Small Internet Protocol Stack using a standard serial port.

Dependencies:   mbed

PPP-Blinky - TCP/IP Networking Over a Serial Port

Note: The source code is at the bottom of this page.

/media/uploads/nixnax/blinky-connected.gif
A Windows desktop showing PPP-Blinky in the network connections list.

Describe PPP-Blinky in Three Sentences

PPP-Blinky is a tiny library that enables Internet protocols (IPv4) to any mbed target hardware by using only a serial port.

The code runs on processors with as little as 8k RAM, for example the Nucleo-L053R8 board.

PPP-Blinky uses the industry-standard PPP (Point-to-Point) Protocol and a tiny "stateless" TCP/IP stack.

No Ethernet Port Required

No ethernet port is required - PPP-Blinky uses a serial port to send IP packets to your PC.

PPP-Blinky emulates a standard dial-up modem and therefore connects to Windows, Linux or Adroid machines.

The code runs on most ARM mbed platforms such as the LPC11U24 shown in the picture below:

/media/uploads/nixnax/blinky-to-laptop1.jpg mbed LPC11u24 acting as a webserver to a Windows laptop.

Webserver

The Webserver and WebSocket functions are ideal for building browser-based GUIs on mbed-enabled hardware.

PPP-Blinky's HTTP webserver works with most web clients such as Internet Explorer, Mozilla Firefox, Google Chrome, Safari, Curl, wget and Lynx as well as Microsoft Powershell Invoke-Webrequest command.

In the image below Firefox web browser displays the main web page embedded into PPP-Blinky's code:

/media/uploads/nixnax/ppp-blinky-firefox.jpg Firefox web browser displays a web page embedded into PPP-Blinky's code

WebSocket Service

WebSocket is the most popular protocol standard for real-time bidirectional TCP/IP communication between clients and servers.
In the image below a small Internet Explorer script has connected to PPP-Blinky's WebSocket Service.
A websocket message was then sent by the browser and was echoed back by the WebSocket, triggering the onmessage event in the script.
The WebSocket service enables bidirectional real-time interaction between PPP-Blinky and any element in the browser DOM via JavaScript.
If you already have PPP-Blinky up and running you can test your WebSocket service using this: http://jsfiddle.net/d26cyuh2/112/embedded/result
Websockets are ideal for building browser-based GUIs for mbed hardware.

/media/uploads/nixnax/ppp-blinky-websocke-2.gif

Trying PPP-Blinky on your mbed board

You will need an mbed-enabled hardware board: https://developer.mbed.org/platforms/

Establish a serial port connection between your host PC and your mbed board. The easiest way is to use mbed hardware with a USB serial debug port. I've tried the ST-Micro Nucleo-L476RG, Nucleo-L152RE, Nucleo-F401RE, Nucleo-L432KC, Nucleo-L053R8, mbed-LPC11U24 and mbed-LPC1768 boards and they all work out of the box. Use the mbed online compiler to compile the software for your target board. Save the compiled binary to your hardware.

Before establishing a network connection, you can verify the operation of the code by opening a terminal program such as Tera Term, and setting the baud rate of the COM port on your mbed board to 115200 baud. LED1 should toggle for every two 0x7E (~) (i.e. tilde) characters you type, as 0x7E is the PPP frame start/end marker. Don't forget to close the port when your'e done testing, or else Windows Dial-up Networking will report that the COM port is in use by another program when you try to connect.

Once you are certain that the serial port and firmware is working, proceed to creating a new network connection on your PC -see below.

Creating a Dial-up Connection in Windows

/media/uploads/nixnax/modem.jpg

Setting up Dial-Up Networking (DUN) on your Windows 7 or 8 PC is essentially a two-step process: First, you create a new modem device, because PPP-blinky partially emulates a standard Windows serial port modem device. Second, you create a new Internet connection (in practice, a new network adapter) which is associated with your new "modem".

Step-by-step description of how to configure Windows for PPP-Blinky here:

/users/nixnax/code/PPP-Blinky/wiki/Configuring-Windows-Dial-Up-Networking

There is also a screen on how to set up Linux dial-up networking near the bottom of this page.

Connecting to PPP-Blinky from your PC

Once Windows networking is configured you can establish a dial-up connection to your mbed board over the USB virtual com port.

The IP address you manually assigned to the new dial-up network adapter (172.10.10.1) functions as a gateway to any valid IP address on that subnet. In the screen capture below, I'm sending pings from the Windows 8 command line to my ST-Micro Nucleo-L476RG board over the USB virtual serial Port. I'm also using a second serial port and Tera Term to capture the debug output from a second serial port on the hardware. The optional debug output from the board prints out the IP source and destination address and the first few bytes of the data payload. Note that the source is the adapter IP address, (172.10.10.1 in this case) and the destination is some other address on that subnet - all packets to the subnet are sent to our mbed hardware. For example, you could also ping 172.10.10.123 or, if your PPP-Blinky is running, simply click on this link: http://172.10.10.123

/media/uploads/nixnax/ping-cap-3.gif

One Million Pings!

In the image below the ICMP ("ping") echo reply service was tested by sending one million pings to ppp-Blinky. This took over two hours.
The ping tool used on the Windows 8 PC was psping.exe from PsTools by Mark Russinovich - http://bit.ly/PingFast
The average reply time for a short ping (1 byte of payload data) was 11 milliseconds at 115200 baud on the $10 Nucleo-L053R8 board - barely enough time for 130 bytes to be sent over the port!

/media/uploads/nixnax/ppp-blinky-ping-results.jpg

Monitoring PPP-Blinky Packets

The image below is from a Microsoft Network Monitor 3.4 capture session.

Responses from PPP-Blinky are shown in blue.

Frame 2 - Internet Explorer at IP 172.10.10.1 (the Dial-Up Adapter IP) requests a TCP connection by sending an S (SYN) flag.
Frame 3 - PPP-Blinky at IP 172.10.10.2 responds with an ACK in frame 3. One direction of the link is now established.
Frame 4 - The PC acknowledges the SYN sent by PPP-Blinky in frame 3. The TCP link is now fully established.
Frame 5 - The browser "pushes" (P flag is set) an HTTP GET request to PPP-Blinky.
Frame 6 - PPP-Blinky responds with a standard HTTP response "pushes" (P flag set) back a small web page. It also sets the A (ACK) flag to acknowledge the message sent in frame 6.
Frame 7 - The PC acknowledges reception of the HTTP payload.
Frame 8 - The PC starts to shut down the TCP connection by sending a FIN flag.
Frame 9 - PPP-Blinky acknowledges the FIN request - the connection is now closed in one direction. It also sets a FIN flag in the response to request closure of the opposite direction of the connection.
Frame 10 - The PC acknowledges the FIN request. The closing of the TCP connection is now confirmed in both directions.

/media/uploads/nixnax/ms-network-monitor-http-get-1.gif

Debug Output

PPP-Blinky can output handy debug information to an optional second serial port.
The image below shows the debug output (Ident, Source, Destination, TCP Flags) for a complete HTTP conversation.
The PC messages are displayed in black. PPP-Blinky messages are blue.
Notice how PPP-blinky automatically inserts a blank line after each full HTTP conversation.

/media/uploads/nixnax/tcp-data-3.gif

Creating a Dial-Up Connection in Linux

The screen below shows the required pppd command to connect to PPP-Blinky from a Linux machine. This was much simpler than Windows! The USB serial port of the mbed LPC1768 board registered as /dev/ttyACM0 on my Linux box. Do a websearch on pppd if you want to learn more about pppd, the Linux PPP handler. Near the bottom of the screen below, two webpages are fetched (/ and /y) by using the curl command on the command line. Gnome Webkit and Firefox work fine, too. Also try echo GET / HTTP/1.1 | nc 172.10.10.2 which uses netcat, the "Swiss army knife" of networking tools. PPP-Blinky was also tested with ApacheBench, the Apache server benchmark software. After 100000 fetches, the mean page fetch rate was reported as 6 page fetches per second for a small page.

/media/uploads/nixnax/pppd-screen.png

Caveats

PPP Blinky is an extremely sparse implementation (1.5k lines) of HTTP,WebSocket,TCP, UDP, ICMP, IPCP and LCP over PPP, requiring around 8kB of RAM. The minimum functionality required to establish connectivity is implemented. These are often acceptable tradeoffs for embedded projects as well as a handy tool to learn the practical details of everyday networking implementations.

main.cpp

Committer:
nixnax
Date:
2017-08-08
Revision:
119:e14dd2bf0ea3
Parent:
118:54d1936e3768
Child:
120:bef89e4c906e

File content as of revision 119:e14dd2bf0ea3:

// PPP-Blinky - "The Most Basic Internet Of Things"

// A Tiny Webserver Using Windows XP/7/8/10/Linux Dial-Up Networking Over A Serial Port.
// Also receives UDP packets and responds to ping (ICMP Echo requests)

// Copyright 2016/2017 Nicolas Nackel aka Nixnax. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

// Notes and Instructions
// http://bit.ly/PPP-Blinky-Instructions
// http://bit.ly/win-rasdial-config

// Handy reading material
// https://technet.microsoft.com/en-us/library/cc957992.aspx
// https://en.wikibooks.org/wiki/Serial_Programming/IP_Over_Serial_Connections
// http://bit.ly/dialup777error - how to solve Dial Up Error 777 in Windows 7/8/10
// http://atari.kensclassics.org/wcomlog.htm

// Handy tools
// https://ttssh2.osdn.jp/index.html.en - Tera Term, a good terminal program to monitor the debug output from the second serial port with!
// https://www.microsoft.com/en-us/download/details.aspx?id=4865 - Microsoft network monitor - real-time monitoring of PPP packets
// http://pingtester.net/ - nice tool for high rate ping testing
// http://www.sunshine2k.de/coding/javascript/crc/crc_js.html - Correctly calculates the 16-bit FCS (crc) on our frames (Choose CRC16_CCITT_FALSE), then custom relected-in=1, reflected-out=1
// https://technet.microsoft.com/en-us/sysinternals/pstools.aspx - psping for fast testing of ICMP ping function
// https://eternallybored.org/misc/netcat/ - use netcat -u 172.10.10.1 80 to send/receive UDP packets from PPP-Blinky
// Windows Powershell invoke-webrequest command - use it to stress test the webserver like this:  while (1){ invoke-webrequest -uri 172.10.10.1/x }

// Connecting PPP-Blinky to Linux
// PPP-Blinky can be made to talk to Linux - tested on Fedora - the following command, which uses pppd, works:
// pppd /dev/ttyACM0 115200 debug dump local passive noccp novj nodetach nocrtscts 172.10.10.1:172.10.10.2
// in the above command 172.10.10.1 is the adapter IP, and 172.10.10.2 is the IP of PPP-Blinky.
// See also https://en.wikipedia.org/wiki/Point-to-Point_Protocol_daemon

// Ok, enough talking, time to check out some code!!

#include "mbed.h"

// The #define below enables/disables a second (OPTIONAL) serial port that prints out interesting diagnostic messages.
// Change to SERIAL_PORT_MONITOR_YES to enable diagnostics messages. You need to wire a second serial port to your mbed hardware to monitor this.
// Note - the LPC11U24 does NOT have a second serial port
#define SERIAL_PORT_MONITOR_YES /* change to SERIAL_PORT_MONITOR_YES for debug messages */

// here we define the OPTIONAL, second debug serial port for the various target boards
// insert your target board's port here if it's not in yet - if it works, please send it to me - thanks!!!
#ifdef SERIAL_PORT_MONITOR_YES
#if defined(TARGET_LPC1768)
Serial xx(p9, p10); // Second serial port on LPC1768 - not required to run, if you get compile error here, change #define SERIAL_PORT_MONITOR_YES to #define SERIAL_PORT_MONITOR_NO
#elif defined(TARGET_NUCLEO_F446RE) || defined(TARGET_NUCLEO_L152RE) || defined(TARGET_NUCLEO_L053R8) || defined(TARGET_NUCLEO_L476RG) || defined(TARGET_NUCLEO_F401RE)
Serial xx(PC_10, PC_11); // Second serial port on NUCLEO boards - not required to run, if you get compile error here, change #define SERIAL_PORT_MONITOR_YES to #define SERIAL_PORT_MONITOR_NO
#elif defined(TARGET_LPC11U24)
#error The LPC11U24 does not have a second serial port to use for debugging - change SERIAL_PORT_MONITOR_YES back to SERIAL_PORT_MONITOR_NO
#elif defined(YOUR_TARGET_BOARD_NAME_HERE)
Serial xx(p9, p10); // insert your board's debug serial port pins here - and please send it to me if it works
#else
#error Add your target board's second serial port here if you want to use debugging - or choose SERIAL_PORT_MONITOR_NO
#endif
#define debugPrintf(x...) xx.printf (x) /* if we have a serial port we print debug messages */
#define debugPutc(x...) xx.putc(x)
#define debugBaudRate(x...) xx.baud(x)
#else
// if we don't have a debug port the debug print functions do nothing
#define debugPrintf(x...) {}
#define debugPutc(x...) {}
#define debugBaudRate(x...) {}
#endif

// verbosity flags used in debug printouts - change to 1 to see increasingly more detailed debug info.
#define v0 1
#define v1 0
#define v2 0
#define IP_HEADER_DUMP_YES /* YES for ip header dump */
#define TCP_HEADER_DUMP_YES /* YES for tcp header dump */

// this is the webpage we serve when we get an HTTP request to root (/)
// keep size under ~900 bytes to fit into a single PPP packet
const static char rootWebPage[] = "\
<!DOCTYPE html>\
<html>\
<head>\
<title>mbed-PPP-Blinky</title>\
<script>\
window.onload=function(){\
setInterval(function(){function x(){return document.getElementById('w');};\
x().textContent = parseInt(x().textContent)+1;},100);};\
</script>\
</head>\
<body style=\"font-family: sans-serif; font-size:30px; color:#807070\">\
<h1>mbed PPP-Blinky Up and Running</h1>\
<h1 id=\"w\" style=\"text-align:center;\">0</h1>\
<h1><a href=\"http://bit.ly/pppBlink2\">Source on mbed</a></h1>\
</body>\
</html>"; // around 464 bytes long

// The serial port on your mbed hardware. Your PC should be configured to view this port as a standard dial-up networking modem.
// On Windows the model type of the modem should be selected as "Communications cable between two computers"
// The modem baud rate should be set to 115200 baud
// See instructions at the top.
// On a typical mbed hardware platform this serial port is a USB virtual com port (VCP) and the USB serial driver is supplied by the board vendor.
Serial pc(USBTX, USBRX); // usb virtual com port for mbed hardware

DigitalOut led1(LED1); // this led toggles when a packet is received

// the standard hdlc frame start/end character. It's the tilde character "~"
#define FRAME_7E (0x7e)

// a structure to keep all our ppp globals in
struct pppType {
    int online; // we hunt for a PPP connection if this is zero
    int crc; // for calculating IP and TCP CRCs
    int ledState; // state of LED1
    int httpPageCount;
    int firstFrame; // cleared after first frame
    struct {
#define RXBUFLEN (1<<11)
        // the serial port receive buffer and packet buffer, size is RXBUFLEN (currently 2048 bytes)
        char buf[RXBUFLEN]; // RXBUFLEN MUST be a power of two because we use & operator for fast wrap-around in ring buffer
        int head;
        int tail;
        int rtail;
        int buflevel;
    } rx; // serial port objects
    struct {
        int len; // number of bytes in buffer
        int crc; // PPP CRC (frame check)
#define TCP_max_size 3300
        char buf[TCP_max_size]; // send and receive buffer large enough for unstuffed (decoded) hdlc frames
    } pkt; // ppp buffer objects
    struct {
        int frameStartIndex; // frame start marker
        int frameEndIndex; // frame end marker
    } hdlc; // hdlc frame objects
    struct {
        unsigned int ident; // our IP ident value (outgoing frame count)
    } ip; // ip related object
};

pppType ppp; // our global - definitely not thread safe

// Initialize our global structure, clear the buffer, etc.
void pppInitStruct()
{
    memset( ppp.rx.buf, 0, RXBUFLEN);
    ppp.online=0;
    ppp.rx.tail=0;
    ppp.rx.rtail=0;
    ppp.rx.head=0;
    ppp.rx.buflevel=0;
    ppp.pkt.len=0;
    ppp.ip.ident=10000; // easy to recognize in ip packet dumps
    ppp.ledState=0;
    ppp.hdlc.frameStartIndex=0;
    ppp.httpPageCount=0;
    ppp.firstFrame=1;
}

void led1Toggle()
{
    ppp.ledState = ppp.ledState? 0 : 1;
    led1 = ppp.ledState; // toggle led
}

// fill our own receive buffer with characters from the PPP serial port
void fillbuf()
{
    char ch;
    if ( pc.readable() ) {
        int hd = (ppp.rx.head+1)&(RXBUFLEN-1); // increment/wrap head index
        if ( hd == ppp.rx.rtail ) {
            debugPrintf("\nReceive buffer full\n");
            return;
        }
        ch = pc.getc(); // read new character
        ppp.rx.buf[ppp.rx.head] = ch; // insert in our receive buffer
        if ( ppp.online == 0 ) {
            if (ch == 0x7E) {
                ppp.online = 1;
                debugPrintf("HDLC Frame (0x7E)\n");
            }
        }
        ppp.rx.head = hd; // update head pointer
        ppp.rx.buflevel++;
    }
}

// print to debug port while checking for incoming characters
void putcWhileCheckingInput( char outByte )
{
#ifdef SERIAL_PORT_MONITOR_YES
    fillbuf();
    debugPutc( outByte );
    fillbuf();
#endif
}

void printWhileCheckingInput( char * data )
{
#ifdef SERIAL_PORT_MONITOR_YES
    char * nextChar = data;
    while( *nextChar != 0 ) {
        putcWhileCheckingInput( *nextChar ); // write one character to debug port while checking input
        nextChar++;
    }
#endif
}

void crcReset()
{
    ppp.crc=0xffff;   // crc restart
}

void crcDo(int x) // cumulative crc
{
    for (int i=0; i<8; i++) {
        ppp.crc=((ppp.crc&1)^(x&1))?(ppp.crc>>1)^0x8408:ppp.crc>>1; // crc calculator
        x>>=1;
    }
    // fillbuf();
}

int crcBuf(char * buf, int size) // crc on an entire block of memory
{
    crcReset();
    for(int i=0; i<size; i++)crcDo(*buf++);
    return ppp.crc;
}

int rxbufNotEmpty()   // check if rx buffer has data
{
    int emptyStatus = (ppp.rx.head==ppp.rx.tail) ? 0 : 1 ;
    return emptyStatus;
}

int pc_getBuf()   // get one character from the buffer
{
    int x = ppp.rx.buf[ ppp.rx.tail ];
    ppp.rx.tail=(ppp.rx.tail+1)&(RXBUFLEN-1);
    ppp.rx.buflevel--;
    return x;
}

// Note - the hex output of dumpPPPFrame() can be imported into WireShark
// Capture the frame's hex output in your terminal program and save as a text file
// In WireShark, use "Import Hex File". Options are: Offset=None, Protocol=PPP.
void dumpPPPFrame()
{
    for(int i=0; i<ppp.pkt.len; i++) debugPrintf("%02x ", ppp.pkt.buf[i]);
    debugPrintf(" CRC=%04x Len=%d\n", ppp.pkt.crc, ppp.pkt.len);
}

void processPPPFrame(int start, int end)   // process received frame
{
    led1Toggle(); // change led1 state on every frame we receive
    if(start==end) {
        return; // empty frame
    }
    crcReset();
    char * dest = ppp.pkt.buf;
    ppp.pkt.len=0;
    int unstuff=0;
    int idx = start;
    while(1) {
        if (unstuff==0) {
            if (ppp.rx.buf[idx]==0x7d) unstuff=1;
            else {
                *dest = ppp.rx.buf[idx];
                ppp.pkt.len++;
                dest++;
                crcDo(ppp.rx.buf[idx]);
            }
        } else { // unstuff characters prefixed with 0x7d
            *dest = ppp.rx.buf[idx]^0x20;
            ppp.pkt.len++;
            dest++;
            crcDo(ppp.rx.buf[idx]^0x20);
            unstuff=0;
        }
        idx = (idx+1) & (RXBUFLEN-1);
        if (idx == end) break;
    }
    ppp.pkt.crc = ppp.crc & 0xffff;
    if (ppp.pkt.crc == 0xf0b8) { // check for good CRC
        void determinePacketType(); // declaration only
        determinePacketType();
    } else {
        if (1) {
            char pbuf[50]; // local print buffer
            sprintf(pbuf, "PPP FCS(crc) Error CRC=%x Length = %d\n",ppp.pkt.crc,ppp.pkt.len); // print a debug line
            printWhileCheckingInput( pbuf );
            if(0) dumpPPPFrame();
        }
    }
}

void hdlcPut(int ch)   // do hdlc handling of special (flag) characters
{
    if ( (ch<0x20) || (ch==0x7d) || (ch==0x7e) ) {
        fillbuf();
        pc.putc(0x7d);
        fillbuf();
        pc.putc(ch^0x20);  // these characters need special handling
    } else {
        fillbuf();
        pc.putc(ch);
    }
}

void send_pppFrame()   // send a PPP frame in HDLC format
{
    int crc = crcBuf(ppp.pkt.buf, ppp.pkt.len-2); // update crc
    ppp.pkt.buf[ ppp.pkt.len-2 ] = (~crc>>0); // fcs lo (crc)
    ppp.pkt.buf[ ppp.pkt.len-1 ] = (~crc>>8); // fcs hi (crc)
    pc.putc(0x7e); // hdlc start-of-frame "flag"
    for(int i=0; i<ppp.pkt.len; i++) {
        hdlcPut( ppp.pkt.buf[i] ); // send a character
    }
    pc.putc(0x7e); // hdlc end-of-frame "flag"
}

void ipcpConfigRequestHandler()
{
    debugPrintf("Their IPCP Config Req, Our Ack\n");
    ppp.pkt.buf[4]=2; // change code to ack
    send_pppFrame(); // acknowledge everything they ask for - assume it's IP addresses

    debugPrintf("Our IPCP Ask (no options)\n");
    ppp.pkt.buf[4]=1; // change code to request
    ppp.pkt.buf[7]=4; // no options in this request
    ppp.pkt.len=10; // no options in this request shortest ipcp packet possible (4 ppp + 4 ipcp + 2 crc)
    send_pppFrame(); // send our request
}

void ipcpAckHandler()
{
    debugPrintf("Their IPCP Grant\n");
}

void ipcpNackHandler()
{
    debugPrintf("Their IPCP Nack, Our ACK\n");
    if (ppp.pkt.buf[8]==3) { // check if the NACK contains an IP address parameter
        ppp.pkt.buf[4]=1; // assume the NACK contains our "suggested" IP address
        send_pppFrame(); // let's request this IP address as ours
    } // if it's not an IP nack we ignore it
}

void ipcpDefaultHandler()
{
    debugPrintf("Their IPCP Other\n");
}

void IPCPframe()
{
    int code = ppp.pkt.buf[4]; // packet type is here
    switch (code) {
        case 1:
            ipcpConfigRequestHandler();
            break;
        case 2:
            ipcpAckHandler();
            break;
        case 3:
            ipcpNackHandler();
            break;
        default:
            ipcpDefaultHandler();
    }
}

void UDPpacket()
{
    char * udpPkt = ppp.pkt.buf+4; // udp packet start
    int headerSizeIP = (( udpPkt[0]&0xf)*4);
    char * udpBlock = udpPkt + headerSizeIP; // udp info start
#ifdef SERIAL_PORT_MONITOR_YES
    char * udpSrc = udpBlock; // source port
    char * udpDst = udpBlock+2; // destination port
#endif
    char * udpLen = udpBlock+4; // udp data length
    char * udpInf = udpBlock+8; // actual start of info
#ifdef SERIAL_PORT_MONITOR_YES
    int srcPort = (udpSrc[0]<<8) | udpSrc[1];
    int dstPort = (udpDst[0]<<8) | udpDst[1];
    char * srcIP = udpPkt+12; // udp src addr
    char * dstIP = udpPkt+16; // udp dst addr
#endif
#define UDP_HEADER_SIZE 8
    int udpLength = ((udpLen[0]<<8) | udpLen[1]) - UDP_HEADER_SIZE; // size of the actual udp data
    if(v0) debugPrintf("UDP %d.%d.%d.%d:%d ", srcIP[0],srcIP[1],srcIP[2],srcIP[3],srcPort);
    if(v0) debugPrintf("%d.%d.%d.%d:%d ",     dstIP[0],dstIP[1],dstIP[2],dstIP[3],dstPort);
    if(v0) debugPrintf("Len %03d", udpLength);
    int printSize = udpLength;
    if (printSize > 20) printSize = 20; // print only first 20 characters
    if (v1) {
        for (int i=0; i<printSize; i++) {
            char ch = udpInf[i];
            if (ch>31 && ch<127) {
                debugPrintf("%c", ch);
            } else {
                debugPrintf("_");
            }
        }
    }
    if (v0) debugPrintf("\n");
}

unsigned int dataCheckSum(unsigned char * ptr, int len)
{
    unsigned int sum=0;
    unsigned char placeHolder;
    if (len&1) {
        placeHolder = ptr[len];    // when length is odd stuff in a zero byte
        ptr[len]=0;
    }
    for (int i=0; i<len/2; i++) {
        unsigned int hi = *ptr;
        ptr++;
        unsigned int lo = *ptr;
        ptr++;
        unsigned int val = ( (hi<<8) | lo );
        sum = sum + val;
    }
    if (len&1) {
        ptr[len] = placeHolder;    // restore the last byte for odd lengths
    }
    sum = (sum & 0xffff) + (sum>>16);
    sum = (sum & 0xffff) + (sum>>16); // sum one more time to catch any carry from the carry
    return ~sum;
}

void headerCheckSum()
{
    int len =(ppp.pkt.buf[4]&0xf)*4; // length of header in bytes
    char * ptr = ppp.pkt.buf+4; // start of ip packet
    int sum=0;

    for (int i=0; i<len/2; i++) {
        int hi = *ptr;
        ptr++;
        int lo = *ptr;
        ptr++;
        int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 );
        sum = sum + val;
    }
    sum = sum + (sum>>16);
    sum = ~sum;
    ppp.pkt.buf[14]= (sum>>8);
    ppp.pkt.buf[15]= (sum   );
}

void ICMPpacket()   // internet control message protocol
{
    char * ipPkt = ppp.pkt.buf+4; // ip packet start
    char * pktLen = ipPkt+2;
    int packetLength = (pktLen[0]<<8) | pktLen[1]; // icmp packet length
    int headerSizeIP = (( ipPkt[0]&0xf)*4);
    char * icmpType = ipPkt + headerSizeIP; // icmp data start
    char * icmpSum = icmpType+2; // icmp checksum
#define ICMP_TYPE_PING_REQUEST 8
    if ( icmpType[0] == ICMP_TYPE_PING_REQUEST ) {
        char * ipTTL = ipPkt+8; // time to live
        ipTTL[0]--; // decrement time to live
        char * srcAdr = ipPkt+12;
        char * dstAdr = ipPkt+16;
#ifndef SERIAL_PORT_MONITOR_NO
        int icmpIdent = (icmpType[4]<<8)|icmpType[5];
        int icmpSequence = (icmpType[6]<<8)|icmpType[7];
#endif
        if(v0) debugPrintf("ICMP PING %d.%d.%d.%d %d.%d.%d.%d ", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3],dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]);
        if(v0) debugPrintf("Ident %04x Sequence %04d ",icmpIdent,icmpSequence);
        char src[4];
        char dst[4];
        memcpy(src, srcAdr,4);
        memcpy(dst, dstAdr,4);
        memcpy(srcAdr, dst,4);
        memcpy(dstAdr, src,4); // swap src & dest ip
        char * chkSum = ipPkt+10;
        chkSum[0]=0;
        chkSum[1]=0;
        headerCheckSum();  // new ip header checksum
#define ICMP_TYPE_ECHO_REPLY 0
        icmpType[0]=ICMP_TYPE_ECHO_REPLY; // icmp echo reply
        icmpSum[0]=0;
        icmpSum[1]=0; // zero the checksum for recalculation
        int icmpLength = packetLength - headerSizeIP; // length of ICMP data portion
        unsigned int sum = dataCheckSum( (unsigned char *)icmpType, icmpLength); // this checksum on icmp data portion
        icmpSum[0]=(sum>>8)&0xff;
        icmpSum[1]=(sum   )&0xff; // new checksum for ICMP data portion

        int printSize = icmpLength-8; // exclude size of icmp header
        char * icmpData = icmpType+8; // the actual payload data is after the header
        if (printSize > 10) printSize = 10; // print up to 20 characters
        if (v0) {
            for (int i=0; i<printSize; i++) {
                char ch = icmpData[i];
                if (ch>31 && ch<127) {
                    debugPrintf("%c",ch);
                } else {
                    debugPrintf("_");
                }
            }
            debugPrintf("\n");
        }
        send_pppFrame(); // reply to the ping

    } else {
        if (v0) {
            debugPrintf("ICMP type=%d \n", icmpType[0]);
        }
    }
}

void IGMPpacket()   // internet group management protocol
{
    if (v0) debugPrintf("IGMP type=%d \n", ppp.pkt.buf[28]);
}

void dumpHeaderIP (int outGoing)
{
#if defined(IP_HEADER_DUMP_YES) && defined(SERIAL_PORT_MONITOR_YES)
    fillbuf(); // we are expecting the first character of the next packet
    char * ipPkt = ppp.pkt.buf+4; // ip packet start
    char * ident =      ipPkt+4;  // 2 bytes
#ifdef UNUSED_IP_VARIABLES
    char * srcAdr =     ipPkt+12; // 4 bytes
    char * dstAdr =     ipPkt+16; // 4 bytes = total of 20 bytes
    char * version =    ipPkt;    // top 4 bits
    char * ihl =        ipPkt;    // bottom 4 bits
    char * dscp =       ipPkt+1;  // top 6 bits
    char * ecn =        ipPkt+1;  // lower 2 bits
    char * pktLen =     ipPkt+2;  // 2 bytes
    char * flags =      ipPkt+6;  // 2 bits
    char * ttl =        ipPkt+8;  // 1 byte
    char * protocol =   ipPkt+9;  // 1 byte
    char * headercheck= ipPkt+10; // 2 bytes
    int versionIP = (version[0]>>4)&0xf;
    int headerSizeIP = (ihl[0]&0xf)*4;
    int dscpIP = (dscp[0]>>2)&0x3f;
    int ecnIP = ecn[0]&3;
    int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length
    int flagsIP = flags[0]>>14&3;
    int ttlIP = ttl[0];
    int protocolIP = protocol[0];
    unsigned int checksumIP = (headercheck[0]<<8)|headercheck[1];
#endif
    int IPv4Id = (ident[0]<<8)|ident[1];
    char pbuf[50]; // local print buffer
    int n=0;
    fillbuf(); // we are expecting the first character of the next packet
    n=n+sprintf(pbuf+n, outGoing ? "\x1b[34m" : "\x1b[30m" ); // VT100 color code, print black for incoming, blue for outgoing headers
    fillbuf(); // we are expecting the first character of the next packet
    n=n+sprintf(pbuf+n, "%05d ",IPv4Id); // IPv4Id is a good way to correlate our dumps with net monitor or wireshark traces
    fillbuf(); // we are expecting the first character of the next packet
#define DUMP_FULL_IP_ADDRESS_YES
#ifdef DUMP_FULL_IP_ADDRESS_YES
    char * srcAdr =     ipPkt+12; // 4 bytes
    char * dstAdr =     ipPkt+16; // 4 bytes = total of 20 bytes
    n=n+sprintf(pbuf+n, " %d.%d.%d.%d %d.%d.%d.%d ",srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3], dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); // full ip addresses
#endif
    printWhileCheckingInput( pbuf );
#ifndef TCP_HEADER_DUMP_YES
    printWhileCheckingInput('\x1b[30m\n'); // there is no TCP header dump, so terminate the line with \n and VT100 code for black
#endif
#endif
}

void dumpHeaderTCP(int outGoing)
{
#if defined(TCP_HEADER_DUMP_YES) && defined(SERIAL_PORT_MONITOR_YES)
    int headerSizeIP     = (ppp.pkt.buf[4]&0xf)*4; // header size of ip portion
    char * tcpStart      =  ppp.pkt.buf+4+headerSizeIP; // start of tcp packet
    char * seqtcp        = tcpStart + 4;  // 4 bytes
    char * acktcp        = tcpStart + 8;  // 4 bytes
    char * flagbitstcp   = tcpStart + 12; // 9 bits
    unsigned int seq = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]);
    unsigned int ack = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]);
    if (seq && ack) {} // shut up the compiler about unused variables
    int flags = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1];

    char flagInfo[9]; // text string presenting the 8 most important TCP flags
#define PRINT_ALL_TCP_FLAGS_YES
#ifdef PRINT_ALL_TCP_FLAGS_YES
    memset(flagInfo,'.', 8); // fill string with "........"
    flagInfo[8]=0; // null terminate string
    if (flags & (1<<0)) flagInfo[7]='F';
    if (flags & (1<<1)) flagInfo[6]='S';
    if (flags & (1<<2)) flagInfo[5]='R';
    if (flags & (1<<3)) flagInfo[4]='P';
    if (flags & (1<<4)) flagInfo[3]='A';
    if (flags & (1<<5)) flagInfo[2]='U';
    if (flags & (1<<6)) flagInfo[1]='E';
    if (flags & (1<<7)) flagInfo[0]='C';
#else
    if (flags & (1<<4)) flagInfo[0]='A'; // choose the most important flag to print
    if (flags & (1<<1)) flagInfo[0]='S';
    if (flags & (1<<0)) flagInfo[0]='F';
    if (flags & (1<<3)) flagInfo[0]='P';
    if (flags & (1<<2)) flagInfo[0]='R';
    flagInfo[1]=' ';
    flagInfo[2]=0;
#endif
    printWhileCheckingInput( flagInfo );
#define EVERY_PACKET_ON_A_NEW_LINE_YES
#ifdef EVERY_PACKET_ON_A_NEW_LINE_YES
    putcWhileCheckingInput('\n'); // write a newline after every packet
#endif
    if( outGoing && ( flags == 0x11 ) ) { // ACK/FIN - if this is an outgoing ACK/FIN its the end of a tcp conversation
        putcWhileCheckingInput('\n'); // insert an extra new line to mark the end of an HTTP the conversation
    }
    if( pc.readable()) printWhileCheckingInput( "Char2\n");
#endif
}

int httpResponse(char * dataStart)
{
    int n=0; // number of bytes we have printed so far
    int nHeader; // byte size of HTTP header
    int contentLengthStart; // index where HTML starts
    int xFetch, httpGetRoot; // temporary storage of strncmp results

    ppp.httpPageCount++; // increment the number of frames we have made

    httpGetRoot = strncmp(dataStart, "GET / HTTP/1.", 13); // found GET, respond to both HTTP/1.<anything>
    xFetch = strncmp(dataStart, "GET /x", 6); // found GET /x , respond to both HTTP/1.<anything>
    // for example, you could try this using netcat (nc):    echo "GET /x" | nc 172.10.10.2
    if( (httpGetRoot==0) || (xFetch==0) ) {
        n=n+sprintf(n+dataStart,"HTTP/1.1 200 OK\r\nServer: mbed-PPP-Blinky\r\n"); // 200 OK header
    } else {
        n=n+sprintf(n+dataStart,"HTTP/1.1 404 Not Found\r\nServer: mbed-PPP-Blinky\r\n"); // 404 header
    }
    n=n+sprintf(n+dataStart,"Content-Length: "); // http header
    contentLengthStart = n; // remember where Content-Length is in buffer
    n=n+sprintf(n+dataStart,"?????\r\n"); // leave five spaces for content length - will be updated later
    n=n+sprintf(n+dataStart,"Connection: close\r\n"); // close connection immediately
    n=n+sprintf(n+dataStart,"Content-Type: text/html; charset=us-ascii\r\n\r\n"); // http header must end with empty line (\r\n)
    nHeader=n; // size of HTTP header
    if( httpGetRoot == 0 ) {
        // this is where we insert our web page into the buffer
        memcpy(n+dataStart,rootWebPage,sizeof(rootWebPage));
        n = n + sizeof(rootWebPage);
    } else {
        if (xFetch == 0) { // the page request started with "GET /x"

#define W3C_COMPLIANT_RESPONSE_NO
// change the above to W3C_COMPLIANT_RESPONSE_YES if you want a W3C.org compliant HTTP response
#ifdef W3C_COMPLIANT_RESPONSE_YES
            n=n+sprintf(n+dataStart,"<!DOCTYPE html><title>mbed-ppp-blinky</title>"); // html title (W3C.org required elements)
            n=n+sprintf(n+dataStart,"<body>%d</body>",ppp.httpPageCount); // body = the http frame count
#else
#define BENCHMARK_USING_BROWSER_NO /* set to _YES if you want to use your browser as a benchmark tool */
#ifndef BENCHMARK_USING_BROWSER_NO
            // semd a small browser script that will reload the page after 10 ms - handy for benchmarking with your web browser, use http://172.10.10.2/x
            n=n+sprintf(n+dataStart, "<script>setTimeout(function(){location.reload();},10);</script><body>%d</body>",ppp.httpPageCount);
#else
            n=n+sprintf(n+dataStart,"%d",ppp.httpPageCount); // not valid html but fast, most browsers and curl are ok with it
#endif
#endif

        } else {
            // all other requests get 404 Not Found response with a http frame count - nice for debugging
            n=n+sprintf(n+dataStart,"<!DOCTYPE html><title>ppp-blinky-mbed</title>"); // html title (required element)
            n=n+sprintf(n+dataStart,"<body>Not Found</body>"); // not found message
        }
    }
    while( (n%4)!= 2) n=n+sprintf(n+dataStart," "); // insert spaces until n is exactly two away from a multiple of four
    n=n+sprintf(n+dataStart,"\r\n");  // add the last two characters (\r\n) - n is now an exact multiple of four

#define CONTENTLENGTHSIZE 5
    char contentLengthString[CONTENTLENGTHSIZE+1];
    snprintf(contentLengthString,CONTENTLENGTHSIZE+1,"%*d",CONTENTLENGTHSIZE,n-nHeader); // print Content-Length with leading spaces and fixed width equal to csize
    memcpy(dataStart+contentLengthStart, contentLengthString, CONTENTLENGTHSIZE); // copy Content-Length to it's place in the send buffer

    if (v2) {
        debugPrintf("HTTP Response: HTTP-header %d HTTP-content %d HTTP-total %d\n",nHeader,n-nHeader,n);
    }
    return n; // total byte size of our response
}

// if not an http response we just report the number of bytes received
// this is handy when you for example want to use netcat (nc.exe) to talk to PPP-Blinky
int tcpResponse(char * dataStart, int len)
{
    int n=0; // number of bytes we have printed so far
    n=n+sprintf(n+dataStart,"Got %04d bytes.\n",len); // report the number of bytes received
    while( (n%4)!= 0) n=n+sprintf(n+dataStart,"*"); // insert spaces until n is exactly two away from a multiple of four
    if (v2) {
        debugPrintf("TCP response %d bytes\n",n);
    }
    return n; // total byte size of our response
}

void tcpHandler()
{
    // IP header

    char * ipPkt = ppp.pkt.buf+4; // ip packet start
    char * ihl =        ipPkt;    // bottom 4 bits
    char * pktLen =     ipPkt+2;  // 2 bytes
    char * ident =      ipPkt+4;  // 2 bytes
    char * protocol =   ipPkt+9;  // 1 byte
    char * headercheck= ipPkt+10; // 2 bytes
    char * srcAdr =     ipPkt+12; // 4 bytes
    char * dstAdr =     ipPkt+16; // 4 bytes = total of 20 bytes
    int headerSizeIP = (ihl[0]&0xf)*4;
    int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length

    // TCP header

    char * tcp             = ppp.pkt.buf+4+headerSizeIP; // start of tcp packet
    char * srctcp        = tcp + 0;  // 2 bytes
    char * dsttcp        = tcp + 2;  // 2 bytes
    char * seqtcp        = tcp + 4;  // 4 bytes
    char * acktcp        = tcp + 8;  // 4 bytes
    char * offset        = tcp + 12; // 4 bits
    char * flagbitstcp   = tcp + 12; // 9 bits
    char * windowsizetcp = tcp + 14; // 2 bytes
    char * checksumtcp   = tcp + 16; // 2 bytes

    int tcpSize = packetLength - headerSizeIP;
    int headerSizeTCP = ((offset[0]>>4)&0x0f)*4; // size of tcp header only
    int protocolIP = protocol[0];

    char * tcpDataIn = tcp + headerSizeTCP; // start of data block after TCP header
    int tcpDataSize = tcpSize - headerSizeTCP; // size of data block after TCP header
    char * tcpDataOut = tcp + 20; // start of outgoing data

    unsigned int seq_in = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]);
    unsigned int ack_in = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]);

    unsigned int ack_out = seq_in + tcpDataSize;
    unsigned int seq_out = ack_in; // use their version of our current sequence number

#define TCP_FLAG_ACK (1<<4)
#define TCP_FLAG_SYN (1<<1)
#define TCP_FLAG_PSH (1<<3)
#define TCP_FLAG_RST (1<<2)
#define TCP_FLAG_FIN (1<<0)

    // first we shorten the TCP response header to only 20 bytes.
    // this means we ignore all TCP option requests

    tcpSize = 20; // shorten total TCP packet size to 20 bytes (no data)
    headerSizeTCP = 20; // shorten outgoing TCP header size 20 bytes
    offset[0] =  (headerSizeTCP/4)<<4; // shorten tcp header size to 20 bytes
    packetLength = 40; // shorten total packet size to 40 bytes (20 ip + 20 tcp)
    pktLen[1] = 40; // set total packet size to 40 bytes (20 ip + 20 tcp)
    pktLen[0] =  0; // set total packet size to 40 bytes (20 ip + 20 tcp)

    int dataLen = 0; // most of our responses will have zero TCP data, only a header
    int flagsOut = TCP_FLAG_ACK; // the default case is an ACK packet
    int flagsTCP = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1]; // the tcp flags we received

    windowsizetcp[0] = (700 >> 8  );   // tcp window size hi byte
    windowsizetcp[1] = (700 & 0xff);   // tcp window size lo byte

    // A sparse TCP flag interpreter that implements stateless TCP connections

    switch ( flagsTCP ) {
        case TCP_FLAG_SYN:
            flagsOut = TCP_FLAG_SYN | TCP_FLAG_ACK; // something wants to connect - acknowledge it
            seq_out = seq_in+0x10000000U; // create a new sequence number using their sequence as a starting point, increase the highest digit
            ack_out++; // for SYN flag we have to increase the sequence by 1
            break;
        case TCP_FLAG_ACK | TCP_FLAG_PSH:
            if ( strncmp(tcpDataIn, "GET /", 5) == 0) { // check for an http GET command
                flagsOut = TCP_FLAG_ACK | TCP_FLAG_FIN | TCP_FLAG_PSH; // set outgoing FIN flag to ask them to close from their side
                dataLen = httpResponse(tcpDataOut); // send an http response
            } else {
                dataLen = tcpResponse(tcpDataOut,tcpDataSize); // not a web request, send a packet reporting number of received bytes
            }
            break;
        case TCP_FLAG_FIN:
        case TCP_FLAG_FIN | TCP_FLAG_ACK:
        case TCP_FLAG_FIN | TCP_FLAG_PSH | TCP_FLAG_ACK:
            flagsOut = TCP_FLAG_ACK | TCP_FLAG_FIN; // set outgoing FIN flag to ask them to close from their side
            ack_out++; // for FIN flag we always have to increase sequence by 1
            break;
        default:
            return; // ignore remaining packets
    } // switch

    // The TCP flag handling is now done
    // first we swap source and destination TCP addresses and insert the new ack and seq numbers

    char tempHold[12]; // it's 12 long because we later reuse it when building the TCP pseudo-header
    memcpy(tempHold, srcAdr,4);
    memcpy(srcAdr, dstAdr,4);
    memcpy(dstAdr, tempHold,4); // swap ip address source/dest

    memcpy(tempHold, srctcp,2);
    memcpy(srctcp, dsttcp,2);
    memcpy(dsttcp, tempHold,2); // swap ip port source/dest

    acktcp[0]=ack_out>>24;
    acktcp[1]=ack_out>>16;
    acktcp[2]=ack_out>>8;
    acktcp[3]=ack_out>>0; // save ack 32-bit integer

    seqtcp[0]=seq_out>>24;
    seqtcp[1]=seq_out>>16;
    seqtcp[2]=seq_out>>8;
    seqtcp[3]=seq_out>>0; // save seq 32-bit integer

    flagbitstcp[1] = flagsOut; // update the TCP flags

    // increment our outgoing ip packet counter
    ppp.ip.ident++; // get next ident number for our packet
    ident[0] = ppp.ip.ident>>8;
    ident[1] = ppp.ip.ident>>0; // insert OUR ident

    // Now we recalculate all the header sizes
    int newPacketSize = headerSizeIP + headerSizeTCP + dataLen; // calculate size of the outgoing packet
    pktLen[0] = (newPacketSize>>8);
    pktLen[1]=newPacketSize; // ip total packet size
    ppp.pkt.len = newPacketSize+6; // ppp packet length
    tcpSize = headerSizeTCP + dataLen; // tcp packet size

    // the header is all set up, now do the IP and TCP checksums
    headercheck[0]=0; // IP header checksum
    headercheck[1]=0; // IP header checksum
    headerCheckSum(); // calculate the IP header checksum

    // now we have to build the so-called 12-byte TCP "pseudo-header" in front of the TCP header (containing some IP header values) in order to correctly calculate the TCP checksum
    // this header  contains the most important parts of the IP header, i.e. source and destination address, protocol number and data length.

    char * pseudoHeader = tcp-12; // mark the start of the TCP pseudo-header
    memcpy(tempHold, pseudoHeader, 12); // preserve the 12 bytes of the IP header where the TCP pseudo-Header will be built
    memcpy( pseudoHeader+0, srcAdr, 8); // IP source and destination addresses from IP header
    memset( pseudoHeader+8, 0, 1); // reserved, set to zero
    memset( pseudoHeader+9, protocolIP, 1); // protocol from IP header
    memset( pseudoHeader+10, tcpSize>>8, 1); // size of IP data (TCP packet size)
    memset( pseudoHeader+11, tcpSize, 1); // size of IP data (TCP packet size)

    // pseudo-header built, now we can calculate TCP checksum
    checksumtcp[0]=0;
    checksumtcp[1]=0;
    unsigned int pseudoHeaderSum=dataCheckSum((unsigned char *)pseudoHeader,tcpSize+12); // calculate the TCP checksum starting at the pseudo-header
    checksumtcp[0]=pseudoHeaderSum>>8;
    checksumtcp[1]=pseudoHeaderSum;
    memcpy( tcp-12, tempHold, 12); // restore the 12 bytes that the pseudo-header overwrote
    dumpHeaderIP(1); // dump outgoing IP header
    dumpHeaderTCP(1); // dump outgoing TCP header
    for (int i=0; i<35000/50; i++) { // a 35 ms delay before sending frame
        fillbuf(); // catch any incoming characters
        wait_us(50); // wait less than 1 character duration at 115200
    }
    send_pppFrame(); // All preparation complete - send the TCP response
}

void dumpDataTCP()
{
    int ipPktLen     = (ppp.pkt.buf[6]<<8)|ppp.pkt.buf[7]; // overall length of ip packet
    int ipHeaderLen  = (ppp.pkt.buf[4]&0xf)*4; // length of ip header
    int headerSizeTCP = ((ppp.pkt.buf[4+ipHeaderLen+12]>>4)&0xf)*4;; // length of tcp header
    int dataLen = ipPktLen - ipHeaderLen - headerSizeTCP; // data is what's left after the two headers
    if (v1) {
        debugPrintf("TCP %d ipHeader %d tcpHeader %d Data %d\n", ipPktLen, ipHeaderLen, headerSizeTCP, dataLen);    // 1 for more verbose
    }
    if (dataLen > 0) {
        ppp.pkt.buf[4+ipHeaderLen+headerSizeTCP+dataLen]=0; // insert a null after the data so debug printf stops printing after the data
        debugPrintf("%s\n",ppp.pkt.buf+4+ipHeaderLen+headerSizeTCP);    // show the data
    }
}

void TCPpacket()
{
    dumpHeaderIP(0);     // dump incoming packet header
    dumpHeaderTCP(0);   // dump incoming packet header
    if (v2) {
        dumpDataTCP();
    }
    tcpHandler();
}

void otherProtocol()
{
    debugPrintf("Other IP protocol");
}

void IPframe()
{
    int protocol = ppp.pkt.buf[13];
    switch (protocol) {
        case    1:
            ICMPpacket();
            break;
        case    2:
            IGMPpacket();
            break;
        case   17:
            UDPpacket();
            break;
        case    6:
            TCPpacket();
            break;
        default:
            otherProtocol();
    }
}

void LCPconfReq()
{
    debugPrintf("LCP Config ");
    if (ppp.pkt.buf[7] != 4) {
        ppp.pkt.buf[4]=4; // allow only "no options" which means Maximum Receive Unit (MRU) is default 1500 bytes
        debugPrintf("Reject\n");
        send_pppFrame();
    } else {
        ppp.pkt.buf[4]=2; // ack zero conf
        debugPrintf("Ack\n");
        send_pppFrame();
        debugPrintf("LCP Ask\n");
        ppp.pkt.buf[4]=1; // request no options
        send_pppFrame();
    }
}

void LCPconfAck()
{
    debugPrintf("LCP Ack\n");
}

void LCPend()
{
    ppp.pkt.buf[4]=6;
    send_pppFrame(); // acknowledge
    ppp.online=0; // start hunting for connect string again
    pppInitStruct(); // flush the receive buffer
    debugPrintf("LCP End\n");
}

void LCPother()
{
    debugPrintf("LCP Other\n");
    dumpPPPFrame();
}

void LCPframe()
{
    int code = ppp.pkt.buf[4];
    switch (code) {
        case 1:
            LCPconfReq();
            break; // config request
        case 2:
            LCPconfAck();
            break; // config ack
        case 5:
            LCPend();
            break; // end connection
        default:
            LCPother();
    }
}

void discardedFrame()
{
    if (v0) {
        debugPrintf("Frame is not IP, IPCP or LCP: %02x %02x %02x %02x\n", ppp.pkt.buf[0],ppp.pkt.buf[1],ppp.pkt.buf[2],ppp.pkt.buf[3]);
    }
}

void determinePacketType()
{
    if ( ppp.pkt.buf[0] != 0xff ) {
        debugPrintf("byte0 != ff\n");
        return;
    }
    if ( ppp.pkt.buf[1] != 3    ) {
        debugPrintf("byte1 !=  3\n");
        return;
    }
    if ( ppp.pkt.buf[3] != 0x21 ) {
        debugPrintf("byte2 != 21\n");
        return;
    }
    int packetType = ppp.pkt.buf[2];
    switch (packetType) {
        case 0xc0:
            LCPframe();
            break;  // link control
        case 0x80:
            IPCPframe();
            break;  // IP control
        case 0x00:
            IPframe();
            break;  // IP itself
        default:
            discardedFrame();
    }
}

void wait_for_PPP_frame()
{
    while(1) {
        fillbuf(); // handle received characters
        if ( rxbufNotEmpty() ) {
            int oldTail = ppp.rx.tail; // remember where the character is located in the buffer
            int rx = pc_getBuf(); // get the character
            if (rx==FRAME_7E) {
                if (ppp.firstFrame) { // is this the first frame start
                    ppp.firstFrame=0;
                    ppp.hdlc.frameStartIndex = ppp.rx.tail; // remember first frame start
                    break;
                }  else {
                    ppp.hdlc.frameEndIndex=oldTail; // mark the frame end character
                    processPPPFrame(ppp.hdlc.frameStartIndex, ppp.hdlc.frameEndIndex); // process the frame
                    ppp.rx.rtail = ppp.rx.tail;
                    ppp.hdlc.frameStartIndex = ppp.rx.tail; // where next frame will start
                    break;
                }
            }
        }
    }
}

void scanForConnectString()
{
    while(ppp.online == 0) {
        fillbuf(); // gather received characters
        // search for Windows Dialup Networking "Direct Connection Between Two Computers" expected connect string
        char * found1 = strstr( (char *)ppp.rx.buf, "CLIENT" );
        if (found1 != NULL) {
            // respond with Windows Dialup networking expected "Direct Connection Between Two Computers" response string
            if (v0) debugPrintf("Found connect string \"CLIENT\", sent \"CLIENTSERVER\"\n");
            pc.puts("CLIENTSERVER");
            ppp.online=1; // we are connected, so we can stop looking for the connect string
            fillbuf();
        }
    }
}

int main()
{
    pc.baud(115200); // USB virtual serial port
    debugBaudRate(115200); // baud rate for our debug port if we have one
    debugPrintf("\x1b[2J\x1b[HReady\n"); // VT100 code for clear screen & home on our debug port - Tera Term is a good VT100 terminal
    pppInitStruct(); // initialize all the PPP properties
    while(1) {
        scanForConnectString(); // wait for connect command from windows dial up networking
        while(ppp.online) {
            wait_for_PPP_frame(); 
        }
    }
}