Small Internet Protocol Stack using a standard serial port.
PPP-Blinky - TCP/IP Networking Over a Serial Port
Note: The source code is at the bottom of this page.
A Windows desktop showing PPP-Blinky in the network connections list.
Describe PPP-Blinky in Three Sentences
PPP-Blinky is a tiny library that enables Internet protocols (IPv4) to any mbed target hardware by using only a serial port.
The code runs on processors with as little as 8k RAM, for example the Nucleo-L053R8 board.
PPP-Blinky uses the industry-standard PPP (Point-to-Point) Protocol and a tiny "stateless" TCP/IP stack.
No Ethernet Port Required
No ethernet port is required - PPP-Blinky uses a serial port to send IP packets to your PC.
PPP-Blinky emulates a standard dial-up modem and therefore connects to Windows, Linux or Adroid machines.
The code runs on most ARM mbed platforms such as the LPC11U24 shown in the picture below:
mbed LPC11u24 acting as a webserver to a Windows laptop.
Webserver
The Webserver and WebSocket functions are ideal for building browser-based GUIs on mbed-enabled hardware.
PPP-Blinky's HTTP webserver works with most web clients such as Internet Explorer, Mozilla Firefox, Google Chrome, Safari, Curl, wget and Lynx as well as Microsoft Powershell Invoke-Webrequest command.
In the image below Firefox web browser displays the main web page embedded into PPP-Blinky's code:
Firefox web browser displays a web page embedded into PPP-Blinky's code
WebSocket Service
WebSocket is the most popular protocol standard for real-time bidirectional TCP/IP communication between clients and servers.
In the image below a small Internet Explorer script has connected to PPP-Blinky's WebSocket Service.
A websocket message was then sent by the browser and was echoed back by the WebSocket, triggering the onmessage event in the script.
The WebSocket service enables bidirectional real-time interaction between PPP-Blinky and any element in the browser DOM via JavaScript.
If you already have PPP-Blinky up and running you can test your WebSocket service using this: http://jsfiddle.net/d26cyuh2/112/embedded/result
Websockets are ideal for building browser-based GUIs for mbed hardware.
Trying PPP-Blinky on your mbed board
You will need an mbed-enabled hardware board: https://developer.mbed.org/platforms/
Establish a serial port connection between your host PC and your mbed board.
The easiest way is to use mbed hardware with a USB serial debug port. I've tried the ST-Micro Nucleo-L476RG, Nucleo-L152RE, Nucleo-F401RE, Nucleo-L432KC, Nucleo-L053R8, mbed-LPC11U24 and mbed-LPC1768 boards and they all work out of the box. Use the mbed online compiler to compile the software for your target board. Save the compiled binary to your hardware.
Before establishing a network connection, you can verify the operation of the code by opening a terminal program such as Tera Term, and setting the baud rate of the COM port on your mbed board to 115200 baud. LED1 should toggle for every two 0x7E (~
) (i.e. tilde) characters you type, as 0x7E is the PPP frame start/end marker. Don't forget to close the port when your'e done testing, or else Windows Dial-up Networking will report that the COM port is in use by another program when you try to connect.
Once you are certain that the serial port and firmware is working, proceed to creating a new network connection on your PC -see below.
Creating a Dial-up Connection in Windows
Setting up Dial-Up Networking (DUN) on your Windows 7 or 8 PC is essentially a two-step process: First, you create a new modem device, because PPP-blinky partially emulates a standard Windows serial port modem device. Second, you create a new Internet connection (in practice, a new network adapter) which is associated with your new "modem".
Step-by-step description of how to configure Windows for PPP-Blinky here:
/users/nixnax/code/PPP-Blinky/wiki/Configuring-Windows-Dial-Up-Networking
There is also a screen on how to set up Linux dial-up networking near the bottom of this page.
Connecting to PPP-Blinky from your PC
Once Windows networking is configured you can establish a dial-up connection to your mbed board over the USB virtual com port.
The IP address you manually assigned to the new dial-up network adapter (172.10.10.1) functions as a gateway to any valid IP address on that subnet. In the screen capture below, I'm sending pings from the Windows 8 command line to my ST-Micro Nucleo-L476RG board over the USB virtual serial Port. I'm also using a second serial port and Tera Term to capture the debug output from a second serial port on the hardware. The optional debug output from the board prints out the IP source and destination address and the first few bytes of the data payload. Note that the source is the adapter IP address, (172.10.10.1 in this case) and the destination is some other address on that subnet - all packets to the subnet are sent to our mbed hardware. For example, you could also ping 172.10.10.123 or, if your PPP-Blinky is running, simply click on this link: http://172.10.10.123
One Million Pings!
In the image below the ICMP ("ping") echo reply service was tested by sending one million pings to ppp-Blinky. This took over two hours.
The ping tool used on the Windows 8 PC was psping.exe from PsTools by Mark Russinovich - http://bit.ly/PingFast
The average reply time for a short ping (1 byte of payload data) was 11 milliseconds at 115200 baud on the $10 Nucleo-L053R8 board - barely enough time for 130 bytes to be sent over the port!
Monitoring PPP-Blinky Packets
The image below is from a Microsoft Network Monitor 3.4 capture session.
Responses from PPP-Blinky are shown in blue.
Frame 2 - Internet Explorer at IP 172.10.10.1 (the Dial-Up Adapter IP) requests a TCP connection by sending an S (SYN) flag.
Frame 3 - PPP-Blinky at IP 172.10.10.2 responds with an ACK in frame 3. One direction of the link is now established.
Frame 4 - The PC acknowledges the SYN sent by PPP-Blinky in frame 3. The TCP link is now fully established.
Frame 5 - The browser "pushes" (P flag is set) an HTTP GET request to PPP-Blinky.
Frame 6 - PPP-Blinky responds with a standard HTTP response "pushes" (P flag set) back a small web page. It also sets the A (ACK) flag to acknowledge the message sent in frame 6.
Frame 7 - The PC acknowledges reception of the HTTP payload.
Frame 8 - The PC starts to shut down the TCP connection by sending a FIN flag.
Frame 9 - PPP-Blinky acknowledges the FIN request - the connection is now closed in one direction. It also sets a FIN flag in the response to request closure of the opposite direction of the connection.
Frame 10 - The PC acknowledges the FIN request. The closing of the TCP connection is now confirmed in both directions.
Debug Output
PPP-Blinky can output handy debug information to an optional second serial port.
The image below shows the debug output (Ident, Source, Destination, TCP Flags) for a complete HTTP conversation.
The PC messages are displayed in black. PPP-Blinky messages are blue.
Notice how PPP-blinky automatically inserts a blank line after each full HTTP conversation.
Creating a Dial-Up Connection in Linux
The screen below shows the required pppd command to connect to PPP-Blinky from a Linux machine. This was much simpler than Windows! The USB serial port of the mbed LPC1768 board registered as /dev/ttyACM0 on my Linux box. Do a websearch on pppd if you want to learn more about pppd, the Linux PPP handler. Near the bottom of the screen below, two webpages are fetched (/ and /y) by using the curl command on the command line. Gnome Webkit and Firefox work fine, too. Also try echo GET / HTTP/1.1 | nc 172.10.10.2 which uses netcat, the "Swiss army knife" of networking tools. PPP-Blinky was also tested with ApacheBench, the Apache server benchmark software. After 100000 fetches, the mean page fetch rate was reported as 6 page fetches per second for a small page.
Caveats
PPP Blinky is an extremely sparse implementation (1.5k lines) of HTTP,WebSocket,TCP, UDP, ICMP, IPCP and LCP over PPP, requiring around 8kB of RAM. The minimum functionality required to establish connectivity is implemented. These are often acceptable tradeoffs for embedded projects as well as a handy tool to learn the practical details of everyday networking implementations.
main.cpp
- Committer:
- nixnax
- Date:
- 2017-07-31
- Revision:
- 103:4f5512dd11cf
- Parent:
- 102:a89c55672170
- Child:
- 104:b1280b084f75
File content as of revision 103:4f5512dd11cf:
// PPP-Blinky - "The Most Basic Internet Of Things" // A Tiny Webserver Using Windows XP/7/8/10/Linux Dial-Up Networking Over A Serial Port. // Also receives UDP packets and responds to ping (ICMP Echo requests) // Copyright 2016/2017 Nicolas Nackel aka Nixnax. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // Notes and Instructions // http://bit.ly/PPP-Blinky-Instructions // Handy reading material // https://technet.microsoft.com/en-us/library/cc957992.aspx // https://en.wikibooks.org/wiki/Serial_Programming/IP_Over_Serial_Connections // http://bit.ly/dialup777error - how to solve Dial Up Error 777 in Windows 7/8/10 // http://atari.kensclassics.org/wcomlog.htm // Handy tools // https://ttssh2.osdn.jp/index.html.en - Tera Term, a good terminal program to monitor the debug output from the second serial port with! // https://www.microsoft.com/en-us/download/details.aspx?id=4865 - Microsoft network monitor - real-time monitoring of PPP packets - // http://pingtester.net/ - nice tool for high rate ping testing // http://www.sunshine2k.de/coding/javascript/crc/crc_js.html - Correctly calculates the 16-bit FCS (crc) on our frames (Choose CRC16_CCITT_FALSE), then custom relected-in=1, reflected-out=1 // https://technet.microsoft.com/en-us/sysinternals/pstools.aspx - psping for fast testing of ICMP ping function // https://eternallybored.org/misc/netcat/ - use netcat -u 172.10.10.1 80 to send/receive UDP packets from PPP-Blinky // Windows Powershell invoke-webrequest command - use it to stress test the webserver like this: while (1){ invoke-webrequest -uri 172.10.10.1/x } // Connecting PPP-Blinky to Linux // PPP-Blinky can be made to talk to Linux - tested on Fedora - the following command, which uses pppd, works: // pppd /dev/ttyACM0 115200 debug dump local passive noccp novj nodetach nocrtscts 172.10.10.1:172.10.10.2 // in the above command 172.10.10.1 is the adapter IP, and 172.10.10.2 is the IP of PPP-Blinky. // See also https://en.wikipedia.org/wiki/Point-to-Point_Protocol_daemon // Ok, enough talking, time to check out some code!! #include "mbed.h" // The #define below enables/disables a second (OPTIONAL) serial port that prints out interesting diagnostic messages. // Change to SERIAL_PORT_MONITOR_YES to enable diagnostics messages. You need to wire a second serial port to your mbed hardware to monitor this. #define SERIAL_PORT_MONITOR_NO /* change to SERIAL_PORT_MONITOR_YES for debug messages */ #ifndef SERIAL_PORT_MONITOR_NO // here we define the OPTIONAL, second debug serial port for the various target boards // insert your target board's port here if it's not in yet - if it works, please send it to me - thanks!!! #if defined(TARGET_LPC1768) Serial xx(p9, p10); // Second serial port on LPC1768 - not required to run, if you get compile error here, change #define SERIAL_PORT_MONITOR_YES to #define SERIAL_PORT_MONITOR_NO #elif defined(TARGET_NUCLEO_F446RE) || defined(TARGET_NUCLEO_L152RE) Serial xx(PC_10, PC_11); // Second serial port on NUCLEO boards - not required to run, if you get compile error here, change #define SERIAL_PORT_MONITOR_YES to #define SERIAL_PORT_MONITOR_NO #else #error Add your target board's second serial port here if you want to use debugging - or choose SERIAL_PORT_MONITOR_NO #endif #define debug(x...) xx.printf (x) #else #define debug(x...) {} #endif // verbosity flag used in debug printouts - change to 1 to see more debug info. Lots of interesting info. #define v0 0 // verbosity flag used in debug printouts - change to 1 to see more debug info. Lots of interesting info. #define v1 0 // verbosity flag used in debug printouts - change to 1 to see more debug info. Lots of interesting info. #define v2 0 // this is the webpage we serve when we get an HTTP request to root (/) // keep size under ~900 bytes to fit into a single PPP packet const static char rootWebPage[] = "\ <!DOCTYPE html>\ <html>\ <head>\ <title>mbed-PPP-Blinky</title>\ <script>\ window.onload=function(){\ setInterval(function(){function x(){return document.getElementById('w');};\ x().textContent = parseInt(x().textContent)+1;},100);};\ </script>\ </head>\ <body style=\"font-family: sans-serif; font-size:30px; color:#807070\">\ <h1>mbed PPP-Blinky Up and Running</h1>\ <h1 id=\"w\" style=\"text-align:center;\">0</h1>\ <h1><a href=\"http://bit.ly/pppBlink2\">Source on mbed</a></h1>\ </body>\ </html>"; // around 464 bytes long // The serial port on your mbed hardware. Your PC should be configured to view this port as a standard dial-up networking modem. // On Windows the model type of the modem should be selected as "Communications cable between two computers" // The modem baud rate should be set to 115200 baud // See instructions at the top. // On a typical mbed hardware platform this serial port is a USB virtual com port (VCP) and the USB serial driver is supplied by the board vendor. Serial pc(USBTX, USBRX); // usb virtual com port for mbed hardware DigitalOut led1(LED1); // this led toggles when a packet is received // the standard hdlc frame start/end character. It's the tilde character "~" #define FRAME_7E (0x7e) // a structure to keep all our ppp globals in struct pppType { int online; // we hunt for a PPP connection if this is zero unsigned int ident; // our IP ident value int crc; // for calculating IP and TCP CRCs int ledState; // state of LED1 int httpPageCount; struct { #define RXBUFLEN (1<<14) // the serial port receive buffer and packet buffer, size is RXBUFLEN (currently 8192 bytes) char buf[RXBUFLEN]; // RXBUFLEN MUST be a power of two because we use & operator for fast wrap-around in ring buffer int head; int tail; int rtail; int buflevel; } rx; // serial port objects struct { int len; // number of bytes in buffer int crc; // PPP CRC (frame check) #define TCP_max_size 3300 char buf[TCP_max_size]; // send and receive buffer large enough for unstuffed (decoded) hdlc frames } pkt; // ppp buffer objects struct { int frameStartIndex; // frame start marker int frameEndIndex; // frame end marker int frameFound; // we have found at least one start of frame already } hdlc; // hdlc frame objects }; pppType ppp; // our global - definitely not thread safe // Initialize our global structure, clear the buffer, etc. void pppInitStruct() { memset( ppp.rx.buf, 0, RXBUFLEN); ppp.online=0; ppp.rx.tail=0; ppp.rx.rtail=0; ppp.rx.head=0; ppp.rx.buflevel=0; ppp.pkt.len=0; ppp.ident=1000; ppp.ledState=0; ppp.hdlc.frameFound=0; ppp.hdlc.frameStartIndex=0; ppp.httpPageCount=0; } void led1Toggle() { ppp.ledState = ppp.ledState? 0 : 1; led1 = ppp.ledState; // toggle led } void crcReset() { ppp.crc=0xffff; // crc restart } void crcDo(int x) // cumulative crc { for (int i=0; i<8; i++) { ppp.crc=((ppp.crc&1)^(x&1))?(ppp.crc>>1)^0x8408:ppp.crc>>1; // crc calculator x>>=1; } } int crcBuf(char * buf, int size) // crc on an entire block of memory { crcReset(); for(int i=0; i<size; i++)crcDo(*buf++); return ppp.crc; } // fill our own receive buffer with characters from the PPP serial port void fillbuf() { if ( pc.readable() ) { int hd = (ppp.rx.head+1)&(RXBUFLEN-1); // increment/wrap head index if ( hd == ppp.rx.rtail ) { debug("\nReceive buffer full\n"); return; } ppp.rx.buf[ppp.rx.head]=pc.getc(); // insert in rx buffer ppp.rx.head = hd; // update head pointer ppp.rx.buflevel++; } } int rxbufNotEmpty() // check if rx buffer has data { int emptyStatus = (ppp.rx.head==ppp.rx.tail) ? 0 : 1 ; return emptyStatus; } int pc_getBuf() // get one character from the buffer { int x = ppp.rx.buf[ ppp.rx.tail ]; ppp.rx.tail=(ppp.rx.tail+1)&(RXBUFLEN-1); ppp.rx.buflevel--; return x; } // Note - the hex output of dumpPPPFrame() can be imported into WireShark // Capture the frame's hex output in your terminal program and save as a text file // In WireShark, use "Import Hex File". Options are: Offset=None, Protocol=PPP. void dumpPPPFrame() { for(int i=0; i<ppp.pkt.len; i++) debug("%02x ", ppp.pkt.buf[i]); debug(" CRC=%04x Len=%d\n", ppp.pkt.crc, ppp.pkt.len); } void processHDLCFrame(int start, int end) // process received frame { led1Toggle(); // change led1 state on every frame we receive if(start==end) { return; } crcReset(); char * dest = ppp.pkt.buf; ppp.pkt.len=0; int unstuff=0; int idx = start; while(1) { if (unstuff==0) { if (ppp.rx.buf[idx]==0x7d) unstuff=1; else { *dest = ppp.rx.buf[idx]; ppp.pkt.len++; dest++; crcDo(ppp.rx.buf[idx]); } } else { // unstuff characters prefixed with 0x7d *dest = ppp.rx.buf[idx]^0x20; ppp.pkt.len++; dest++; crcDo(ppp.rx.buf[idx]^0x20); unstuff=0; } idx = (idx+1) & (RXBUFLEN-1); if (idx == end) break; } ppp.pkt.crc = ppp.crc & 0xffff; if (ppp.pkt.crc == 0xf0b8) { // check for good CRC void determinePacketType(); // declaration only determinePacketType(); } else { if (0) { // don't normally report FCS because windows early-terminates packets, and early-terminated packets all have FCS errors. debug("\nPPP FCS(crc) Error CRC=%x Length = %d\n",ppp.pkt.crc,ppp.pkt.len); // ignore packets with CRC errors but print a debug line } } } void hdlcPut(int ch) // do hdlc handling of special (flag) characters { if ( (ch<0x20) || (ch==0x7d) || (ch==0x7e) ) { pc.putc(0x7d); pc.putc(ch^0x20); // these characters need special handling } else { pc.putc(ch); } } void send_pppFrame() // send a PPP frame in HDLC format { int crc = crcBuf(ppp.pkt.buf, ppp.pkt.len-2); // update crc ppp.pkt.buf[ ppp.pkt.len-2 ] = (~crc>>0); // fcs lo (crc) ppp.pkt.buf[ ppp.pkt.len-1 ] = (~crc>>8); // fcs hi (crc) pc.putc(0x7e); // hdlc start-of-frame "flag" for(int i=0; i<ppp.pkt.len; i++) { hdlcPut( ppp.pkt.buf[i] ); // send a character if((i&0x7f)==0) fillbuf(); // handle received characters very every 128 sent } pc.putc(0x7e); // hdlc end-of-frame "flag" } void ipcpConfigRequestHandler() { debug("Their IPCP Config Req, Our Ack\n"); ppp.pkt.buf[4]=2; // change code to ack send_pppFrame(); // simply acknowledge everything they ask for debug("Our IPCP Ask\n"); ppp.pkt.buf[4]=1; // change code to request if (ppp.pkt.buf[8]==3) { // check if this is an ip address request ppp.pkt.buf[13]++; // choose next ip address } else { // not an IP request, respond with empty request ppp.pkt.len=10; // shortest ipcp packet possible (4 ppp + 4 ipcp + 2 crc) ppp.pkt.buf[7]=4; // no options in this request } send_pppFrame(); // send our request } void ipcpAckHandler() { debug("Their IPCP Grant\n"); } void ipcpNackHandler() { debug("Their IPCP Nack\n"); } void ipcpDefaultHandler() { debug("Their IPCP Other\n"); } void IPCPframe() { int code = ppp.pkt.buf[4]; // packet type is here switch (code) { case 1: ipcpConfigRequestHandler(); break; case 2: ipcpAckHandler(); break; case 3: ipcpNackHandler(); break; default: ipcpDefaultHandler(); } } void UDPpacket() { char * udpPkt = ppp.pkt.buf+4; // udp packet start int headerSizeIP = (( udpPkt[0]&0xf)*4); char * udpBlock = udpPkt + headerSizeIP; // udp info start #ifndef SERIAL_PORT_MONITOR_NO char * udpSrc = udpBlock; // source port char * udpDst = udpBlock+2; // destination port #endif char * udpLen = udpBlock+4; // udp data length char * udpInf = udpBlock+8; // actual start of info #ifndef SERIAL_PORT_MONITOR_NO int srcPort = (udpSrc[0]<<8) | udpSrc[1]; int dstPort = (udpDst[0]<<8) | udpDst[1]; char * srcIP = udpPkt+12; // udp src addr char * dstIP = udpPkt+16; // udp dst addr #endif #define UDP_HEADER_SIZE 8 int udpLength = ((udpLen[0]<<8) | udpLen[1]) - UDP_HEADER_SIZE; // size of the actual udp data if(v0) debug("UDP %d.%d.%d.%d:%d ", srcIP[0],srcIP[1],srcIP[2],srcIP[3],srcPort); if(v0) debug("%d.%d.%d.%d:%d ", dstIP[0],dstIP[1],dstIP[2],dstIP[3],dstPort); if(v0) debug("Len %03d", udpLength); int printSize = udpLength; if (printSize > 20) printSize = 20; // print only first 20 characters if (v1) { for (int i=0; i<printSize; i++) { char ch = udpInf[i]; if (ch>31 && ch<127) { debug("%c", ch); } else { debug("_"); } } } if (v0) debug("\n"); } unsigned int dataCheckSum(unsigned char * ptr, int len) { unsigned int sum=0; unsigned char placeHolder; if (len&1) { placeHolder = ptr[len]; // when length is odd stuff in a zero byte ptr[len]=0; } for (int i=0; i<len/2; i++) { unsigned int hi = *ptr; ptr++; unsigned int lo = *ptr; ptr++; unsigned int val = ( (hi<<8) | lo ); sum = sum + val; } if (len&1) { ptr[len] = placeHolder; // restore the last byte for odd lengths } sum = (sum & 0xffff) + (sum>>16); sum = (sum & 0xffff) + (sum>>16); // sum one more time to catch any carry from the carry return ~sum; } void headerCheckSum() { int len =(ppp.pkt.buf[4]&0xf)*4; // length of header in bytes char * ptr = ppp.pkt.buf+4; // start of ip packet int sum=0; for (int i=0; i<len/2; i++) { int hi = *ptr; ptr++; int lo = *ptr; ptr++; int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 ); sum = sum + val; } sum = sum + (sum>>16); sum = ~sum; ppp.pkt.buf[14]= (sum>>8); ppp.pkt.buf[15]= (sum ); } void ICMPpacket() // internet control message protocol { char * ipPkt = ppp.pkt.buf+4; // ip packet start char * pktLen = ipPkt+2; int packetLength = (pktLen[0]<<8) | pktLen[1]; // icmp packet length int headerSizeIP = (( ipPkt[0]&0xf)*4); char * icmpType = ipPkt + headerSizeIP; // icmp data start char * icmpSum = icmpType+2; // icmp checksum #define ICMP_TYPE_PING_REQUEST 8 if ( icmpType[0] == ICMP_TYPE_PING_REQUEST ) { char * ipTTL = ipPkt+8; // time to live ipTTL[0]--; // decrement time to live char * srcAdr = ipPkt+12; char * dstAdr = ipPkt+16; #ifndef SERIAL_PORT_MONITOR_NO int icmpIdent = (icmpType[4]<<8)|icmpType[5]; int icmpSequence = (icmpType[6]<<8)|icmpType[7]; #endif if(v0) debug("ICMP PING %d.%d.%d.%d %d.%d.%d.%d ", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3],dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); if(v0) debug("Ident %04x Sequence %04d ",icmpIdent,icmpSequence); char src[4]; char dst[4]; memcpy(src, srcAdr,4); memcpy(dst, dstAdr,4); memcpy(srcAdr, dst,4); memcpy(dstAdr, src,4); // swap src & dest ip char * chkSum = ipPkt+10; chkSum[0]=0; chkSum[1]=0; headerCheckSum(); // new ip header checksum #define ICMP_TYPE_ECHO_REPLY 0 icmpType[0]=ICMP_TYPE_ECHO_REPLY; // icmp echo reply icmpSum[0]=0; icmpSum[1]=0; // zero the checksum for recalculation int icmpLength = packetLength - headerSizeIP; // length of ICMP data portion unsigned int sum = dataCheckSum( (unsigned char *)icmpType, icmpLength); // this checksum on icmp data portion icmpSum[0]=(sum>>8)&0xff; icmpSum[1]=(sum )&0xff; // new checksum for ICMP data portion int printSize = icmpLength-8; // exclude size of icmp header char * icmpData = icmpType+8; // the actual payload data is after the header if (printSize > 10) printSize = 10; // print up to 20 characters if (v0) { for (int i=0; i<printSize; i++) { char ch = icmpData[i]; if (ch>31 && ch<127) { debug("%c",ch); } else { debug("_"); } } debug("\n"); } send_pppFrame(); // reply to the ping } else { if (v0) { debug("ICMP type=%d \n", icmpType[0]); } } } void IGMPpacket() // internet group management protocol { if (v0) { debug("IGMP type=%d \n", ppp.pkt.buf[28]); } } void dumpHeaderIP () { if (v0) { char * ipPkt = ppp.pkt.buf+4; // ip packet start #ifndef SERIAL_PORT_MONITOR_NO char * version = ipPkt; // top 4 bits char * ihl = ipPkt; // bottom 4 bits char * dscp = ipPkt+1; // top 6 bits char * ecn = ipPkt+1; // lower 2 bits char * pktLen = ipPkt+2; // 2 bytes char * ident = ipPkt+4; // 2 bytes char * flags = ipPkt+6; // 2 bits char * ttl = ipPkt+8; // 1 byte char * protocol = ipPkt+9; // 1 byte char * headercheck= ipPkt+10; // 2 bytes #endif char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes #ifndef SERIAL_PORT_MONITOR_NO int versionIP = (version[0]>>4)&0xf; int headerSizeIP = (ihl[0]&0xf)*4; int dscpIP = (dscp[0]>>2)&0x3f; int ecnIP = ecn[0]&3; int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length int identIP = (ident[0]<<8)|ident[1]; int flagsIP = flags[0]>>14&3; int ttlIP = ttl[0]; int protocolIP = protocol[0]; unsigned int checksumIP = (headercheck[0]<<8)|headercheck[1]; #endif char srcIP [16]; snprintf(srcIP,16, "%d.%d.%d.%d", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3]); char dstIP [16]; snprintf(dstIP,16, "%d.%d.%d.%d", dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); debug("IP %s %s v%d h%d d%d e%d L%03d ",srcIP,dstIP,versionIP,headerSizeIP,dscpIP,ecnIP,packetLength); debug("i%04x f%d t%d p%d C%04x\n",identIP,flagsIP,ttlIP,protocolIP,checksumIP); } } void dumpHeaderTCP() { if( v0 ) { int headerSizeIP = (ppp.pkt.buf[4]&0xf)*4; // header size of ip portion char * tcpStart = ppp.pkt.buf+4+headerSizeIP; // start of tcp packet #ifndef SERIAL_PORT_MONITOR_NO char * seqtcp = tcpStart + 4; // 4 bytes char * acktcp = tcpStart + 8; // 4 bytes #endif char * flagbitstcp = tcpStart + 12; // 9 bits #ifndef SERIAL_PORT_MONITOR_NO unsigned int seq = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]); unsigned int ack = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]); #endif int flags = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1]; char flagInfo[10]; // text string presentating the TCP flags memset(flagInfo,'.', 9); // fill string with "........." memset(flagInfo+9,0,1); // null terminate string if (flags & (1<<0)) flagInfo[0]='F'; if (flags & (1<<1)) flagInfo[1]='S'; if (flags & (1<<2)) flagInfo[2]='R'; if (flags & (1<<3)) flagInfo[3]='P'; if (flags & (1<<4)) flagInfo[4]='A'; if (flags & (1<<5)) flagInfo[5]='U'; if (flags & (1<<6)) flagInfo[6]='E'; if (flags & (1<<7)) flagInfo[7]='C'; if (flags & (1<<8)) flagInfo[8]='N'; debug("TCP Flags %s Seq %u Ack %u\n", flagInfo, seq, ack); // show the flags in debug } } int httpResponse(char * dataStart) { int n=0; // number of bytes we have printed so far int nHeader; // byte size of HTTP header int contentLengthStart; // index where HTML starts int xFetch, httpGetRoot; // temporary storage of strncmp results ppp.httpPageCount++; // increment the number of frames we have made httpGetRoot = strncmp(dataStart, "GET / HTTP/1.", 13); // found GET, respond to both HTTP/1.<anything> xFetch = strncmp(dataStart, "GET /x", 6); // found GET /x , respond to both HTTP/1.<anything> // for example, in linux, xFetch can be used as: echo GET /x | nc 172.10.10.2 if( (httpGetRoot==0) || (xFetch==0) ) { n=n+sprintf(n+dataStart,"HTTP/1.1 200 OK\r\nServer: mbed-PPP-Blinky\r\n"); // 200 OK header } else { n=n+sprintf(n+dataStart,"HTTP/1.1 404 Not Found\r\nServer: mbed-PPP-Blinky\r\n"); // 404 header } n=n+sprintf(n+dataStart,"Content-Length: "); // http header contentLengthStart = n; // remember where Content-Length is in buffer n=n+sprintf(n+dataStart,"?????\r\n"); // leave five spaces for content length - will be updated later n=n+sprintf(n+dataStart,"Connection: close\r\n"); // close connection immediately n=n+sprintf(n+dataStart,"Content-Type: text/html; charset=us-ascii\r\n\r\n"); // http header must end with empty line (\r\n) nHeader=n; // size of HTTP header if( httpGetRoot == 0 ) { // this is where we insert our web page into the buffer //n=n+sprintf(n+dataStart,"%s", ourWebPage); memcpy(n+dataStart,rootWebPage,sizeof(rootWebPage)); n = n + sizeof(rootWebPage); } else { if (xFetch == 0) { #define W3C_COMPLIANT_RESPONSE_NO // change the above to W3C_COMPLIANT_RESPONSE_YES if you want a W3C.org compliant HTTP response #ifdef W3C_COMPLIANT_RESPONSE_YES n=n+sprintf(n+dataStart,"<!DOCTYPE html><title>mbed-ppp-blinky</title>"); // html title (W3C.org required element) n=n+sprintf(n+dataStart,"<body>%d</body>",ppp.httpPageCount); // body = the http frame count #else #define BENCHMARK_USING_BROWSER_NO /* set to _YES if you want to use your browser as a benchmark tool of http fetches */ #ifndef BENCHMARK_USING_BROWSER_NO // a small script that reloads the page after 10 ms - handy for benchmarking using your web browser n=n+sprintf(n+dataStart, "<script>setTimeout(function(){location.reload();},10);</script><body>%d</body>",ppp.httpPageCount); #else n=n+sprintf(n+dataStart,"%d",ppp.httpPageCount); // not valid html but fast, most browsers and curl are ok with it #endif #endif } else { // all other requests get 404 Not Found response with a http frame count - nice for debugging n=n+sprintf(n+dataStart,"<!DOCTYPE html><title>ppp-blinky-mbed</title>"); // html title (required element) n=n+sprintf(n+dataStart,"<body>Not Found</body>"); // not found message } } while( (n%4)!= 2) n=n+sprintf(n+dataStart," "); // insert spaces until n is exactly two away from a multiple of four n=n+sprintf(n+dataStart,"\r\n"); // add the last two characters (\r\n) - n is now an exact multiple of four #define CONTENTLENGTHSIZE 5 char contentLengthString[CONTENTLENGTHSIZE+1]; snprintf(contentLengthString,CONTENTLENGTHSIZE+1,"%*d",CONTENTLENGTHSIZE,n-nHeader); // print Content-Length with leading spaces and fixed width equal to csize memcpy(dataStart+contentLengthStart, contentLengthString, CONTENTLENGTHSIZE); // copy Content-Length to it's place in the send buffer if (v2) { debug("HTTP Response: HTTP-header %d HTTP-content %d HTTP-total %d\n",nHeader,n-nHeader,n); } return n; // total byte size of our response } // if not an http response we just report the number of bytes received // this is handy when you for example want to use netcat (nc.exe) to talk to PPP-Blinky int tcpResponse(char * dataStart, int len) { int n=0; // number of bytes we have printed so far n=n+sprintf(n+dataStart,"Got %04d bytes.\n",len); // report the number of bytes received while( (n%4)!= 0) n=n+sprintf(n+dataStart,"*"); // insert spaces until n is exactly two away from a multiple of four if (v2) { debug("TCP response %d byes\n",n); } return n; // total byte size of our response } void tcpHandler() { // IP header char * ipPkt = ppp.pkt.buf+4; // ip packet start char * ihl = ipPkt; // bottom 4 bits char * pktLen = ipPkt+2; // 2 bytes char * ident = ipPkt+4; // 2 bytes char * protocol = ipPkt+9; // 1 byte char * headercheck= ipPkt+10; // 2 bytes char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes int headerSizeIP = (ihl[0]&0xf)*4; int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length // TCP header char * tcp = ppp.pkt.buf+4+headerSizeIP; // start of tcp packet char * srctcp = tcp + 0; // 2 bytes char * dsttcp = tcp + 2; // 2 bytes char * seqtcp = tcp + 4; // 4 bytes char * acktcp = tcp + 8; // 4 bytes char * offset = tcp + 12; // 4 bits char * flagbitstcp = tcp + 12; // 9 bits char * windowsizetcp = tcp + 14; // 2 bytes char * checksumtcp = tcp + 16; // 2 bytes int tcpSize = packetLength - headerSizeIP; int headerSizeTCP = ((offset[0]>>4)&0x0f)*4; // size of tcp header only int protocolIP = protocol[0]; char * tcpDataIn = tcp + headerSizeTCP; // start of data block after TCP header int tcpDataSize = tcpSize - headerSizeTCP; // size of data block after TCP header char * tcpDataOut = tcp + 20; // start of outgoing data unsigned int seq_in = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]); unsigned int ack_in = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]); unsigned int ack_out = seq_in + tcpDataSize; unsigned int seq_out = ack_in; // use their version of our current sequence number #define TCP_FLAG_ACK (1<<4) #define TCP_FLAG_SYN (1<<1) #define TCP_FLAG_PSH (1<<3) #define TCP_FLAG_RST (1<<2) #define TCP_FLAG_FIN (1<<0) // first we shorten the TCP response header to only 20 bytes. // this means we ignore all TCP option requests tcpSize = 20; // shorten total TCP packet size to 20 bytes (no data) headerSizeTCP = 20; // shorten outgoing TCP header size 20 bytes offset[0] = (headerSizeTCP/4)<<4; // shorten tcp header size to 20 bytes packetLength = 40; // shorten total packet size to 40 bytes (20 ip + 20 tcp) pktLen[1] = 40; // set total packet size to 40 bytes (20 ip + 20 tcp) pktLen[0] = 0; // set total packet size to 40 bytes (20 ip + 20 tcp) int dataLen = 0; // most of our responses will have zero TCP data, only a header int flagsOut = TCP_FLAG_ACK; // the default case is an ACK packet int flagsTCP = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1]; // the tcp flags we received windowsizetcp[0]=2; // tco window size = 700 windowsizetcp[1]=0xbc; // tcp windows size = 700 int doFin = 0; // flag to see if we have to send an extra FIN message to shut down the link // A sparse TCP flag interpreter that implements simple TCP connections from a single source // Clients are allowed ONE push packet, after which the link is closed with a FIN flag in the ACK packet // This strategy allows web browsers, netcat and curl to work ok while keeping the state machine simple switch ( flagsTCP ) { case TCP_FLAG_SYN: flagsOut = TCP_FLAG_SYN | TCP_FLAG_ACK; // something wants to connect - acknowledge it seq_out = seq_in+0x1000U; // create a new sequence number using their sequence as a base ack_out++; // for SYN flag we have to increase the sequence by 1 break; case TCP_FLAG_ACK | TCP_FLAG_PSH: if ( strncmp(tcpDataIn, "GET /", 5) == 0) { // check for an http GET command flagsOut = TCP_FLAG_ACK | TCP_FLAG_FIN; // set the FIN flag to start closing this TCP connection dataLen = httpResponse(tcpDataOut); // send an http response } else { dataLen = tcpResponse(tcpDataOut,tcpDataSize); // not a web request, just report number of received bytes } break; case TCP_FLAG_FIN | TCP_FLAG_PSH | TCP_FLAG_ACK: case TCP_FLAG_FIN | TCP_FLAG_ACK: case TCP_FLAG_RST: ack_out++; // for FIN flag we always have to increase sequence by 1 break; case TCP_FLAG_FIN: flagsOut = TCP_FLAG_ACK | TCP_FLAG_FIN; // set the FIN flag to start closing the connection break; default: return; // ignore remaining packets } // switch // The TCP flag handling is now done // first we swap sourc and destination TCP addresses and insert the new ack and seq numbers char tempHold[12]; // it's 12 long because we later reuse it when building the TCP pseudo-header memcpy(tempHold, srcAdr,4); memcpy(srcAdr, dstAdr,4); memcpy(dstAdr, tempHold,4); // swap ip address source/dest memcpy(tempHold, srctcp,2); memcpy(srctcp, dsttcp,2); memcpy(dsttcp, tempHold,2); // swap ip port source/dest sendTCP: acktcp[0]=ack_out>>24; acktcp[1]=ack_out>>16; acktcp[2]=ack_out>>8; acktcp[3]=ack_out>>0; // save ack 32-bit integer seqtcp[0]=seq_out>>24; seqtcp[1]=seq_out>>16; seqtcp[2]=seq_out>>8; seqtcp[3]=seq_out>>0; // save seq 32-bit integer flagbitstcp[1] = flagsOut; // update the TCP flags // increment the ip ident number ppp.ident++; // get next ident number for our packet ident[0] = ppp.ident>>8; ident[1] = ppp.ident>>0; // insert OUR ident // Now we recalculate all the header sizes, and do the IP and TCP checksums int newPacketSize = headerSizeIP + headerSizeTCP + dataLen; // calculate size of the outgoing packet pktLen[0] = (newPacketSize>>8); pktLen[1]=newPacketSize; // ip total packet size ppp.pkt.len = newPacketSize+6; // ppp packet length tcpSize = headerSizeTCP + dataLen; // tcp packet size // the header is all set up, now do the IP and TCP checksums headercheck[0]=0; // IP header checksum headercheck[1]=0; // IP header checksum headerCheckSum(); // calculate the IP header checksum // now we have to build the so-called 12-byte TCP "pseudo-header" in front of the TCP header (containing some IP header values) in order to correctly calculate the TCP checksum // this header contains the most important parts of the IP header, i.e. source and destination address, protocol number and data length. char * pseudoHeader = tcp-12; // mark the start of the TCP pseudo-header memcpy(tempHold, pseudoHeader, 12); // preserve the 12 bytes of the IP header where the TCP pseudo-Header will be built memcpy( pseudoHeader+0, srcAdr, 8); // IP source and destination addresses from IP header memset( pseudoHeader+8, 0, 1); // reserved, set to zero memset( pseudoHeader+9, protocolIP, 1); // protocol from IP header memset( pseudoHeader+10, tcpSize>>8, 1); // size of IP data (TCP packet size) memset( pseudoHeader+11, tcpSize, 1); // size of IP data (TCP packet size) // pseudo-header built, now we can calculate TCP checksum checksumtcp[0]=0; checksumtcp[1]=0; unsigned int pseudoHeaderSum=dataCheckSum((unsigned char *)pseudoHeader,tcpSize+12); // calculate the TCP checksum starting at the pseudo-header checksumtcp[0]=pseudoHeaderSum>>8; checksumtcp[1]=pseudoHeaderSum; memcpy( tcp-12, tempHold, 12); // restore the 12 bytes that the pseudo-header overwrote send_pppFrame(); // All preparation complete - send the TCP response if (doFin==1) { // they want to shut down the link, so we have to send another packet to close our side of the link doFin=0; flagsOut = TCP_FLAG_ACK | TCP_FLAG_FIN; // tell them we are also finished goto sendTCP; // send our final packet for this conversation. } dumpHeaderIP(); dumpHeaderTCP(); } void dumpDataTCP() { int ipPktLen = (ppp.pkt.buf[6]<<8)|ppp.pkt.buf[7]; // overall length of ip packet int ipHeaderLen = (ppp.pkt.buf[4]&0xf)*4; // length of ip header int headerSizeTCP = ((ppp.pkt.buf[4+ipHeaderLen+12]>>4)&0xf)*4;; // length of tcp header int dataLen = ipPktLen - ipHeaderLen - headerSizeTCP; // data is what's left after the two headers if (v1) { debug("TCP %d ipHeader %d tcpHeader %d Data %d\n", ipPktLen, ipHeaderLen, headerSizeTCP, dataLen); // 1 for more verbose } if (dataLen > 0) { ppp.pkt.buf[4+ipHeaderLen+headerSizeTCP+dataLen]=0; // insert a null after the data so debug printf stops printing after the data debug("%s\n",ppp.pkt.buf+4+ipHeaderLen+headerSizeTCP); // show the data } } void TCPpacket() { dumpHeaderIP(); dumpHeaderTCP(); if (v2) { dumpDataTCP(); } tcpHandler(); } void otherProtocol() { debug("Other IP protocol"); } void IPframe() { int protocol = ppp.pkt.buf[13]; switch (protocol) { case 1: ICMPpacket(); break; case 2: IGMPpacket(); break; case 17: UDPpacket(); break; case 6: TCPpacket(); break; default: otherProtocol(); } } void LCPconfReq() { debug("LCP Config "); if (ppp.pkt.buf[7] != 4) { ppp.pkt.buf[4]=4; // allow only "no options" which means Maximum Receive Unit (MRU) is 1500 bytes debug("Reject\n"); send_pppFrame(); } else { ppp.pkt.buf[4]=2; // ack zero conf debug("Ack\n"); send_pppFrame(); debug("LCP Ask\n"); ppp.pkt.buf[4]=1; // request no options send_pppFrame(); } } void LCPconfAck() { debug("LCP Ack\n"); } void LCPend() { ppp.pkt.buf[4]=6; send_pppFrame(); // acknowledge ppp.online=0; // start hunting for connect string again pppInitStruct(); // flush the receive buffer debug("LCP End\n"); } void LCPother() { debug("LCP Other\n"); dumpPPPFrame(); } void LCPframe() { int code = ppp.pkt.buf[4]; switch (code) { case 1: LCPconfReq(); break; // config request case 2: LCPconfAck(); break; // config ack case 5: LCPend(); break; // end connection default: LCPother(); } } void discardedFrame() { if (v0) { debug("Frame is not IP, IPCP or LCP: %02x %02x %02x %02x\n", ppp.pkt.buf[0],ppp.pkt.buf[1],ppp.pkt.buf[2],ppp.pkt.buf[3]); } } void determinePacketType() { if ( ppp.pkt.buf[0] != 0xff ) { debug("byte0 != ff\n"); return; } if ( ppp.pkt.buf[1] != 3 ) { debug("byte1 != 3\n"); return; } if ( ppp.pkt.buf[3] != 0x21 ) { debug("byte2 != 21\n"); return; } int packetType = ppp.pkt.buf[2]; switch (packetType) { case 0xc0: LCPframe(); break; // link control case 0x80: IPCPframe(); break; // IP control case 0x00: IPframe(); break; // IP itself default: discardedFrame(); } } void wait_for_HDLC_frame() { while(1) { fillbuf(); // handle received characters if ( rxbufNotEmpty() ) { int oldTail = ppp.rx.tail; // remember where the character is located in the buffer int rx = pc_getBuf(); // get the character if (rx==FRAME_7E) { if (ppp.hdlc.frameFound == 0) { // we are still waiting for a frame start ppp.hdlc.frameFound = 1; // we found our first frame start ppp.hdlc.frameStartIndex=ppp.rx.tail; // remember where the frame character is in the buffer } else { // we have previously found a frame start ppp.hdlc.frameEndIndex=oldTail; // mark the frame end character processHDLCFrame(ppp.hdlc.frameStartIndex, ppp.hdlc.frameEndIndex); // process the frame ppp.rx.rtail = ppp.rx.tail; ppp.hdlc.frameStartIndex = ppp.rx.tail; // where next frame will start break; } } } } } void scanForConnectString() { while(ppp.online == 0) { fillbuf(); // search for Windows Dialup Networking "Direct Connection Between Two Computers" expected connect string char * found1 = strstr( (char *)ppp.rx.buf, "CLIENTCLIENT" ); // also search for HDLC frame start character 0x7e void * found2 = memchr( (char *)ppp.rx.buf, 0x7e, RXBUFLEN ); if( (found1 != NULL) | (found2 != NULL) ) { if (found1 != NULL) { // respond with Windows Dialup networking expected "Direct Connection Between Two Computers" response string pc.puts("CLIENTSERVER"); if (v0) debug("Found connect string \"CLIENTCLIENT\"\n"); } if (found2 != NULL) { if (v0) debug("Found HDLC frame start (7E)\n"); } ppp.online=1; // we are connected, so stop looking for the string } } } int main() { pc.baud(115200); // USB virtual serial port #ifndef SERIAL_PORT_MONITOR_NO xx.baud(115200); // second serial port for debug messages xx.puts("\x1b[2J\x1b[HReady\n"); // VT100 code for clear screen & home #endif pppInitStruct(); // initialize all the PPP properties while(1) { scanForConnectString(); // respond to connect command from windows dial up networking while(ppp.online) { wait_for_HDLC_frame(); } } }