ROME2 Lab3

Revision:
0:6a4d3264c067
diff -r 000000000000 -r 6a4d3264c067 Controller.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Controller.cpp	Tue Mar 24 08:39:54 2020 +0000
@@ -0,0 +1,281 @@
+/*
+ * Controller.cpp
+ * Copyright (c) 2020, ZHAW
+ * All rights reserved.
+ */
+
+#include "Controller.h"
+
+using namespace std;
+
+const float Controller::PERIOD = 0.001f;                    // period of 1 ms
+const float Controller::PI = 3.14159265f;                   // the constant PI
+const float Controller::WHEEL_DISTANCE = 0.185f;            // distance between wheels, given in [m]
+const float Controller::WHEEL_RADIUS = 0.038f;              // radius of wheels, given in [m]
+const float Controller::COUNTS_PER_TURN = 86016.0f;         // encoder resolution (pololu motors: 1200.0f, maxon motors: 86016.0f)
+const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f;  // given in [rad/s]
+const float Controller::KN = 45.0f;                         // speed constant in [rpm/V] (pololu motors: 40.0f, maxon motors: 45.0f)
+const float Controller::KP = 0.1f;                          // speed control parameter
+const float Controller::MAX_VOLTAGE = 12.0f;                // battery voltage in [V]
+const float Controller::MIN_DUTY_CYCLE = 0.02f;             // minimum duty-cycle
+const float Controller::MAX_DUTY_CYCLE = 0.98f;             // maximum duty-cycle
+
+/**
+ * Creates and initialises the robot controller.
+ * @param pwmLeft a reference to the pwm output for the left motor.
+ * @param pwmRight a reference to the pwm output for the right motor.
+ * @param counterLeft a reference to the encoder counter of the left motor.
+ * @param counterRight a reference to the encoder counter of the right motor.
+ */
+Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounter& counterLeft, EncoderCounter& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight) {
+    
+    // initialise pwm outputs
+    
+    pwmLeft.period(0.00005f);  // pwm period of 50 us
+    pwmLeft = 0.5f;            // duty-cycle of 50%
+    
+    pwmRight.period(0.00005f); // pwm period of 50 us
+    pwmRight = 0.5f;           // duty-cycle of 50%
+    
+    // initialise local variables
+    
+    translationalMotion.setProfileVelocity(2.0f);
+    translationalMotion.setProfileAcceleration(2.0f);
+    translationalMotion.setProfileDeceleration(4.0f);
+    
+    rotationalMotion.setProfileVelocity(6.0f);
+    rotationalMotion.setProfileAcceleration(12.0f);
+    rotationalMotion.setProfileDeceleration(12.0f);
+    
+    translationalVelocity = 0.0f;
+    rotationalVelocity = 0.0f;
+    actualTranslationalVelocity = 0.0f;
+    actualRotationalVelocity = 0.0f;
+    
+    previousValueCounterLeft = counterLeft.read();
+    previousValueCounterRight = counterRight.read();
+    
+    speedLeftFilter.setPeriod(PERIOD);
+    speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
+    
+    speedRightFilter.setPeriod(PERIOD);
+    speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
+    
+    desiredSpeedLeft = 0.0f;
+    desiredSpeedRight = 0.0f;
+    
+    actualSpeedLeft = 0.0f;
+    actualSpeedRight = 0.0f;
+    
+    x = 0.0f;
+    y = 0.0f;
+    alpha = 0.0f;
+    
+    // start the periodic task
+    
+    ticker.attach(callback(this, &Controller::run), PERIOD);
+}
+
+/**
+ * Deletes this Controller object.
+ */
+Controller::~Controller() {
+    
+    ticker.detach(); // stop the periodic task
+}
+
+/**
+ * Sets the desired translational velocity of the robot.
+ * @param velocity the desired translational velocity, given in [m/s].
+ */
+void Controller::setTranslationalVelocity(float velocity) {
+    
+    this->translationalVelocity = velocity;
+}
+
+/**
+ * Sets the desired rotational velocity of the robot.
+ * @param velocity the desired rotational velocity, given in [rad/s].
+ */
+void Controller::setRotationalVelocity(float velocity) {
+    
+    this->rotationalVelocity = velocity;
+}
+
+/**
+ * Gets the actual translational velocity of the robot.
+ * @return the actual translational velocity, given in [m/s].
+ */
+float Controller::getActualTranslationalVelocity() {
+    
+    return actualTranslationalVelocity;
+}
+
+/**
+ * Gets the actual rotational velocity of the robot.
+ * @return the actual rotational velocity, given in [rad/s].
+ */
+float Controller::getActualRotationalVelocity() {
+    
+    return actualRotationalVelocity;
+}
+
+/**
+ * Sets the desired speed of the left motor.
+ * @param desiredSpeedLeft desired speed given in [rpm].
+ */
+void Controller::setDesiredSpeedLeft(float desiredSpeedLeft) {
+
+    this->desiredSpeedLeft = desiredSpeedLeft;
+}
+
+/**
+ * Sets the desired speed of the right motor.
+ * @param desiredSpeedRight desired speed given in [rpm].
+ */
+void Controller::setDesiredSpeedRight(float desiredSpeedRight) {
+
+    this->desiredSpeedRight = desiredSpeedRight;
+}
+
+/**
+ * Gets the actual speed of the left motor.
+ * @return the actual speed given in [rpm].
+ */
+float Controller::getActualSpeedLeft() {
+
+    return actualSpeedLeft;
+}
+
+/**
+ * Gets the actual speed of the right motor.
+ * @return the actual speed given in [rpm].
+ */
+float Controller::getActualSpeedRight() {
+
+    return actualSpeedRight;
+}
+
+/**
+ * Sets the actual x coordinate of the robots position.
+ * @param x the x coordinate of the position, given in [m].
+ */
+void Controller::setX(float x) {
+    
+    this->x = x;
+}
+
+/**
+ * Gets the actual x coordinate of the robots position.
+ * @return the x coordinate of the position, given in [m].
+ */
+float Controller::getX() {
+    
+    return x;
+}
+
+/**
+ * Sets the actual y coordinate of the robots position.
+ * @param y the y coordinate of the position, given in [m].
+ */
+void Controller::setY(float y) {
+    
+    this->y = y;
+}
+
+/**
+ * Gets the actual y coordinate of the robots position.
+ * @return the y coordinate of the position, given in [m].
+ */
+float Controller::getY() {
+    
+    return y;
+}
+
+/**
+ * Sets the actual orientation of the robot.
+ * @param alpha the orientation, given in [rad].
+ */
+void Controller::setAlpha(float alpha) {
+    
+    this->alpha = alpha;
+}
+
+/**
+ * Gets the actual orientation of the robot.
+ * @return the orientation, given in [rad].
+ */
+float Controller::getAlpha() {
+    
+    return alpha;
+}
+
+/**
+ * This is an internal method of the controller that is running periodically.
+ */
+void Controller::run() {
+    
+    // calculate the planned velocities using the motion planner
+    
+    translationalMotion.incrementToVelocity(translationalVelocity, PERIOD);
+    rotationalMotion.incrementToVelocity(rotationalVelocity, PERIOD);
+    
+    // calculate the values 'desiredSpeedLeft' and 'desiredSpeedRight' using the kinematic model
+    
+    desiredSpeedLeft = (translationalMotion.velocity-WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI;
+    desiredSpeedRight = -(translationalMotion.velocity+WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI;
+    
+    // calculate the actual speed of the motors in [rpm]
+
+    short valueCounterLeft = counterLeft.read();
+    short valueCounterRight = counterRight.read();
+
+    short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft;
+    short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight;
+
+    previousValueCounterLeft = valueCounterLeft;
+    previousValueCounterRight = valueCounterRight;
+
+    actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f);
+    actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f);
+
+    // calculate desired motor voltages Uout
+
+    float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN;
+    float voltageRight = KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN;
+
+    // calculate, limit and set the duty-cycle
+
+    float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE;
+    if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE;
+    else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE;
+    pwmLeft = dutyCycleLeft;
+
+    float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE;
+    if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE;
+    else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE;
+    pwmRight = dutyCycleRight;
+    
+    // calculate the values 'actualTranslationalVelocity' and 'actualRotationalVelocity' using the kinematic model
+    
+    actualTranslationalVelocity = (actualSpeedLeft-actualSpeedRight)*2.0f*PI/60.0f*WHEEL_RADIUS/2.0f;
+    actualRotationalVelocity = (-actualSpeedRight-actualSpeedLeft)*2.0f*PI/60.0f*WHEEL_RADIUS/WHEEL_DISTANCE;
+    
+    // calculate the actual robot pose
+    
+    float deltaTranslation = translationalMotion.velocity*PERIOD; // with a real robot: actualTranslationalVelocity*PERIOD
+    float deltaOrientation = rotationalMotion.velocity*PERIOD;    // with a real robot: actualRotationalVelocity*PERIOD
+    
+    float sinAlpha = sin(alpha+deltaOrientation);
+    float cosAlpha = cos(alpha+deltaOrientation);
+    
+    x += cosAlpha*deltaTranslation;
+    y += sinAlpha*deltaTranslation;
+    float alpha = this->alpha+deltaOrientation;
+    
+    while (alpha > PI) alpha -= 2.0f*PI;
+    while (alpha < -PI) alpha += 2.0f*PI;
+    
+    this->alpha = alpha;
+}
+