Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
DW1000/DW1000.cpp
- Committer:
- manumaet
- Date:
- 2014-11-23
- Revision:
- 15:e1fea7e2aff1
- Parent:
- 13:b4d27bf7062a
- Child:
- 17:8afa5f9122da
File content as of revision 15:e1fea7e2aff1:
#include "DW1000.h"
DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ) : spi(MOSI, MISO, SCLK), cs(CS), irq(IRQ) {
deselect(); // Chip must be deselected first
spi.format(8,0); // Setup the spi for standard 8 bit data and SPI-Mode 0 (GPIO5, GPIO6 open circuit or ground on DW1000)
spi.frequency(1000000); // with a 1MHz clock rate (worked up to 49MHz in our Test)
//resetAll(); // we can do a soft reset if we want to (only needed for debugging)
loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned of or there's receiving malfunction see User Manual LDELOAD on p22 & p158
writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error
writeRegister8(DW1000_SYS_CFG, 2, 0x03); // enable 1024 byte frames TODO: doesn't work!!
irq.rise(this, &DW1000::ISR); // attach Interrupt handler to rising edge
}
uint32_t DW1000::getDeviceID() {
uint32_t result;
readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4);
return result;
}
uint64_t DW1000::getEUI() {
uint64_t result;
readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8);
return result;
}
void DW1000::setEUI(uint64_t EUI) {
writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8);
}
float DW1000::getVoltage() {
uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57
writeRegister(DW1000_RF_CONF, 0x11, buffer, 2);
writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1);
writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1);
writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1);
readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature
float Voltage = buffer[5] * 0.0057 + 2.3;
float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration see instance_common.c row 391
return Voltage;
}
void DW1000::sendString(char* message) {
sendFrame((uint8_t*)message, strlen(message)+1);
}
char* DW1000::receiveString() {
uint16_t framelength = 0; // get framelength
readRegister(DW1000_RX_FINFO, 0, (uint8_t*)&framelength, 2);
framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes
char* receive = new char[framelength]; // get data from buffer
readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)receive, framelength);
return receive;
}
void DW1000::sendFrame(uint8_t* message, uint16_t length) {
writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode TODO: only if receiving!!
writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame including 2 CRC Bytes
length += 2;
length = ((backup & 0xFC) << 8) | (length & 0x03FF);
writeRegister(DW1000_TX_FCTRL, 0, (uint8_t*)&length, 2); // TODO: make that bigger frames than 256 can be sent
writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit
receiveFrame(); // TODO: only if receiving!!
}
void DW1000::receiveFrame() {
writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit
}
void DW1000::ISR() {
uint64_t status; // get the entire system status
readRegister(DW1000_SYS_STATUS, 0, (uint8_t*)&status, 5);
status &= 0xFFFFFFFFFF; // only 40-Bit
if (status & 0x4000)
callbackRX();
if (status & 0x80)
;//callbackTX(); // TODO: mask TX done interrupt make TX handler
}
void DW1000::loadLDE() {
uint16_t ldeload[] = {0x0301, 0x8000, 0x0200}; // initialise LDE algorithm LDELOAD User Manual p22
writeRegister(DW1000_PMSC, 0, (uint8_t*)&ldeload[0], 2); // set clock to XTAL so OTP is reliable
writeRegister(DW1000_OTP_IF, 0x06, (uint8_t*)&ldeload[1], 2); // set LDELOAD bit in OTP
wait_us(150);
writeRegister(DW1000_PMSC, 0, (uint8_t*)&ldeload[2], 2); // recover to PLL clock
}
void DW1000::resetRX() {
writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset
writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset
}
void DW1000::resetAll() {
writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL
writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset
wait_us(10); // wait for PLL to lock
writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset
}
// SPI Interface ------------------------------------------------------------------------------------
uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) {
uint8_t result;
readRegister(reg, subaddress, &result, 1);
return result;
}
void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) {
writeRegister(reg, subaddress, &buffer, 1);
}
void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
setupTransaction(reg, subaddress, false);
for(int i=0; i<length; i++) // get data
buffer[i] = spi.write(0x00);
deselect();
}
void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
setupTransaction(reg, subaddress, true);
for(int i=0; i<length; i++) // put data
spi.write(buffer[i]);
deselect();
}
void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) {
reg |= (write * DW1000_WRITE_FLAG);
select();
if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte
spi.write(reg | DW1000_SUBADDRESS_FLAG);
if (subaddress > 127) { // sub address too long, we need to set flag and send third header byte
spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG);
spi.write((uint8_t)(subaddress >> 7));
} else {
spi.write((uint8_t)subaddress);
}
} else {
spi.write(reg);
}
}
void DW1000::select() { cs = 0; } // set CS low to start transmission
void DW1000::deselect() { cs = 1; } // set CS high to stop transmission
