Hlimi Omar
/
biniou
TRR2018 omar
Fork of biniou by
stateMachines.cpp
- Committer:
- GaspardD
- Date:
- 2018-09-19
- Revision:
- 39:de3638276b7e
- Parent:
- 38:dba82d8b08e2
- Child:
- 40:b9450d753782
File content as of revision 39:de3638276b7e:
#include "stateMachines.h" //#if DEBUG >0 Serial pc(USBTX, USBRX); // tx, rx //#endif //*************** declarations *************** //time monitoring #ifdef DUMP_SAMPLIG_PERIOD Timer timerLog; #endif Timer timeSinceStart;// temps.start()/stop()/sec: read()/ms: read_ms()/µs: read_us() Timer timerSinceTachy; double distMurG90[NB_ECHANTILLONS_IR];//buffer tournant ir coté gauche pour moyenne double distMurD90[NB_ECHANTILLONS_IR];//buffer tournant ir coté droit pour moyenne double shortDistMurG90[NB_ECHANTILLONS_IR];//buffer tournant ir coté gauche petites distances pour moyenne double shortDistMurD90[NB_ECHANTILLONS_IR];//buffer tournant ir coté droit petites distances pour moyenne double distMurG45[NB_ECHANTILLONS_IR];//buffer tournant ir avant gauche 45deg pour moyenne double distMurD45[NB_ECHANTILLONS_IR];//buffer tournant ir avant droit 45deg pour moyenne #ifdef DLVV double distMurG10[NB_ECHANTILLONS_IR];//buffer tournant ir avant gauche 10deg pour moyenne double distMurD10[NB_ECHANTILLONS_IR];//buffer tournant ir coté droit 10deg pour moyenne double distMurFront[NB_ECHANTILLONS_IR];//buffer tournant ir front #endif double distMurG90Moy; double distMurD90Moy; double shortDistMurG90Moy; double shortDistMurD90Moy; double trueDistMurG90Moy; double trueDistMurD90Moy; double distMurG45Moy; double distMurD45Moy; #ifdef DLVV double distMurG10Moy; double distMurD10Moy; double distMurFrontMoy #endif int index_fifo_ir = 0;//pour géreer le buffer tournant int index_fifo_lidar = 0; //sections s_Section p_section1; s_Section p_section2; //PWM Controls PwmOut PwmMotor(PB_6); // PWM4 ch1 TIM4 PwmOut PwmDirection(PB_5); // PWM3 ch2 TIM3 int pulseDirection_us = DIRECTION_PULSE_MIDDLE; double pulseDirection_us_temp ; int pulseSpeed_us = INITAL_PULSE_SPEED_US; //Capteurs direction AnalogIn anaG90(CAPT_90_GAUCHE);//capteur ir coté gauche AnalogIn anaD90(CAPT_90_DROITE);//capteur ir coté droit AnalogIn anaShortG90(CAPT_90_GAUCHE_SHORT);//capteur ir coté gauche short AnalogIn anaShortD90(CAPT_90_DROITE_SHORT);//capteur ir coté droit short AnalogIn anaG45(CAPT_45_GAUCHE);//capteur ir avant gauche 45 deg AnalogIn anaD45(CAPT_45_DROITE);//capteur ir avant droit 45deg #ifdef DLVV AnalogIn anaDlvvG(CAPT_10_GAUCHE);//capteur ir avant droit 10 deg AnalogIn anaDlvvD(CAPT_10_DROITE);//capteur ir coté droit 10 deg AnalogIn anaDlvvFront(CAPT_DEVANT);//capteur ir avant #endif //piste double largeurPiste90 = 150.0; double largeurPiste45 = 150.0; double positionSurPiste90 = 75.0; double positionSurPiste90Prev = positionSurPiste90; double positionSurPiste45 = 75.0; double positionSurPiste45Prev = positionSurPiste45; double derive45,derive90; int lastDifferences90[NB_INTEGRAL_SAMPLES] = {0};//for integral correction int lastDifferenceIndex = 0; int integralSum; //Capteur vitesse InterruptIn it_tachymeter(PA_11); //LIDAR Serial serialLidar(PC_10,PC_11); // tx, rx int distLidar;// LiDAR actually measured distance value int distLidarPrev; int strengthLidar;// LiDAR signal strength int strengthLidarPrev; int check;// check numerical value storage int i; int uart[9];// store data measured by LiDAR const int HEADER=0x59;// data package frame header //SPEED double maxSpeed_cmps = 0; double tachySpeed_cmps = 0; //en cm/s double tachyStepsRegister = 0; double tachySectionDist_cm = 0; double tachyTotalDist_cm = 0.0; #ifdef FREINAGE_ADAPTATIF Timer brakingTimer; int brakingDurationNeeded_us = 0; #endif //Etats MUR_ST st_murs; MUR_ST st_tmpMurs; SECTION_ST st_currentSection; SECTION_ST st_tmpSection; MAX_SPEED_ST st_maxSpeed; MAX_SPEED_ST st_tmpMaxSpeed; THROTTLE_ST st_thro; THROTTLE_ST st_tmpThro; #ifdef DLVV OBSTACLE_ST st_obstacle; #endif s_Section* p_sectionCourante = NULL; // +++++++++++++++++++++++++++++++++++++++++++ SAMPLING +++++++++++++++++++++++++++++++++++++++++++ #ifdef SAMPLING s_Sample history[TAILLE_SAMPLES]; int indexSample = 0; void initSamples(void) { for(int m=0; m<TAILLE_SAMPLES; m++) { history[m].states.murs_dlvv = '0'; history[m].states.section = '0'; history[m].states.maxSpeed = '0'; history[m].states.throttle = '0'; history[m].time = 0; history[m].position45 = 0.0; history[m].position90 = 0.0; history[m].largeurPiste = 0.0; history[m].dist = 0.0; history[m].pwm_thro_us = 0; history[m].pwm_dir_us = 0; history[m].distLidar = 0; history[m].strLidar = 0; } #if DEBUG > 0 pc.printf("[INIT SAMPLE DONE]\r\n"); #endif return; } void sampleLog(void) { #ifdef DUMP_SAMPLIG_PERIOD if(timerLog.read_us() > DUMP_SAMPLIG_PERIOD) { timerLog.reset(); timerLog.start(); #endif if(indexSample < TAILLE_SAMPLES) { #ifdef DLVV history[indexSample].states.murs_dlvv = (char)st_obstacle; #else history[indexSample].states.murs_dlvv = (char)st_murs; #endif history[indexSample].states.section = (char)st_currentSection; history[indexSample].states.maxSpeed = (char)st_maxSpeed; history[indexSample].states.throttle = (char)st_thro; history[indexSample].time = timeSinceStart.read_us() ; history[indexSample].position45 = positionSurPiste45; history[indexSample].position90 = positionSurPiste90; history[indexSample].largeurPiste = largeurPiste90; history[indexSample].pwm_thro_us = pulseSpeed_us; history[indexSample].pwm_dir_us = pulseDirection_us; history[indexSample].dist = tachySectionDist_cm, history[indexSample].distLidar = distLidar; history[indexSample].strLidar = strengthLidar; indexSample++; #if DEBUG > 0 pc.printf("\r\nodo:%d dist = %.4lf \tstrength = %.4ld \tC45D: %.4lf C45G: %.4lf C90D: %.4lf C90G: %.4lf looptime: %.4lf micros",tachySectionDist_cm,distLidar,strengthLidar,distMurD45Moy,distMurG45Moy,distMurD90Moy,distMurG90Moy,timeSinceStart.read_us());// output signal strength value pc.printf("\r\nstate Murs: %.4lf, state Section %.4lf, state MaxSpeed %.4lf, state Throttle %.4lf\r\n",st_murs,st_currentSection,st_maxSpeed,st_thro); //wait(2); timeSinceStart.reset(); timeSinceStart.start(); #endif } return; #ifdef DUMP_SAMPLIG_PERIOD } #endif } void transmitData(void) { #if DEBUG > 0 pc.printf("[START TO TRANSMIT]\r\n"); #endif serialLidar.printf("time,position 45,position 90,largeur piste,pwm_thro_us,pwm_dir_us,dist,murs/dlvv,section,maxSpeed,throttle\r\n"); for(int p=0; p<indexSample; p++) { serialLidar.printf("%d,%.5f,%.5f,%.5f,%d,%d,%.5f,%d,%d,%d,%d\r\n", history[p].time, history[p].position45, history[p].position90, history[p].largeurPiste, history[p].pwm_thro_us, history[p].pwm_dir_us, history[p].dist, history[p].states.murs_dlvv, history[p].states.section, history[p].states.maxSpeed, history[p].states.throttle); } return; } #endif // +++++++++++++++++++++++++++++++++++++++++++ FUNCTION UTILS +++++++++++++++++++++++++++++++++++++++++++ #if DEBUG >= -1 void pressed(void) { #if DEBUG > 0 pc.printf("[BTN PRESSED]\r\n"); #endif //p_sectionCourante = &p_section1; transmitData(); } #endif void initIntegrationTable() { for(int h=0;h<NB_INTEGRAL_SAMPLES;h++) { lastDifferences90[h] = 0; } return; } double getShortDistMoy(AnalogIn* p,double* tab,int size) { tab[index_fifo_ir] = 3.3 * (double)p->read(); // on convertit directement en volts //tension proportionelle à l'inverse de la distance en dessous de 2V tab[index_fifo_ir] = (11.3531/(tab[index_fifo_ir]-0.1034))-0.42; int sumMoy = 0; for(int k=0; k<size; k++) { sumMoy+=tab[k]; } return sumMoy/size; } double getDistMoy(AnalogIn* p,double* tab,int size) { tab[index_fifo_ir] = 3.3 * (double)p->read(); // on convertit directement en volts //tension proportionelle à l'inverse de la distance tab[index_fifo_ir] = 1.0/(0.0161 * (double)tab[index_fifo_ir]); int sumMoy = 0; for(int k=0; k<size; k++) { sumMoy+=tab[k]; } return sumMoy/size; } void tachyCheck() { if(timerSinceTachy.read_us() > 500000) { tachySpeed_cmps = 0.0; } return; } void it4cm() { //le timer sert de flag sur le freinage: //si le biniou ne bouge plus, il n'essaye plus de freiner tant qu'il n'y a pas un nouveau calcul de la vitesse //dans la fonction tachyCheck() >> quand il n'y a pas eu d'IT en 500 ms si la vitesse est inférieure à 0.16 m/s, elle sera considérée comme nulle. tachySectionDist_cm += TACHY_CM; tachyTotalDist_cm += TACHY_CM; tachySpeed_cmps = (TACHY_CM * 1000000.0)/(double)timerSinceTachy.read_us(); // a chaque IT on a parcouru 8 cm soit (8*1000000)/durée #if DEBUG > 2 pc.printf("IT: distance parcourue %.4lf , vitesse:%.4lf \r\n",tachyTotalDist_cm,tachySpeed_cmps); #endif timerSinceTachy.reset(); timerSinceTachy.start(); return; #if DEBUG > 0 pc.printf("IT tachy\r\n"); #endif } void it_serial() { if(serialLidar.getc()==HEADER) { // determine data package frame header 0x59 uart[0]=HEADER; if(serialLidar.getc()==HEADER) { //determine data package frame header 0x59 uart[1]=HEADER; for(i=2; i<9; i++) { // store data to array uart[i]=serialLidar.getc(); } check=uart[0]+uart[1]+uart[2]+uart[3]+uart[4]+uart[5]+uart[6]+uart[7]; if(uart[8]==(check&0xff)) { // check the received data as per protocols distLidarPrev = distLidar; distLidar=uart[2]+uart[3]*256;// calculate distance value strengthLidarPrev = strengthLidar; strengthLidar=uart[4]+uart[5]*256;// calculate signal strength value } } } } // +++++++++++++++++++++++++++++++++++++++++++ STATES MACHINES +++++++++++++++++++++++++++++++++++++++++++ //########## INIT STATES MACHINES ########## void mursInit(void) { #if DEBUG > 0 pc.printf("Init Murs\r\n"); #endif timeSinceStart.start(); st_murs=REF_BIDIR; PwmDirection.period_us(SPEED_PERIOD_US); PwmDirection.pulsewidth_us(DIRECTION_PULSE_MIDDLE);// milieu return; } #ifdef DLVV void obstacleInit(void) { #if DEBUG > 0 pc.printf("Init Obstacle\r\n"); #endif st_speedLimit=ALL_CLEAR; return; } #endif void sectionInit(void) { #if DEBUG > 0 pc.printf("Init Section\r\n"); #endif st_currentSection=ARRET; p_sectionCourante=&p_section1; it_tachymeter.fall(&it4cm); timerSinceTachy.start(); tachySectionDist_cm = 0; tachyStepsRegister = 0; //section de test 1 p_section1.nextSection =NULL;// &p_section2; p_section1.consigne_position = 75.0; p_section1.targetSpeed_cmps = 400.0; p_section1.slowSpeed_cmps = 328.0; p_section1.coef_p_speed = 1; p_section1.lidarWarningDist_cm = 120.0; p_section1.lng_section_cm = 30000.0;//30m p_section1.coef_p = 4; p_section1.coef_i = 0.00001; p_section1.coef_d = 0.00001; //section de test p_section2.nextSection = NULL; p_section2.consigne_position = 75.0; p_section2.targetSpeed_cmps = 328.0; p_section2.slowSpeed_cmps = 328.0; p_section2.coef_p_speed = 1.0; p_section2.lidarWarningDist_cm = 300.0; p_section2.lng_section_cm = 200.0;//2m p_section2.coef_p = 1; p_section2.coef_i = 0.00001; p_section2.coef_d = 0.00001; return; } void maxSpeedInit(void) { #if DEBUG > 0 pc.printf("Init Max Speed\r\n"); #endif st_maxSpeed=SPEED_MAX; maxSpeed_cmps= p_sectionCourante->targetSpeed_cmps; serialLidar.baud(115200); serialLidar.attach(&it_serial); return; } void throttleInit(void) { #if DEBUG > 0 pc.printf("Init Throttle\r\n"); #endif st_thro = REGULATION_SPEED; PwmMotor.period_us(DIRECTION_PERIOD_MS); //20 ms is default PwmMotor.pulsewidth_us(1000);//MIN wait(3); PwmMotor.pulsewidth_us(2000);//MAX wait(1); PwmMotor.pulsewidth_us(1500);//ZEROING wait(1); pulseSpeed_us = INITAL_PULSE_SPEED_US; #if DEBUG > 0 pc.printf("temps init: %.4lf micros\r\n",timeSinceStart.read_us()); pc.printf("\r\nStates INIT: state Murs: %.4lf, state Section %.4lf, state MaxSpeed %.4lf, state Throttle %.4lf\r\n",st_murs,st_currentSection,st_maxSpeed,st_thro); timeSinceStart.reset(); timeSinceStart.start(); #endif #ifdef DUMP_SAMPLIG_PERIOD timerLog.start(); #endif return; } //########## UPDATE STATES ########## void mursUpdate(void) { #if (DEBUG > 3) pc.printf("\r\nUpdate MURS\r\n"); #endif //lectures distMurG45Moy = getDistMoy(&anaG45,distMurG45,NB_ECHANTILLONS_IR); distMurD45Moy = getDistMoy(&anaD45,distMurD45,NB_ECHANTILLONS_IR); distMurG90Moy = getDistMoy(&anaG90,distMurG90,NB_ECHANTILLONS_IR); distMurD90Moy = getDistMoy(&anaD90,distMurD90,NB_ECHANTILLONS_IR); shortDistMurG90Moy = getShortDistMoy(&anaShortG90,shortDistMurD90,NB_ECHANTILLONS_IR); shortDistMurD90Moy = getShortDistMoy(&anaShortD90,shortDistMurD90,NB_ECHANTILLONS_IR); index_fifo_ir = (index_fifo_ir+1)%NB_ECHANTILLONS_IR; trueDistMurD90Moy = distMurD90Moy; trueDistMurG90Moy = distMurG90Moy; if(shortDistMurG90Moy < DIST_MIN_LONG_CM) { trueDistMurG90Moy = shortDistMurG90Moy; }else { trueDistMurG90Moy = distMurG90Moy; } if(shortDistMurD90Moy < DIST_MIN_LONG_CM) { trueDistMurD90Moy = shortDistMurD90Moy; }else { trueDistMurD90Moy = distMurD90Moy; } #ifdef DLVV switch (st_obstacle) { case FRONT_OBSTRUCTED: st_murs = REF_A_GAUCHE; return; case RIGHT_OBSTRUCTED: st_murs = REF_A_GAUCHE; return; case LEFT_OBSTRUCTED: st_murs = REF_A_DROITE; return; default: break; } #endif st_murs = REF_BIDIR; return; } #ifdef DLVV void obstacleUpdate(void) { return; } #endif void sectionUpdate(void) { #if (DEBUG > 3) pc.printf("\r\nUpdate Section\r\n"); #endif switch (st_currentSection) { case RUNNING_SECTION: if(tachySectionDist_cm > p_sectionCourante->lng_section_cm) { //on pourrait rajouter un test lidar st_tmpSection = LOADING_SECTION; } else { return; } break; case LOADING_SECTION: if(p_sectionCourante != NULL) { //la section a ete chargee dans sectionOutput st_tmpSection = RUNNING_SECTION; } else { st_tmpSection=ARRET; } break; case ARRET: if(p_sectionCourante != NULL) { st_tmpSection = RUNNING_SECTION; } else { return; } break; default: break; } st_currentSection = st_tmpSection; return; } void maxSpeedUpdate(void) { #if (DEBUG > 3) pc.printf("\r\nUpdate MaxSpeed\r\n"); #endif i=0; if( strengthLidar > LIDAR_STRENGTH_THRESOLD ) { if( distLidar > p_sectionCourante->lidarWarningDist_cm ) { st_tmpMaxSpeed = SPEED_MAX; } else if( strengthLidar > LIDAR_STRENGTH_THRESOLD && strengthLidarPrev > LIDAR_STRENGTH_THRESOLD && distLidar < p_sectionCourante->lidarWarningDist_cm && distLidarPrev-distLidar > 3) { st_tmpMaxSpeed = BLOCKED; } else{ st_tmpMaxSpeed = SPEED_WARNING; } } else { st_tmpMaxSpeed = SPEED_MAX; } st_maxSpeed = st_tmpMaxSpeed; return; } void throttleUpdate(void) { #if (DEBUG > 3) pc.printf("\r\nUpdate Throttle\r\n"); #endif switch (st_thro) { case REGULATION_SPEED: if( st_currentSection == ARRET || st_maxSpeed == BLOCKED ) { st_tmpThro = BRAKING; } #ifdef FREINAGE_ADAPTATIF else if(tachySpeed_cmps > (maxSpeed_cmps + SPEED_DELTA_CMPS)) { st_tmpThro = BRAKING; brakingDurationNeeded_us = 10000.0 * MASSE_BINIOU_KG *((tachySpeed_cmps-maxSpeed_cmps)*(tachySpeed_cmps+maxSpeed_cmps)) / (PUISSANCE_FREINAGE_W *2) ;//vitesse en m/s et temps en us brakingTimer.reset(); brakingTimer.start(); } #endif else { return; } break; case BRAKING: if( st_maxSpeed == BLOCKED #ifdef FREINAGE_ADAPTATIF || brakingTimer.read_us() < brakingDurationNeeded_us #endif ) { st_tmpThro = BRAKING; }else if(st_currentSection == ARRET) { st_tmpThro = STOPPED; } else{ #ifdef FREINAGE_ADAPTATIF brakingDurationNeeded_us = 0; #endif st_tmpThro = REGULATION_SPEED; } break; case STOPPED: if(st_currentSection == RUNNING_SECTION) { st_tmpThro = REGULATION_SPEED; } else { st_tmpThro = STOPPED; } break; default: break; } st_thro = st_tmpThro; return; } //########## OUTPUT STATES ########## //updating output parameters void mursOutput(void) { //pour dériver positionSurPiste45Prev = positionSurPiste45; positionSurPiste90Prev = positionSurPiste90; #if (DEBUG > 3) pc.printf("\r\n Output MURS\r\n"); #endif switch (st_murs) { case REF_A_GAUCHE://par defaut, on compte à partir de la bordure gauche largeurPiste90 = 150.0; positionSurPiste90 = ( trueDistMurG90Moy + DEMI_LARGEUR_BINIOU_CM ); positionSurPiste45 = ( distMurG45Moy * 1.414214/2.0 ) + DEMI_LARGEUR_BINIOU_CM; #ifdef OMAR pc.printf("REF_A_GAUCHE\r\n"); #endif break; case REF_A_DROITE://par defaut, on compte à partir de la bordure gauche largeurPiste90 = 150.0; positionSurPiste90 = largeurPiste90 - ( DEMI_LARGEUR_BINIOU_CM + trueDistMurD90Moy ) ; positionSurPiste45 = largeurPiste90 - ( distMurD45Moy * (1.414214)/2 ) + DEMI_LARGEUR_BINIOU_CM; #ifdef OMAR pc.printf("REF_A_DROITE\r\n"); #endif break; default://REF_BIDIR largeurPiste90 = trueDistMurG90Moy + trueDistMurD90Moy ; largeurPiste45 = distMurG45Moy + distMurD45Moy ; positionSurPiste90 = (trueDistMurG90Moy ); positionSurPiste45 = (distMurG45Moy); #ifdef OMAR pc.printf("REF_BIDIR\r\n"); #endif break; } //deriv correction derive45 = positionSurPiste45 - positionSurPiste45Prev; derive90 = positionSurPiste90 - positionSurPiste90Prev; #ifdef OMAR/* pc.printf("derive45 => %.4lf \r\n ",derive45); pc.printf("derive90 => %.4lf \r\n ",derive90); pc.printf("distMurG45Moy => %.4lf \r\n ",distMurG45Moy); pc.printf("distMurD45Moy => %.4lf \r\n ",distMurD45Moy); pc.printf("trueDistMurG90Moy => %.4lf \r\n ",trueDistMurG90Moy); pc.printf("trueDistMurD90Moy => %.4lf \r\n ",trueDistMurD90Moy); pc.printf("positionSurPiste90 => %.4lf \r\n ",positionSurPiste90); pc.printf("positionSurPiste45 => %.4lf \r\n ",positionSurPiste45); pc.printf("largeurPiste90 => %.4lf \r\n ",largeurPiste90);*/ #endif //integral correction lastDifferences90[lastDifferenceIndex] = (p_sectionCourante->consigne_position - positionSurPiste90); integralSum=0; for(int f=0; f<NB_INTEGRAL_SAMPLES; f++) { integralSum+=lastDifferences90[f]; } lastDifferenceIndex = (lastDifferenceIndex + 1)%NB_INTEGRAL_SAMPLES; //application des coefficients pulseDirection_us_temp = ((positionSurPiste45 - (largeurPiste45/2.0)) * 4) + DIRECTION_PULSE_MIDDLE; /*pulseDirection_us_temp = COEF_RAYON_BR_S_DIST/tachySpeed_cmps * //facteur de vitesse: plus on va vite, moins on corrige ( ( (p_sectionCourante->consigne_position - positionSurPiste45) * p_sectionCourante->coef_p) //+ ( derive45 * p_sectionCourante->coef_d) //+ ( integralSum * p_sectionCourante->coef_i) ) + DIRECTION_PULSE_MIDDLE;*/ //pc.printf("\r %.4lf ",pulseDirection_us); pulseDirection_us = (int)pulseDirection_us_temp ; #ifdef OMAR pc.printf("p_sectionCourante->consigne_position => %.4lf \r\n ",p_sectionCourante->consigne_position); pc.printf("positionSurPiste45 => %.4lf \r\n ",positionSurPiste45); pc.printf("p_sectionCourante->coef_p => %.4lf \r\n ",p_sectionCourante->coef_p); pc.printf("pulseDirection_us_temp => %.4lf \r\n ",pulseDirection_us_temp); #endif //gestioon du dépassement if(pulseDirection_us > DIRECTION_PULSE_MAX) { //POUR TOURNER A GAUCHE #if DEBUG > 1 pc.printf("!!! OVER PWM Direction pulse: %.4lf\r\n",pulseDirection_us); #endif pulseDirection_us = DIRECTION_PULSE_MAX; } else if(pulseDirection_us < DIRECTION_PULSE_MIN ) { //POUR TOURNER A DROITE #if DEBUG > 1 pc.printf("!!! UNDER PWM Direction pulse: %.4lf\r\n",pulseDirection_us); #endif pulseDirection_us = DIRECTION_PULSE_MIN ; } #if DEBUG > 1 pc.printf("PWM Direction pulse: %.4lf\r\n",pulseDirection_us); #endif PwmDirection.pulsewidth_us(pulseDirection_us); return; } #ifdef DLVV void obstacleOutput(void) { return; } #endif void sectionOutput(void) { #if (DEBUG > 3) pc.printf("\r\n Output Section\r\n"); #endif switch (st_currentSection) { case RUNNING_SECTION: break; case LOADING_SECTION: p_sectionCourante=p_sectionCourante->nextSection; tachySectionDist_cm = 0; break; case ARRET: //on est à l'arret break; default: break; } return; } void maxSpeedOutput(void) { #if (DEBUG > 3) pc.printf("\r\n Output MAX SPEED\r\n"); #endif switch(st_maxSpeed) { case BLOCKED: maxSpeed_cmps = 0; break; case SPEED_WARNING: maxSpeed_cmps = p_sectionCourante->slowSpeed_cmps; break; default: maxSpeed_cmps = p_sectionCourante->targetSpeed_cmps; break; } return; } void throttleOutput(void) { #if (DEBUG > 3) pc.printf("\r\n Output TROTTLE\r\n"); #endif switch (st_thro) { case REGULATION_SPEED: pulseSpeed_us = maxSpeed_cmps * 279 / 2048 + 1558 ; break; case BRAKING: #if DEBUG > 2 pc.printf("BRAKINGGGGGGGGGGGGGGGGGG !!! \r\n"); #endif pulseSpeed_us = BRAKING_PULSE_US; break; case STOPPED: #if DEBUG > 2 pc.printf("STOPPED\r\n"); #endif pulseSpeed_us = ZERO_PULSE_SPEED_US; break; default: break; } PwmMotor.pulsewidth_us(pulseSpeed_us); #if DEBUG > 1 pc.printf("PWM Thro pulse: %.4lf micros\r\n",pulseSpeed_us); #endif return; }