kp=0; kp<N_FFT_; kp+=nHalf2) { uint16_t kx = 0; for (int k=kp; k<kp+nHalf; k++) { // Butterfly operation Complex uTmp = u_[k+nHalf]; u_[k+nHalf] = (u_[k] - uTmp)*wTable_[kx]; u_[k] = u_[k] + uTmp; kx = kx + stg; } } nHalf = nHalf/2; } } }