Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Controller.cpp
- Committer:
- oehlemar
- Date:
- 2020-02-24
- Revision:
- 0:7ee4c6416e08
File content as of revision 0:7ee4c6416e08:
/*
* Controller.cpp
* Copyright (c) 2020, ZHAW
* All rights reserved.
*/
#include "Controller.h"
using namespace std;
const float Controller::PERIOD = 0.001f; // period of 1 ms
const float Controller::COUNTS_PER_TURN = 86016.0f; // encoder resolution (pololu motors: 1200.0f, maxon motors: 86016.0f)
const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f; // given in [rad/s]
const float Controller::KN = 45.0f; // speed constant in [rpm/V] (pololu motors: 40.0f, maxon motors: 45.0f)
const float Controller::KP = 0.15f; // speed control parameter
const float Controller::MAX_VOLTAGE = 12.0f; // battery voltage in [V]
const float Controller::MIN_DUTY_CYCLE = 0.01f; // minimum duty-cycle
const float Controller::MAX_DUTY_CYCLE = 0.98f; // maximum duty-cycle
/**
* Creates and initialises the robot controller.
* @param pwmLeft a reference to the pwm output for the left motor.
* @param pwmRight a reference to the pwm output for the right motor.
* @param counterLeft a reference to the encoder counter of the left motor.
* @param counterRight a reference to the encoder counter of the right motor.
*/
Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounter& counterLeft, EncoderCounter& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight) {
// initialise pwm outputs
pwmLeft.period(0.00005f); // pwm period of 50 us
pwmLeft = 0.5f; // duty-cycle of 50%
pwmRight.period(0.00005f); // pwm period of 50 us
pwmRight = 0.5f; // duty-cycle of 50%
// initialise local variables
previousValueCounterLeft = counterLeft.read();
previousValueCounterRight = counterRight.read();
speedLeftFilter.setPeriod(PERIOD);
speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
speedRightFilter.setPeriod(PERIOD);
speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
desiredSpeedLeft = 0.0f;
desiredSpeedRight = 0.0f;
actualSpeedLeft = 0.0f;
actualSpeedRight = 0.0f;
// start the periodic task
ticker.attach(callback(this, &Controller::run), PERIOD);
}
/**
* Deletes this Controller object.
*/
Controller::~Controller() {
ticker.detach(); // stop the periodic task
}
/**
* Sets the desired speed of the left motor.
* @param desiredSpeedLeft desired speed given in [rpm].
*/
void Controller::setDesiredSpeedLeft(float desiredSpeedLeft) {
this->desiredSpeedLeft = desiredSpeedLeft;
}
/**
* Sets the desired speed of the right motor.
* @param desiredSpeedRight desired speed given in [rpm].
*/
void Controller::setDesiredSpeedRight(float desiredSpeedRight) {
this->desiredSpeedRight = desiredSpeedRight;
}
/**
* This is an internal method of the controller that is running periodically.
*/
void Controller::run() {
// calculate the actual speed of the motors in [rpm]
short valueCounterLeft = counterLeft.read();
short valueCounterRight = counterRight.read();
short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft;
short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight;
previousValueCounterLeft = valueCounterLeft;
previousValueCounterRight = valueCounterRight;
actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f);
actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f);
// calculate desired motor voltages Uout
// bitte implementieren!
float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN;
//printf("voltageLeft:%f",voltageLeft);
float voltageRight = (KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN);
//printf("voltageRigth:%f",voltageRight);
// calculate, limit and set the duty-cycle
float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE;
if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE;
else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE;
pwmLeft = dutyCycleLeft;
float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE;
if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE;
else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE;
pwmRight = dutyCycleRight;
}