
this is using the mbed os version 5-13-1
source/main-https.cpp
- Committer:
- ocomeni
- Date:
- 2019-03-16
- Revision:
- 78:07bb86e3ce14
- Parent:
- 77:0b505d1e15f4
- Child:
- 79:a2187bbfa407
File content as of revision 78:07bb86e3ce14:
#define MBED_CONF_MBED_TRACE_ENABLE 1 #include "select-demo.h" #if DEMO == DEMO_HTTPS //#include "mbed.h" #include <events/mbed_events.h> #include <mbed.h> #include "ble/BLE.h" //#include "BLE.h" #include "ATCmdParser.h" //#include "BLEDevice.h" #include "LEDService.h" #include "ble/services/UARTService.h" #include "common_config.h" #include "ATCmdManager.h" #include "BleManager.h" #include "WiFiManager.h" UARTService *uart; DigitalOut alivenessLED(LED1, 0); DigitalOut actuatedLED(LED2, 0); static RawSerial *device; // tx, rx // wifi configuration static wifi_config_t wifi_config; // wifi interface pointer static WiFiInterface *network; // wifi manager pointer static WiFiManager *wiFiManager; // BLE configuration static ble_config_t ble_config; // BLE interface pointer //BLE &_ble; // BLE peripheral pointer static SMDevicePeripheral *peripheral; const static char DEVICE_NAME_MAIN[] = "UBLOX-BLE"; static const uint16_t uuid16_list[] = {LEDService::LED_SERVICE_UUID}; char buffer[BUFFER_LEN]; uint8_t TxBuffer[TX_BUFFER_LEN]; uint8_t RxBuffer[RX_BUFFER_LEN]; static EventQueue eventQueue(/* event count */ 20 * EVENTS_EVENT_SIZE); //static EventQueue eventQueue2(/* event count */ 10 * EVENTS_EVENT_SIZE); LEDService *ledServicePtr; /* allocate statically stacks for the three threads */ //unsigned char rt_stk[1024]; //unsigned char hp_stk[1024]; //unsigned char lp_stk[1024]; unsigned char btle_stk[1024]; unsigned char wifi_stk[1024]; unsigned char atcmd_stk[1024]; /* creates three tread objects with different priorities */ //Thread real_time_thread(osPriorityRealtime, 1024, &rt_stk[0]); //Thread high_prio_thread(osPriorityHigh, 1024, &hp_stk[0]); //Thread low_prio_thread(osPriorityNormal, 1024, &lp_stk[0]); Thread btle_thread(BTLE_THREAD_PRIORITY, 1024, &btle_stk[0]); Thread wifi_thread(WIFI_THREAD_PRIORITY, 1024, &wifi_stk[0]); Thread atcmd_thread(ATCMD_THREAD_PRIORITY, 1024, &atcmd_stk[0]); /* create a semaphore to synchronize the threads */ Semaphore sync_sema; Thread t; #include "network-helper.h" /* List of trusted root CA certificates * currently two: GlobalSign, the CA for os.mbed.com and Let's Encrypt, the CA for httpbin.org * * To add more root certificates, just concatenate them. */ #include "https_certificates.h" // wifi demo #include "wifi_demo.h" Mutex _smutex; // Protect memory access // check free memory void performFreeMemoryCheck() { _smutex.lock(); // perform free memory check int blockSize = 16; int i = 1; printf("Checking memory with blocksize %d char ...\n", blockSize); while (true) { char *p = (char *) malloc(i * blockSize); if (p == NULL) break; free(p); ++i; } printf("Ok for %d char\n", (i - 1) * blockSize); _smutex.unlock(); } static int uartExpectedRcvCount = 0; static int uartCharRcvCount = 0; static bool UartBusy = false; int WriteUartBytes(const uint8_t * txBuffer, size_t bufSize, int txLen) { if(txLen > bufSize) { txLen = bufSize; } //int goodTxLen; //goodTxLen = _parser.write((const char *) txBuffer, txLen); for(int i=0;i<txLen;i++) { device->putc(txBuffer[i]); } // return number of bytes written to UART return (int) txLen; } void printUartRxResult() { if(uartCharRcvCount == 0) { device->printf("\nFirst Call to UART attach callback!!\n"); } else if(uartCharRcvCount >= uartExpectedRcvCount) { device->printf("\nNumber of Received Bytes = %d\n\n", uartCharRcvCount); device->printf("--- Writing back received bytes --- \n"); int n; n = WriteUartBytes(RxBuffer, TX_BUFFER_LEN, uartCharRcvCount); UartBusy = false; } } void UartRxcallback_ex() { if(uartCharRcvCount >= uartExpectedRcvCount) { int x = device->getc(); return; } if(uartCharRcvCount == 0) { eventQueue.call(printUartRxResult); } // Note: you need to actually read from the serial to clear the RX interrupt RxBuffer[uartCharRcvCount] = (uint8_t) device->getc(); uartCharRcvCount++; if(uartCharRcvCount >= uartExpectedRcvCount) { alivenessLED = !alivenessLED; /* Do blinky on LED1 to indicate system aliveness. */ eventQueue.call(printUartRxResult); } } void BackGndUartRead(uint8_t * rxBuffer, size_t bufSize, int rxLen) { UartBusy = true; device->printf("Setting up background UART read - rxLen = %d\n", rxLen); uartCharRcvCount = 0; if(rxLen > bufSize) { rxLen = bufSize; } uartExpectedRcvCount = rxLen; device->printf("\nattaching to device UART\n\n"); device->attach(&UartRxcallback_ex); device->printf("\nBackground UART read setup completed\n\n"); } int ReadUartBytes(uint8_t * rxBuffer, size_t bufSize, int rxLen, bool echo) { UartBusy = true; if(rxLen > bufSize) { rxLen = bufSize; } for(int i=0;i<rxLen;i++) { rxBuffer[i] = (uint8_t) device->getc(); if(echo)device->putc(rxBuffer[i]); } UartBusy = false; //return number of bytes written to UART return rxLen; } void checkUartReceive() { //device->printf("Hello World!\n\r"); char cbuf[100]; int rxCnt=0; while(device->readable()) { //device->printf("uartCharRcvCount = %d\n\r", uartCharRcvCount++); cbuf[rxCnt++] = device->getc(); //putc(getc() + 1); // echo input back to terminal } cbuf[rxCnt] = NULL; if(rxCnt > 0) { device->printf("received %d chars\n", rxCnt); device->printf("%s\n", cbuf); } } uint64_t lastTime = 0; uint64_t now = 0; uint32_t callCount = 0; void HelloUart() { //if(UartBusy)return; // 64-bit time doesn't wrap for half a billion years, at least lastTime = now; now = Kernel::get_ms_count(); callCount++; device->printf("\nHello : %d secs elapsed : CallCount = %d \n", uint32_t(now - lastTime), callCount); } //Serial device(USBTX, USBRX); // tx, rx //RawSerial device(MBED_CONF_APP_UART1_TX, MBED_CONF_APP_UART1_RX); // tx, rx // Wifi-demo void wifi_demo(NetworkInterface* network){ int n = wifi_demo_func(network); if(n > 0)// error { device->printf("\n --- Error running wifi demo --- \n"); } } // Wifi-demo2 void wifi_demo2(){ //int n = wifi_demo_func(network); int n =5; if(n > 0)// error { device->printf("\n --- Error running wifi demo --- \n"); } } void printWait(int numSecs) { printf("Waiting for %d seconds...\n", numSecs); for(int i=0;i<numSecs;i++){ printf("%d", i); printf("\n"); wait(0.5); eventQueue.dispatch(500); // Dispatch time - 500msec } } void setupDefaultBleConfig() { strcpy(ble_config.deviceName, DEVICE_NAME_MAIN);// set BLE device name ble_config.advInterval = 1000; // set advertising interval to 1 second default ble_config.advTimeout = 0; // set advertising timeout to disabled by default } void setupDefaultWiFiConfig() { strcpy(wifi_config.ssid, MBED_CONF_APP_WIFI_SSID); strcpy(wifi_config.pass, MBED_CONF_APP_WIFI_PASSWORD); wifi_config.security = NSAPI_SECURITY_WPA_WPA2; } static int reset_counter = 0; #define MAX_LOOP_COUNT 3 int ble_security_main() { BLE& _ble = BLE::Instance(); events::EventQueue queue; #if MBED_CONF_APP_FILESYSTEM_SUPPORT /* if filesystem creation fails or there is no filesystem the security manager * will fallback to storing the security database in memory */ if (!create_filesystem()) { printf("Filesystem creation failed, will use memory storage\r\n"); } #endif int loopCount = 0; while(1) { { printf("\r\n PERIPHERAL \r\n\r\n"); SMDevicePeripheral peripheral(_ble, queue, peer_address, ble_config); peripheral.run(); return 0; } if(loopCount >= MAX_LOOP_COUNT) { return 0; } { printf("\r\n CENTRAL \r\n\r\n"); SMDeviceCentral central(_ble, queue, peer_address, ble_config); central.run(); } loopCount++; printf("loop Cycle #%d\r\n", loopCount); } return 0; } void print_memory_info() { // allocate enough room for every thread's stack statistics int cnt = osThreadGetCount(); mbed_stats_stack_t *stats = (mbed_stats_stack_t*) malloc(cnt * sizeof(mbed_stats_stack_t)); cnt = mbed_stats_stack_get_each(stats, cnt); for (int i = 0; i < cnt; i++) { printf("Thread: 0x%lX, Stack size: %lu / %lu\r\n", stats[i].thread_id, stats[i].max_size, stats[i].reserved_size); } free(stats); // Grab the heap statistics mbed_stats_heap_t heap_stats; mbed_stats_heap_get(&heap_stats); printf("Heap size: %lu / %lu bytes\r\n", heap_stats.current_size, heap_stats.reserved_size); } //#define DISABLE_WIFI int main() { reset_counter++; //performFreeMemoryCheck(); print_memory_info(); printf("\r\n ++++++ PROGRAM STARTING -- reset count = %d ++++++ \r\n", reset_counter); device = new RawSerial(USBTX, USBRX, DEFAULT_BAUD_RATE); //ble_security_main(); setupDefaultBleConfig(); setupDefaultWiFiConfig(); BLE& _ble = BLE::Instance(); events::EventQueue queue(/* event count */ 10 * EVENTS_EVENT_SIZE); #if MBED_CONF_APP_FILESYSTEM_SUPPORT /* if filesystem creation fails or there is no filesystem the security manager * will fallback to storing the security database in memory */ if (!create_filesystem()) { printf("Filesystem creation failed, will use memory storage\r\n"); } #endif print_memory_info(); printf("\r\n PERIPHERAL \r\n\r\n"); //SMDevicePeripheral peripheral(ble, queue, peer_address); peripheral = new SMDevicePeripheral(_ble, queue, peer_address, ble_config); print_memory_info(); peripheral->run(); btle_thread.start(callback(&queue, &EventQueue::dispatch_forever)); //btle_thread.start(callback(peripheral, &SMDevicePeripheral::run)); //performFreeMemoryCheck(); //reportGapState(); print_memory_info(); printWait(60); // lets give time to see BLE advertising... //reportGapState(); peripheral->stopAdvertising(); //queue.break_dispatch(); //reportGapState(); //btle_thread.join(); //performFreeMemoryCheck(); printf("\r\n BTLE THREAD HAS RETURNED \r\n\r\n"); #ifndef DISABLE_WIFI // comment out wifi part int start = Kernel::get_ms_count(); #ifdef DISABLE_WIFI_DEMO wiFiManager = new WiFiManager(wifi_config, wifi); #else NetworkInterface* network = connect_to_default_network_interface(); int stop = Kernel::get_ms_count(); device->printf("\n The Wifi Network scan took %d ms or %4.1f seconds\n", (stop - start), (float)((stop - start)/1000.0)); // run on separate thread; t.start(callback(wifi_demo, network)); t.join(); network->disconnect(); delete network; device->printf("\n Wifi-Demo completed - restarting BLE \n\n"); #endif #else device->printf("\n Wifi Demo disabled so just waiting it out... \n\n"); printWait(60); // lets wait for a minute before turning BLE back on device->printf("\n ++++++ restarting BLE ++++++ \n\n"); #endif peripheral->startAdvertising(); printWait(60); #ifdef ENABLE_UART_BACKGRND_DEMO for(int i=0;i<255;i++) { device->putc(i); } //int n; //ReadUartBytes(RxBuffer, RX_BUFFER_LEN, 4); reportGapState(); device->printf("\n\n\nEnter # of expected bytes: "); ReadUartBytes(RxBuffer, RX_BUFFER_LEN, 4, true); uint8_t rxLen = (uint8_t) (100*(RxBuffer[0]-'0') + 10*(RxBuffer[1]-'0') + (RxBuffer[2]-'0')) %256; device->printf("\n\nExpected # of Received Bytes = %d\n", rxLen); BackGndUartRead(RxBuffer, RX_BUFFER_LEN, (int) rxLen); device->printf("\n Waiting for 5 seconds "); printWait(5); device->printf("\n Waiting finished!!!\n Now waiting for expected bytes to be received \n\n"); while(UartBusy){ wait(0.1); } #endif device->printf("\r\n++++++ Starting ATCmdmanager ++++++ \r\n"); ATCmdManager *aTCmdManager = new ATCmdManager(USBTX, USBRX, peripheral, wiFiManager, true); aTCmdManager->runMain(); atcmd_thread.start(callback(aTCmdManager, &ATCmdManager::runMain)); //performFreeMemoryCheck(); //eventQueue.dispatch_forever(); //t.start(callback(&eventQueue, &EventQueue::dispatch_forever)); //eventQueue2.dispatch_forever(); return 0; } #endif