Small Internet Protocol Stack using a standard serial port.
PPP-Blinky - TCP/IP Networking Over a Serial Port
Note: The source code is at the bottom of this page.
A Windows desktop showing PPP-Blinky in the network connections list.
Describe PPP-Blinky in Three Sentences
PPP-Blinky is a tiny library that enables Internet protocols (IPv4) to any mbed target hardware by using only a serial port.
The code runs on processors with as little as 8k RAM, for example the Nucleo-L053R8 board.
PPP-Blinky uses the industry-standard PPP (Point-to-Point) Protocol and a tiny "stateless" TCP/IP stack.
No Ethernet Port Required
No ethernet port is required - PPP-Blinky uses a serial port to send IP packets to your PC.
PPP-Blinky emulates a standard dial-up modem and therefore connects to Windows, Linux or Adroid machines.
The code runs on most ARM mbed platforms such as the LPC11U24 shown in the picture below:
mbed LPC11u24 acting as a webserver to a Windows laptop.
Webserver
The Webserver and WebSocket functions are ideal for building browser-based GUIs on mbed-enabled hardware.
PPP-Blinky's HTTP webserver works with most web clients such as Internet Explorer, Mozilla Firefox, Google Chrome, Safari, Curl, wget and Lynx as well as Microsoft Powershell Invoke-Webrequest command.
In the image below Firefox web browser displays the main web page embedded into PPP-Blinky's code:
Firefox web browser displays a web page embedded into PPP-Blinky's code
WebSocket Service
WebSocket is the most popular protocol standard for real-time bidirectional TCP/IP communication between clients and servers.
In the image below a small Internet Explorer script has connected to PPP-Blinky's WebSocket Service.
A websocket message was then sent by the browser and was echoed back by the WebSocket, triggering the onmessage event in the script.
The WebSocket service enables bidirectional real-time interaction between PPP-Blinky and any element in the browser DOM via JavaScript.
If you already have PPP-Blinky up and running you can test your WebSocket service using this: http://jsfiddle.net/d26cyuh2/112/embedded/result
Websockets are ideal for building browser-based GUIs for mbed hardware.
Trying PPP-Blinky on your mbed board
You will need an mbed-enabled hardware board: https://developer.mbed.org/platforms/
Establish a serial port connection between your host PC and your mbed board.
The easiest way is to use mbed hardware with a USB serial debug port. I've tried the ST-Micro Nucleo-L476RG, Nucleo-L152RE, Nucleo-F401RE, Nucleo-L432KC, Nucleo-L053R8, mbed-LPC11U24 and mbed-LPC1768 boards and they all work out of the box. Use the mbed online compiler to compile the software for your target board. Save the compiled binary to your hardware.
Before establishing a network connection, you can verify the operation of the code by opening a terminal program such as Tera Term, and setting the baud rate of the COM port on your mbed board to 115200 baud. LED1 should toggle for every two 0x7E (~
) (i.e. tilde) characters you type, as 0x7E is the PPP frame start/end marker. Don't forget to close the port when your'e done testing, or else Windows Dial-up Networking will report that the COM port is in use by another program when you try to connect.
Once you are certain that the serial port and firmware is working, proceed to creating a new network connection on your PC -see below.
Creating a Dial-up Connection in Windows
Setting up Dial-Up Networking (DUN) on your Windows 7 or 8 PC is essentially a two-step process: First, you create a new modem device, because PPP-blinky partially emulates a standard Windows serial port modem device. Second, you create a new Internet connection (in practice, a new network adapter) which is associated with your new "modem".
Step-by-step description of how to configure Windows for PPP-Blinky here:
/users/nixnax/code/PPP-Blinky/wiki/Configuring-Windows-Dial-Up-Networking
There is also a screen on how to set up Linux dial-up networking near the bottom of this page.
Connecting to PPP-Blinky from your PC
Once Windows networking is configured you can establish a dial-up connection to your mbed board over the USB virtual com port.
The IP address you manually assigned to the new dial-up network adapter (172.10.10.1) functions as a gateway to any valid IP address on that subnet. In the screen capture below, I'm sending pings from the Windows 8 command line to my ST-Micro Nucleo-L476RG board over the USB virtual serial Port. I'm also using a second serial port and Tera Term to capture the debug output from a second serial port on the hardware. The optional debug output from the board prints out the IP source and destination address and the first few bytes of the data payload. Note that the source is the adapter IP address, (172.10.10.1 in this case) and the destination is some other address on that subnet - all packets to the subnet are sent to our mbed hardware. For example, you could also ping 172.10.10.123 or, if your PPP-Blinky is running, simply click on this link: http://172.10.10.123
One Million Pings!
In the image below the ICMP ("ping") echo reply service was tested by sending one million pings to ppp-Blinky. This took over two hours.
The ping tool used on the Windows 8 PC was psping.exe from PsTools by Mark Russinovich - http://bit.ly/PingFast
The average reply time for a short ping (1 byte of payload data) was 11 milliseconds at 115200 baud on the $10 Nucleo-L053R8 board - barely enough time for 130 bytes to be sent over the port!
Monitoring PPP-Blinky Packets
The image below is from a Microsoft Network Monitor 3.4 capture session.
Responses from PPP-Blinky are shown in blue.
Frame 2 - Internet Explorer at IP 172.10.10.1 (the Dial-Up Adapter IP) requests a TCP connection by sending an S (SYN) flag.
Frame 3 - PPP-Blinky at IP 172.10.10.2 responds with an ACK in frame 3. One direction of the link is now established.
Frame 4 - The PC acknowledges the SYN sent by PPP-Blinky in frame 3. The TCP link is now fully established.
Frame 5 - The browser "pushes" (P flag is set) an HTTP GET request to PPP-Blinky.
Frame 6 - PPP-Blinky responds with a standard HTTP response "pushes" (P flag set) back a small web page. It also sets the A (ACK) flag to acknowledge the message sent in frame 6.
Frame 7 - The PC acknowledges reception of the HTTP payload.
Frame 8 - The PC starts to shut down the TCP connection by sending a FIN flag.
Frame 9 - PPP-Blinky acknowledges the FIN request - the connection is now closed in one direction. It also sets a FIN flag in the response to request closure of the opposite direction of the connection.
Frame 10 - The PC acknowledges the FIN request. The closing of the TCP connection is now confirmed in both directions.
Debug Output
PPP-Blinky can output handy debug information to an optional second serial port.
The image below shows the debug output (Ident, Source, Destination, TCP Flags) for a complete HTTP conversation.
The PC messages are displayed in black. PPP-Blinky messages are blue.
Notice how PPP-blinky automatically inserts a blank line after each full HTTP conversation.
Creating a Dial-Up Connection in Linux
The screen below shows the required pppd command to connect to PPP-Blinky from a Linux machine. This was much simpler than Windows! The USB serial port of the mbed LPC1768 board registered as /dev/ttyACM0 on my Linux box. Do a websearch on pppd if you want to learn more about pppd, the Linux PPP handler. Near the bottom of the screen below, two webpages are fetched (/ and /y) by using the curl command on the command line. Gnome Webkit and Firefox work fine, too. Also try echo GET / HTTP/1.1 | nc 172.10.10.2 which uses netcat, the "Swiss army knife" of networking tools. PPP-Blinky was also tested with ApacheBench, the Apache server benchmark software. After 100000 fetches, the mean page fetch rate was reported as 6 page fetches per second for a small page.
Caveats
PPP Blinky is an extremely sparse implementation (1.5k lines) of HTTP,WebSocket,TCP, UDP, ICMP, IPCP and LCP over PPP, requiring around 8kB of RAM. The minimum functionality required to establish connectivity is implemented. These are often acceptable tradeoffs for embedded projects as well as a handy tool to learn the practical details of everyday networking implementations.
main.cpp
- Committer:
- nixnax
- Date:
- 2017-08-16
- Revision:
- 136:28a838086979
- Parent:
- 135:6c3eec2fa634
- Child:
- 137:eda0cfcf4d3c
File content as of revision 136:28a838086979:
// PPP-Blinky - "The Most Basic Internet Of Things" // A Tiny HTTP Webserver Using Windows XP/7/8/10/Linux Dial-Up Networking Over A Serial Port. // Also receives UDP packets and responds to ping (ICMP Echo requests) // Also: WebSocket Service - see https://en.wikipedia.org/wiki/WebSocket // Copyright 2016/2017 Nicolas Nackel aka Nixnax. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // Notes and Instructions // http://bit.ly/PPP-Blinky-Instructions // http://bit.ly/win-rasdial-config // Handy reading material // https://technet.microsoft.com/en-us/library/cc957992.aspx // https://en.wikibooks.org/wiki/Serial_Programming/IP_Over_Serial_Connections // http://bit.ly/dialup777error - how to solve Dial Up Error 777 in Windows 7/8/10 // http://atari.kensclassics.org/wcomlog.htm // Handy tools // https://ttssh2.osdn.jp/index.html.en - Tera Term, a good terminal program to monitor the debug output from the second serial port with! // https://www.microsoft.com/en-us/download/details.aspx?id=4865 - Microsoft network monitor - real-time monitoring of PPP packets // http://pingtester.net/ - nice tool for high rate ping testing // http://www.sunshine2k.de/coding/javascript/crc/crc_js.html - Correctly calculates the 16-bit FCS (crc) on our frames (Choose CRC16_CCITT_FALSE), then custom relected-in=1, reflected-out=1 // https://technet.microsoft.com/en-us/sysinternals/pstools.aspx - psping for fast testing of ICMP ping function // https://eternallybored.org/misc/netcat/ - use netcat -u 172.10.10.1 80 to send/receive UDP packets from PPP-Blinky // Windows Powershell invoke-webrequest command - use it to stress test the webserver like this: while (1){ invoke-webrequest -uri 172.10.10.1/x } // Connecting PPP-Blinky to Linux // PPP-Blinky can be made to talk to Linux - tested on Fedora - the following command, which uses pppd, works: // pppd /dev/ttyACM0 115200 debug dump local passive noccp novj nodetach nocrtscts 172.10.10.1:172.10.10.2 // in the above command 172.10.10.1 is the adapter IP, and 172.10.10.2 is the IP of PPP-Blinky. // See also https://en.wikipedia.org/wiki/Point-to-Point_Protocol_daemon // Special pages when PPP-Blinky is running // 172.10.10.2 root page // 172.10.10.2/x returns a number that increments every time you request a page - this is handy for testing // 172.10.10.2/xb also returns a number, but issues a fast refresh command. This allows you to use your browser to benchmark page load speed // 172.10.10.2/ws a simple WebSocket demo // http://jsfiddle.net/d26cyuh2/ more complete WebSocket demo in JSFiddle // Ok, enough talking, time to check out some code!! #include "mbed.h" #include "sha1.h" #include "BufferedSerial.h" // The #define below enables/disables a second (OPTIONAL) serial port that prints out interesting diagnostic messages. // Change to SERIAL_PORT_MONITOR_YES to enable diagnostics messages. You need to wire a second serial port to your mbed hardware to monitor this. // Note - the LPC11U24 does NOT have a second serial port #define SERIAL_PORT_MONITOR_NO /* change to SERIAL_PORT_MONITOR_YES for debug messages */ // here we define the OPTIONAL, second debug serial port for the various target boards // insert your target board's port here if it's not in yet - if it works, please send it to me - thanks!!! // note - if you enable this, some packets may initially be missed which will cause some retransmits #ifdef SERIAL_PORT_MONITOR_YES #if defined(TARGET_LPC1768) Serial xx(p9, p10); // Second serial port on LPC1768 - not required to run, if you get compile error here, change #define SERIAL_PORT_MONITOR_YES to #define SERIAL_PORT_MONITOR_NO #elif defined(TARGET_NUCLEO_F446RE) || defined(TARGET_NUCLEO_L152RE) || defined(TARGET_NUCLEO_L053R8) || defined(TARGET_NUCLEO_L476RG) || defined(TARGET_NUCLEO_F401RE) Serial xx(PC_10, PC_11); // Second serial port on NUCLEO boards - not required to run, if you get compile error here, change #define SERIAL_PORT_MONITOR_YES to #define SERIAL_PORT_MONITOR_NO #elif defined(TARGET_LPC11U24) #error The LPC11U24 does not have a second serial port to use for debugging - change SERIAL_PORT_MONITOR_YES back to SERIAL_PORT_MONITOR_NO #elif defined (TARGET_KL46Z) || (TARGET_KL25Z) Serial xx(PTE0,PTE1); // Second serial port on FRDM-KL46Z board #elif defined(YOUR_TARGET_BOARD_NAME_HERE) Serial xx(p9, p10); // insert your board's debug serial port pins here - and please send it to me if it works #else #error Add your target board's second serial port here if you want to use debugging - or choose SERIAL_PORT_MONITOR_NO #endif #define debugPrintf(x...) xx.printf (x) /* if we have a serial port we print debug messages */ #define debugPutc(x...) xx.putc(x) #define debugBaudRate(x...) xx.baud(x) #else // if we don't have a debug port the debug print functions do nothing #define debugPrintf(x...) {} #define debugPutc(x...) {} #define debugBaudRate(x...) {} #endif // verbosity flags used in debug printouts - change to 1 to see increasingly more detailed debug info. #define v0 1 #define v1 0 #define v2 0 #define IP_HEADER_DUMP_YES /* YES for ip header dump */ #define TCP_HEADER_DUMP_YES /* YES for tcp header dump */ // this is the webpage we serve when we get an HTTP request to root (/) // keep size under ~900 bytes to fit into a single PPP packet const static char rootWebPage[] = "\ <!DOCTYPE html>\ <html>\ <head>\ <title>mbed PPP-Blinky</title>\ <script>\ window.onload=function(){\ setInterval(function(){function x(){return document.getElementById('w');};\ x().textContent=parseInt(x().textContent)+1;},100);};\ </script>\ </head>\ <body style=\"font-family: sans-serif; font-size:20px; color:#807070\">\ <h1>mbed PPP-Blinky Up and Running</h1>\ <h1 id=\"w\" style=\"text-align:center;\">0</h1>\ <h1><a href=\"http://bit.ly/pppBlink2\">Source on mbed</a></h1>\ <h1><a href=\"/ws\">WebSocket Demo</a></h1>\ <h1><a href=\"/x\">Benchmark 1</a></h1>\ <h1><a href=\"/xb\">Benchmark 2</a></h1>\ <h1><a href=\"http://jsfiddle.net/d26cyuh2/\">JSFiddle Demo</a></h1>\ </body>\ </html>"; // size = 642 bytes plus 1 null byte = 643 bytes const static char webSocketPage[] = "\ <!DOCTYPE html>\ <html>\ <head>\ <title>mbed PPP-Blinky</title>\ <script>\ window.onload=function(){\ var url=\"ws://172.10.10.2\";\ var sts=document.getElementById(\"sts\");\ var btn=document.getElementById(\"btn\");\ var ctr=0;\ function show(text){sts.textContent=text;}\ btn.onclick=function(){\ if(btn.textContent==\"Connect\"){\ x=new WebSocket(url);\ x.onopen=function(){\ show(\"Connected to : \"+url);\ btn.textContent=\"Send \\\"\"+ctr+\"\\\"\";\ };\ x.onclose=function(){show(\"closed\");};\ x.onmessage=function(msg){show(\"PPP-Blinky Sent: \\\"\"+msg.data+\"\\\"\");};\ } else {\ x.send(ctr);\ ctr=ctr+1;\ btn.textContent=\"Send \\\"\"+ctr+\"\\\"\";\ }\ };\ };\ </script>\ <body style=\"font-family: sans-serif; font-size:25px; color:#807070\">\ <h1>PPP-Blinky WebSocket Test</h1>\ <div id=\"sts\">Idle</div>\ <button id=\"btn\" style=\"font-size: 100%; margin-top: 55px; margin-bottom: 55px;\">Connect</button>\ <h4><a href=\"/\">PPP-Blinky home</a></h4>\ </body>\ </html>"; // size = 916 bytes + 1 null byte = 917 bytes // The serial port on your mbed hardware. Your PC should be configured to view this port as a standard dial-up networking modem. // On Windows the model type of the modem should be selected as "Communications cable between two computers" // The modem baud rate should be set to 115200 baud // See instructions at the top. // On a typical mbed hardware platform this serial port is a USB virtual com port (VCP) and the USB serial driver is supplied by the board vendor. BufferedSerial pc(USBTX, USBRX, 100); // usb virtual com port for mbed hardware DigitalOut led1(LED1); // this led toggles when a packet is received // the standard hdlc frame start/end character. It's the tilde character "~" #define FRAME_7E (0x7e) // a structure to keep all our ppp globals in struct pppType { int online; // we hunt for a PPP connection if this is zero int crc; // for calculating IP and TCP CRCs int ledState; // state of LED1 int httpPageCount; int firstFrame; // cleared after first frame struct { #define RXBUFLEN (1<<11) // the serial port receive buffer and packet buffer, size is RXBUFLEN (currently 2048 bytes) char buf[RXBUFLEN]; // RXBUFLEN MUST be a power of two because we use & operator for fast wrap-around in ring buffer int head; int tail; int rtail; int buflevel; } rx; // serial port objects struct { int len; // number of bytes in buffer int crc; // PPP CRC (frame check) #define PPP_max_size 2500 // we are assuming 1000 bytes more than MTU size of 1500 - due to the PPP encoding of special bytes char buf[PPP_max_size]; // send and receive buffer large enough for raw, encoded PPP/HDLC frames } pkt; // ppp buffer objects struct { int frameStartIndex; // frame start marker int frameEndIndex; // frame end marker } hdlc; // hdlc frame objects struct { unsigned int ident; // our IP ident value (outgoing frame count) } ip; // ip related object }; pppType ppp; // our global - definitely not thread safe // Initialize our global structure, clear the buffer, etc. void pppInitStruct() { memset( ppp.rx.buf, 0, RXBUFLEN); ppp.online=0; ppp.rx.tail=0; ppp.rx.rtail=0; ppp.rx.head=0; ppp.rx.buflevel=0; ppp.pkt.len=0; ppp.ip.ident=10000; // easy to recognize in ip packet dumps ppp.ledState=0; ppp.hdlc.frameStartIndex=0; ppp.httpPageCount=0; ppp.firstFrame=1; } void led1Toggle() { ppp.ledState = ppp.ledState? 0 : 1; led1 = ppp.ledState; // toggle led } // fill our own receive buffer with characters from the PPP serial port void fillbuf() { char ch; if ( pc.readable() ) { int hd = (ppp.rx.head+1)&(RXBUFLEN-1); // increment/wrap head index if ( hd == ppp.rx.rtail ) { debugPrintf("\nReceive buffer full\n"); return; } ch = pc.getc(); // read new character ppp.rx.buf[ppp.rx.head] = ch; // insert in our receive buffer if ( ppp.online == 0 ) { if (ch == 0x7E) { ppp.online = 1; } } ppp.rx.head = hd; // update head pointer ppp.rx.buflevel++; } } // print to debug port while checking for incoming characters void putcWhileCheckingInput( char outByte ) { #ifdef SERIAL_PORT_MONITOR_YES fillbuf(); debugPutc( outByte ); fillbuf(); #endif } void putsWhileCheckingInput( char * data ) { #ifdef SERIAL_PORT_MONITOR_YES char * nextChar = data; while( *nextChar != 0 ) { putcWhileCheckingInput( *nextChar ); // write one character to debug port while checking input nextChar++; } #endif } // a sniffer tool to assist in figuring out where in the code we are having characters in the input buffer void qq() { if ( pc.readable() ) putsWhileCheckingInput( "Character available!\n" ); } void crcReset() { ppp.crc=0xffff; // crc restart } void crcDo(int x) // cumulative crc { for (int i=0; i<8; i++) { ppp.crc=((ppp.crc&1)^(x&1))?(ppp.crc>>1)^0x8408:ppp.crc>>1; // crc calculator x>>=1; } fillbuf(); // handle input } int crcBuf(char * buf, int size) // crc on an entire block of memory { crcReset(); for(int i=0; i<size; i++)crcDo(*buf++); return ppp.crc; } int pc_getBuf() // get one character from the buffer { int x = ppp.rx.buf[ ppp.rx.tail ]; ppp.rx.tail=(ppp.rx.tail+1)&(RXBUFLEN-1); ppp.rx.buflevel--; return x; } // Note - the hex output of dumpPPPFrame() can be imported into WireShark // Capture the frame's hex output in your terminal program and save as a text file // In WireShark, use "Import Hex File". Options are: Offset=None, Protocol=PPP. void dumpPPPFrame() { char pbuf[30]; for(int i=0; i<ppp.pkt.len; i++) { fillbuf(); sprintf(pbuf, "%02x ", ppp.pkt.buf[i]); fillbuf(); putsWhileCheckingInput(pbuf); } fillbuf(); sprintf(pbuf, " CRC=%04x Len=%d\n", ppp.pkt.crc, ppp.pkt.len); fillbuf(); putsWhileCheckingInput(pbuf); } void processPPPFrame(int start, int end) // process received frame { led1Toggle(); // change led1 state on every frame we receive if(start==end) { return; // empty frame } crcReset(); char * dest = ppp.pkt.buf; ppp.pkt.len=0; int unstuff=0; int idx = start; while(1) { fillbuf(); if (unstuff==0) { if (ppp.rx.buf[idx]==0x7d) unstuff=1; else { *dest = ppp.rx.buf[idx]; ppp.pkt.len++; dest++; crcDo(ppp.rx.buf[idx]); } } else { // unstuff characters prefixed with 0x7d *dest = ppp.rx.buf[idx]^0x20; ppp.pkt.len++; dest++; crcDo(ppp.rx.buf[idx]^0x20); unstuff=0; } idx = (idx+1) & (RXBUFLEN-1); if (idx == end) break; } ppp.pkt.crc = ppp.crc & 0xffff; if(0) dumpPPPFrame(); // set to 1 to dump ALL ppp frames if (ppp.pkt.crc == 0xf0b8) { // check for good CRC void determinePacketType(); // declaration only determinePacketType(); } else { #define REPORT_FCS_ERROR_YES #ifdef REPORT_FCS_ERROR_YES char pbuf[50]; // local print buffer fillbuf(); sprintf(pbuf, "\nPPP FCS(crc) Error CRC=%x Length = %d\n",ppp.pkt.crc,ppp.pkt.len); // print a debug line fillbuf(); putsWhileCheckingInput( pbuf ); if(0) dumpPPPFrame(); // set to 1 to dump frames with errors in them #endif } } void pcPutcWhileCheckingInput(int ch) { fillbuf(); // check input pc.putc(ch); fillbuf(); } void hdlcPut(int ch) // do hdlc handling of special (flag) characters { if ( (ch<0x20) || (ch==0x7d) || (ch==0x7e) ) { pcPutcWhileCheckingInput(0x7d); pcPutcWhileCheckingInput(ch^0x20); // these characters need special handling } else { pcPutcWhileCheckingInput(ch); } } void send_pppFrame() // send a PPP frame in HDLC format { int crc = crcBuf(ppp.pkt.buf, ppp.pkt.len-2); // update crc ppp.pkt.buf[ ppp.pkt.len-2 ] = (~crc>>0); // fcs lo (crc) ppp.pkt.buf[ ppp.pkt.len-1 ] = (~crc>>8); // fcs hi (crc) pcPutcWhileCheckingInput(0x7e); // hdlc start-of-frame "flag" for(int i=0; i<ppp.pkt.len; i++) { wait_us(86); // wait one character time fillbuf(); hdlcPut( ppp.pkt.buf[i] ); // send a character } pcPutcWhileCheckingInput(0x7e); // hdlc end-of-frame "flag" } void ipcpConfigRequestHandler() { debugPrintf("Their IPCP Config Req, Our Ack\n"); ppp.pkt.buf[4]=2; // change code to ack send_pppFrame(); // acknowledge everything they ask for - assume it's IP addresses debugPrintf("Our IPCP Ask (no options)\n"); ppp.pkt.buf[4]=1; // change code to request ppp.pkt.buf[7]=4; // no options in this request ppp.pkt.len=10; // no options in this request shortest ipcp packet possible (4 ppp + 4 ipcp + 2 crc) send_pppFrame(); // send our request } void ipcpAckHandler() { debugPrintf("Their IPCP Grant\n"); } void ipcpNackHandler() { debugPrintf("Their IPCP Nack, Our ACK\n"); if (ppp.pkt.buf[8]==3) { // check if the NACK contains an IP address parameter ppp.pkt.buf[4]=1; // assume the NACK contains our "suggested" IP address send_pppFrame(); // let's request this IP address as ours } // if it's not an IP nack we ignore it } void ipcpDefaultHandler() { debugPrintf("Their IPCP Other\n"); } void IPCPframe() { int code = ppp.pkt.buf[4]; // packet type is here switch (code) { case 1: ipcpConfigRequestHandler(); break; case 2: ipcpAckHandler(); break; case 3: ipcpNackHandler(); break; default: ipcpDefaultHandler(); } } void UDPpacket() { char * udpPkt = ppp.pkt.buf+4; // udp packet start int headerSizeIP = (( udpPkt[0]&0xf)*4); char * udpBlock = udpPkt + headerSizeIP; // udp info start #ifdef SERIAL_PORT_MONITOR_YES char * udpSrc = udpBlock; // source port char * udpDst = udpBlock+2; // destination port #endif char * udpLen = udpBlock+4; // udp data length char * udpInf = udpBlock+8; // actual start of info #ifdef SERIAL_PORT_MONITOR_YES int srcPort = (udpSrc[0]<<8) | udpSrc[1]; int dstPort = (udpDst[0]<<8) | udpDst[1]; char * srcIP = udpPkt+12; // udp src addr char * dstIP = udpPkt+16; // udp dst addr #endif #define UDP_HEADER_SIZE 8 int udpLength = ((udpLen[0]<<8) | udpLen[1]) - UDP_HEADER_SIZE; // size of the actual udp data if(v0) debugPrintf("UDP %d.%d.%d.%d:%d ", srcIP[0],srcIP[1],srcIP[2],srcIP[3],srcPort); if(v0) debugPrintf("%d.%d.%d.%d:%d ", dstIP[0],dstIP[1],dstIP[2],dstIP[3],dstPort); if(v0) debugPrintf("Len %03d", udpLength); int printSize = udpLength; if (printSize > 20) printSize = 20; // print only first 20 characters if (v1) { for (int i=0; i<printSize; i++) { char ch = udpInf[i]; if (ch>31 && ch<127) { debugPrintf("%c", ch); } else { debugPrintf("_"); } } } if (v0) debugPrintf("\n"); } unsigned int dataCheckSum(unsigned char * ptr, int len) { unsigned int i,hi,lo,sum; unsigned char placeHolder; if (len&1) { placeHolder = ptr[len]; ptr[len]=0; // if the byte count is odd, insert one extra zero byte is after the last real byte because we sum byte PAIRS } sum=0; i=0; while ( i<len ) { fillbuf(); hi = ptr[i++]; lo = ptr[i++]; sum = sum + ( (hi<<8) | lo ); } if (len&1) { ptr[len] = placeHolder; // restore the extra byte we made zero } sum = (sum & 0xffff) + (sum>>16); sum = (sum & 0xffff) + (sum>>16); // sum one more time to catch any carry from the carry return ~sum; } void headerCheckSum() { int len =(ppp.pkt.buf[4]&0xf)*4; // length of header in bytes char * ptr = ppp.pkt.buf+4; // start of ip packet int sum=0; for (int i=0; i<len/2; i++) { int hi = *ptr; ptr++; int lo = *ptr; ptr++; int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 ); sum = sum + val; fillbuf(); } sum = sum + (sum>>16); sum = ~sum; ppp.pkt.buf[14]= (sum>>8); ppp.pkt.buf[15]= (sum ); } void ICMPpacket() // internet control message protocol { char * ipPkt = ppp.pkt.buf+4; // ip packet start char * pktLen = ipPkt+2; int packetLength = (pktLen[0]<<8) | pktLen[1]; // icmp packet length int headerSizeIP = (( ipPkt[0]&0xf)*4); char * icmpType = ipPkt + headerSizeIP; // icmp data start char * icmpSum = icmpType+2; // icmp checksum #define ICMP_TYPE_PING_REQUEST 8 if ( icmpType[0] == ICMP_TYPE_PING_REQUEST ) { char * ipTTL = ipPkt+8; // time to live ipTTL[0]--; // decrement time to live char * srcAdr = ipPkt+12; char * dstAdr = ipPkt+16; #ifdef SERIAL_PORT_MONITOR_YES int icmpIdent = (icmpType[4]<<8)|icmpType[5]; int icmpSequence = (icmpType[6]<<8)|icmpType[7]; if(1) { char pbuf[50]; fillbuf(); sprintf(pbuf, "ICMP PING %d.%d.%d.%d %d.%d.%d.%d ", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3],dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); putsWhileCheckingInput( pbuf ); fillbuf(); sprintf(pbuf, "Ident %04x Sequence %04d \n",icmpIdent,icmpSequence); fillbuf(); putsWhileCheckingInput( pbuf ); } #endif char src[4]; char dst[4]; memcpy(src, srcAdr,4); memcpy(dst, dstAdr,4); memcpy(srcAdr, dst,4); memcpy(dstAdr, src,4); // swap src & dest ip char * chkSum = ipPkt+10; chkSum[0]=0; chkSum[1]=0; headerCheckSum(); // new ip header checksum #define ICMP_TYPE_ECHO_REPLY 0 icmpType[0]=ICMP_TYPE_ECHO_REPLY; // icmp echo reply icmpSum[0]=0; icmpSum[1]=0; // zero the checksum for recalculation int icmpLength = packetLength - headerSizeIP; // length of ICMP data portion unsigned int sum = dataCheckSum( (unsigned char *)icmpType, icmpLength); // this checksum on icmp data portion icmpSum[0]=(sum>>8)&0xff; icmpSum[1]=(sum )&0xff; // new checksum for ICMP data portion int printSize = icmpLength-8; // exclude size of icmp header char * icmpData = icmpType+8; // the actual payload data is after the header if (printSize > 10) printSize = 10; // print up to 20 characters if (0) { for (int i=0; i<printSize; i++) { char ch = icmpData[i]; if (ch>31 && ch<127) { putcWhileCheckingInput(ch); } else { putcWhileCheckingInput('_'); } } putcWhileCheckingInput('\n'); } send_pppFrame(); // reply to the ping } else { if (v0) { debugPrintf("ICMP type=%d \n", icmpType[0]); } } } void IGMPpacket() // internet group management protocol { if (v0) debugPrintf("IGMP type=%d \n", ppp.pkt.buf[28]); } void dumpHeaderIP (int outGoing) { #if defined(IP_HEADER_DUMP_YES) && defined(SERIAL_PORT_MONITOR_YES) fillbuf(); // we are expecting the first character of the next packet char * ipPkt = ppp.pkt.buf+4; // ip packet start char * ident = ipPkt+4; // 2 bytes #ifdef UNUSED_IP_VARIABLES char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes char * version = ipPkt; // top 4 bits char * ihl = ipPkt; // bottom 4 bits char * dscp = ipPkt+1; // top 6 bits char * ecn = ipPkt+1; // lower 2 bits char * pktLen = ipPkt+2; // 2 bytes char * flags = ipPkt+6; // 2 bits char * ttl = ipPkt+8; // 1 byte char * protocol = ipPkt+9; // 1 byte char * headercheck= ipPkt+10; // 2 bytes int versionIP = (version[0]>>4)&0xf; int headerSizeIP = (ihl[0]&0xf)*4; int dscpIP = (dscp[0]>>2)&0x3f; int ecnIP = ecn[0]&3; int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length int flagsIP = flags[0]>>14&3; int ttlIP = ttl[0]; int protocolIP = protocol[0]; unsigned int checksumIP = (headercheck[0]<<8)|headercheck[1]; #endif int IPv4Id = (ident[0]<<8)|ident[1]; char pbuf[50]; // local print buffer int n=0; n=n+sprintf(pbuf+n, outGoing ? "\x1b[34m" : "\x1b[30m" ); // VT100 color code, print black for incoming, blue for outgoing headers n=n+sprintf(pbuf+n, "%05d ",IPv4Id); // IPv4Id is a good way to correlate our dumps with net monitor or wireshark traces #define DUMP_FULL_IP_ADDRESS_YES #ifdef DUMP_FULL_IP_ADDRESS_YES char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes n=n+sprintf(pbuf+n, " %d.%d.%d.%d %d.%d.%d.%d ",srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3], dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); // full ip addresses #endif putsWhileCheckingInput( pbuf ); #ifndef TCP_HEADER_DUMP_YES putsWhileCheckingInput('\x1b[30m\n'); // there is no TCP header dump, so terminate the line with \n and VT100 code for black #endif #endif } void dumpHeaderTCP(int outGoing) { #if defined(TCP_HEADER_DUMP_YES) && defined(SERIAL_PORT_MONITOR_YES) int headerSizeIP = (ppp.pkt.buf[4]&0xf)*4; // header size of ip portion char * tcpStart = ppp.pkt.buf+4+headerSizeIP; // start of tcp packet char * seqtcp = tcpStart + 4; // 4 bytes char * acktcp = tcpStart + 8; // 4 bytes char * flagbitstcp = tcpStart + 12; // 9 bits unsigned int seq = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]); unsigned int ack = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]); if (seq && ack) {} // shut up the compiler about unused variables int flags = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1]; char flagInfo[9]; // text string presenting the 8 most important TCP flags #define PRINT_ALL_TCP_FLAGS_YES #ifdef PRINT_ALL_TCP_FLAGS_YES memset(flagInfo,'.', 8); // fill string with "........" flagInfo[8]=0; // null terminate string if (flags & (1<<0)) flagInfo[7]='F'; if (flags & (1<<1)) flagInfo[6]='S'; if (flags & (1<<2)) flagInfo[5]='R'; if (flags & (1<<3)) flagInfo[4]='P'; if (flags & (1<<4)) flagInfo[3]='A'; if (flags & (1<<5)) flagInfo[2]='U'; if (flags & (1<<6)) flagInfo[1]='E'; if (flags & (1<<7)) flagInfo[0]='C'; #else if (flags & (1<<4)) flagInfo[0]='A'; // choose the most important flag to print if (flags & (1<<1)) flagInfo[0]='S'; if (flags & (1<<0)) flagInfo[0]='F'; if (flags & (1<<3)) flagInfo[0]='P'; if (flags & (1<<2)) flagInfo[0]='R'; flagInfo[1]=0; // ' ' flagInfo[2]=0; #endif putsWhileCheckingInput( flagInfo ); #define EVERY_PACKET_ON_A_NEW_LINE_YES #ifdef EVERY_PACKET_ON_A_NEW_LINE_YES putsWhileCheckingInput("\x1b[30m\n"); // write a black color and newline after every packet #endif if( outGoing && ( flags == 0x11 ) ) { // ACK/FIN - if this is an outgoing ACK/FIN its the end of a tcp conversation putcWhileCheckingInput('\n'); // insert an extra new line to mark the end of an HTTP the conversation } #endif } void enc64(char * in, char * out, int len) { const static char lut [] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/="; int i,j,a,b,c; i=0; j=0; while(1) { if (i<len) { a = in[i++]; out[j++] = lut[ ( (a >> 2) & 0x3f) ]; } else break; if (i<len) { b = in[i++]; out[j++] = lut[ ( (a << 4) & 0x30) | ( (b >> 4) & 0x0f) ]; out[j++] = lut[ ( (b << 2) & 0x3c) ]; } else out[j++] = '='; if (i<len) { c = in[i++]; j--; out[j++] = lut[ ( (b << 2) & 0x3c) | ( (c >> 6) & 0x03) ]; out[j++] = lut[ ( (c >> 0) & 0x3f) ]; } else out[j++] = '='; } out[j]=0; } // we end up here if we enter the following javascript in a web browser console: x = new WebSocket("ws://172.10.10.2"); int webSocketHandler(char * dataStart) { int n=0; // byte counter char * key = strstr(dataStart, "Sec-WebSocket-Key: "); // search for the key in the payload if (key != NULL) { if (v0) putsWhileCheckingInput("WebSocket Request\n"); char challenge [70]; strncpy(challenge,key+19,70); // a local buffer *strchr(challenge,'\r')=0; // insert null so we can use sprintf strncat(challenge,"258EAFA5-E914-47DA-95CA-C5AB0DC85B11",70); // append websocket gui code char shaOutput [20]; // sha1 output sha1( shaOutput, challenge, strlen(challenge)); char encOut[50]; enc64( shaOutput, encOut, 20); char * versionstring = strstr(dataStart, "Sec-WebSocket-Version:"); char * version = challenge; strncpy(version, versionstring,70); // copy version string *strchr(version,'\r')=0; // null terminate so we can sprintf it memset(dataStart,0,500); // blank out old data befor send the websocket response header n=n+sprintf(dataStart+n, "HTTP/1.1 101 Switching Protocols\r\n"); n=n+sprintf(dataStart+n, "Upgrade: websocket\r\n"); n=n+sprintf(dataStart+n, "Connection: Upgrade\r\n"); n=n+sprintf(dataStart+n, "Sec-WebSocket-Accept: %s\r\n",encOut); n=n+sprintf(dataStart+n, "%s\r\n",version); n=n+sprintf(dataStart+n, "mbed-Code: PPP-Blinky\r\n"); n=n+sprintf(dataStart+n, "\r\n"); // websocket response header ending } return n; // this response should satisfy a web browser's websocket protocol request } #define TCP_FLAG_ACK (1<<4) #define TCP_FLAG_SYN (1<<1) #define TCP_FLAG_PSH (1<<3) #define TCP_FLAG_RST (1<<2) #define TCP_FLAG_FIN (1<<0) int httpResponse(char * dataStart) { int n=0; // number of bytes we have printed so far n = webSocketHandler( dataStart ); // test for and handle WebSocket upgrade requests if (n>0) return n; // if it's a WebSocket we already have the response, so return int nHeader; // byte size of HTTP header int contentLengthStart; // index where HTML starts int httpGet5,httpGet6,httpGetx, httpGetRoot; // temporary storage of strncmp results ppp.httpPageCount++; // increment the number of frames we have made httpGetRoot = strncmp(dataStart, "GET / HTTP/1.", 13); // found a GET to the root directory httpGetx = strncmp(dataStart, "GET /x", 6); // found a GET to /x which we will treat special (anything starting with /x, e.g. /x, /xyz, /xABC?pqr=123 httpGet5 = dataStart[5]; // the first character in the path name, we use it for special functions later on httpGet6 = dataStart[6]; // the second character in the path name, we use it for special functions later on // for example, you could try this using netcat (nc): echo "GET /x" | nc 172.10.10.2 if( (httpGetRoot==0) || (httpGetx==0) ) { n=n+sprintf(n+dataStart,"HTTP/1.1 200 OK\r\nServer: mbed-PPP-Blinky-v1\r\n"); // 200 OK header } else { n=n+sprintf(n+dataStart,"HTTP/1.1 404 Not Found\r\nServer: mbed-PPP-Blinky\r\n"); // 404 header } n=n+sprintf(n+dataStart,"Content-Length: "); // http header contentLengthStart = n; // remember where Content-Length is in buffer n=n+sprintf(n+dataStart,"?????\r\n"); // leave five spaces for content length - will be updated later n=n+sprintf(n+dataStart,"Connection: close\r\n"); // close connection immediately n=n+sprintf(n+dataStart,"Content-Type: text/html; charset=us-ascii\r\n\r\n"); // http header must end with empty line (\r\n) nHeader=n; // size of HTTP header if( httpGetRoot == 0 ) { // this is where we insert our web page into the buffer memcpy(n+dataStart,rootWebPage,sizeof(rootWebPage)); n = n + sizeof(rootWebPage)-1; // one less than sizeof because we don't count the null byte at the end } else if ( (httpGet5 == 'w') && (httpGet6 == 's') ) { // "ws" is a special page for websocket demo memcpy(n+dataStart,webSocketPage,sizeof(webSocketPage)); n = n + sizeof(webSocketPage)-1; // one less than size } else { if (httpGetx == 0) { // the page request started with "GET /x" - here we treat anything starting with /x special: #define W3C_COMPLIANT_RESPONSE_NO // change the above to W3C_COMPLIANT_RESPONSE_YES if you want a W3C.org compliant HTTP response #ifdef W3C_COMPLIANT_RESPONSE_YES n=n+sprintf(n+dataStart,"<!DOCTYPE html><title>mbed PPP-Blinky</title>"); // html title (W3C.org required elements) n=n+sprintf(n+dataStart,"<body>%d</body>",ppp.httpPageCount); // body = the http frame count #else if( httpGet6 == 'b' ) { // if the fetched page is "xb" send a meta command to let the browser continuously reload n=n+sprintf(n+dataStart, "<meta http-equiv=\"refresh\" content=\"0\">"); // reload loop - handy for benchmarking } // /x is a very short page, in fact, it is only a decimal number showing the http Page count n=n+sprintf(n+dataStart,"%d ",ppp.httpPageCount); // not really valid html but most browsers and curl are ok with it #endif } else { // all other requests get 404 Not Found response with a http frame count - nice for debugging n=n+sprintf(n+dataStart,"<!DOCTYPE html><title>mbed PPP-Blinky</title>"); // html title (required element) n=n+sprintf(n+dataStart,"<body>Not Found</body>"); // not found message } } #define CONTENTLENGTHSIZE 5 char contentLengthString[CONTENTLENGTHSIZE+1]; snprintf(contentLengthString,CONTENTLENGTHSIZE+1,"%*d",CONTENTLENGTHSIZE,n-nHeader); // print Content-Length with leading spaces and fixed width equal to csize memcpy(dataStart+contentLengthStart, contentLengthString, CONTENTLENGTHSIZE); // copy Content-Length to it's place in the send buffer return n; // total byte size of our response } // this is the response if we have TCP data but it's not an HTTP GET // this is handy when you for example want to use netcat (nc.exe) to talk to PPP-Blinky // this could also be a websocket receive event - especially if the first byte is 0x81 (websocket data push) int tcpResponse(char * dataStart, int len, int * outFlags) { int n=0; // number of bytes we have printed so far if (dataStart[0] == 0x81) { // check if this is a websocket push message // this is most likely a websocket push message. you get this when you enter this in your browser console: x.send("my message"); if (0) putsWhileCheckingInput( "Got data from websocket send()\n" ); // for now we simply echo the websocket data back to the client - the client should therefore see an onmessage event // to display the echoed data in your browser, enter the following into the browser console: x.onmessage = function(msg){ console.log( msg.data ); } if (1) { char mask [4]; memcpy ( mask, dataStart+2, 4); // websocket messages are "masked", so first we obtain the 4-byte mask int websocketMessageSize = len - 6; // 1 byte prefix (0x81), 1 byte, 4 bytes mask = 6 bytes if((dataStart[1]&0x80)==0x80) // test if the mask bit is set, which means all data is xor'ed with the mask for (int i=0; i<websocketMessageSize; i++) dataStart[i+6]^= mask[i%4]; // unmask each byte with one of the mask bytes dataStart[1] = len-2; // add four extra bytes to the message length because we don't use mask bytes for the send memcpy(dataStart+2, "Got:",4); // insert our own text into the four mask bytes n = len; // our response size remains exactly the same length as what we received } } else if ( (dataStart[0]==0x88) && (dataStart[1]==0x80) && (len == 6) ) { // test for a websocket close request n=2; // our close command is only two bytes long because we don't use the four mask bytes dataStart[1]=0; // we don't have mask bytes on } else if (v1) putsWhileCheckingInput("TCP data received\n"); return n; // total byte size of our response } void tcpHandler() { // IP header char * ipPkt = ppp.pkt.buf+4; // ip packet start char * ihl = ipPkt; // bottom 4 bits char * pktLen = ipPkt+2; // 2 bytes char * ident = ipPkt+4; // 2 bytes char * protocol = ipPkt+9; // 1 byte char * headercheck= ipPkt+10; // 2 bytes char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes int headerSizeIP = (ihl[0]&0xf)*4; int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length // TCP header char * tcp = ppp.pkt.buf+4+headerSizeIP; // start of tcp packet char * srctcp = tcp + 0; // 2 bytes char * dsttcp = tcp + 2; // 2 bytes char * seqtcp = tcp + 4; // 4 bytes char * acktcp = tcp + 8; // 4 bytes char * offset = tcp + 12; // 4 bits char * flagbitstcp = tcp + 12; // 9 bits char * windowsizetcp = tcp + 14; // 2 bytes char * checksumtcp = tcp + 16; // 2 bytes if(ident) {}; // shut up unused variable reference warning int tcpSize = packetLength - headerSizeIP; int headerSizeTCP = ((offset[0]>>4)&0x0f)*4; // size of tcp header only int protocolIP = protocol[0]; char * tcpDataIn = tcp + headerSizeTCP; // start of data block after TCP header int tcpDataSize = tcpSize - headerSizeTCP; // size of data block after TCP header char * tcpDataOut = tcp + 20; // start of outgoing data unsigned int seq_in = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]); unsigned int ack_in = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]); unsigned int ack_out = seq_in + tcpDataSize; unsigned int seq_out = ack_in; // use their version of our current sequence number // first we shorten the TCP response header to only 20 bytes. This means we ignore all TCP option requests tcpSize = 20; // shorten total TCP packet size to 20 bytes (no data) headerSizeTCP = 20; // shorten outgoing TCP header size 20 bytes offset[0] = (headerSizeTCP/4)<<4; // shorten tcp header size to 20 bytes packetLength = 40; // shorten total packet size to 40 bytes (20 ip + 20 tcp) pktLen[1] = 40; // set total packet size to 40 bytes (20 ip + 20 tcp) pktLen[0] = 0; // set total packet size to 40 bytes (20 ip + 20 tcp) int dataLen = 0; // most of our responses will have zero TCP data, only a header int flagsOut = TCP_FLAG_ACK; // the default case is an ACK packet int flagsTCP = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1]; // the tcp flags we received windowsizetcp[0] = (700 >> 8 ); // tcp window size hi byte windowsizetcp[1] = (700 & 0xff); // tcp window size lo byte // A sparse TCP flag interpreter that implements stateless TCP connections switch ( flagsTCP ) { case TCP_FLAG_ACK: return; case TCP_FLAG_SYN: flagsOut = TCP_FLAG_SYN | TCP_FLAG_ACK; // something wants to connect - acknowledge it seq_out = seq_in+0x10000000U; // create a new sequence number using their sequence as a starting point, increase the highest digit ack_out++; // for SYN flag we have to increase the sequence by 1 break; case TCP_FLAG_ACK | TCP_FLAG_PSH: if ( (strncmp(tcpDataIn, "GET /", 5) == 0) ) { // check for an http GET command flagsOut = TCP_FLAG_ACK | TCP_FLAG_PSH; // set outgoing FIN flag to ask them to close from their side dataLen = httpResponse(tcpDataOut); // send an http response } else { dataLen = tcpResponse(tcpDataOut,tcpDataSize, &flagsOut); // not a web request, send a packet reporting number of received bytes } break; case TCP_FLAG_FIN: case TCP_FLAG_FIN | TCP_FLAG_ACK: case TCP_FLAG_FIN | TCP_FLAG_PSH | TCP_FLAG_ACK: flagsOut = TCP_FLAG_ACK | TCP_FLAG_FIN; // set outgoing FIN flag to ask them to close from their side ack_out++; // for FIN flag we have to increase the sequence by 1 break; default: return; // ignore remaining packets } // switch // The TCP flag handling is now done // first we swap source and destination TCP addresses and insert the new ack and seq numbers char tempHold[12]; // it's 12 long because we later reuse it when building the TCP pseudo-header memcpy(tempHold, srcAdr,4); memcpy(srcAdr, dstAdr,4); memcpy(dstAdr, tempHold,4); // swap ip address source/dest memcpy(tempHold, srctcp,2); memcpy(srctcp, dsttcp,2); memcpy(dsttcp, tempHold,2); // swap ip port source/dest acktcp[0]=ack_out>>24; acktcp[1]=ack_out>>16; acktcp[2]=ack_out>>8; acktcp[3]=ack_out>>0; // save ack 32-bit integer seqtcp[0]=seq_out>>24; seqtcp[1]=seq_out>>16; seqtcp[2]=seq_out>>8; seqtcp[3]=seq_out>>0; // save seq 32-bit integer flagbitstcp[1] = flagsOut; // update the TCP flags // increment our outgoing ip packet counter ppp.ip.ident++; // get next ident number for our packet // Now we recalculate all the header sizes tcpSize = headerSizeTCP + dataLen; // tcp packet size int newPacketSize = headerSizeIP + tcpSize; // calculate size of the outgoing packet pktLen[0] = (newPacketSize>>8); pktLen[1]=newPacketSize; // ip total packet size ppp.pkt.len = newPacketSize+4+2; // ip packet length + 4-byte ppp prefix (ff 03 00 21) + 2 fcs (crc) bytes bytes at the end of the packet // the header is all set up, now do the IP and TCP checksums headercheck[0]=0; // IP header checksum headercheck[1]=0; // IP header checksum headerCheckSum(); // calculate the IP header checksum // now we have to build the so-called 12-byte TCP "pseudo-header" in front of the TCP header (containing some IP header values) in order to correctly calculate the TCP checksum // this header contains the most important parts of the IP header, i.e. source and destination address, protocol number and data length. char * pseudoHeader = tcp-12; // mark the start of the TCP pseudo-header memcpy(tempHold, pseudoHeader, 12); // preserve the 12 bytes of the IP header where the TCP pseudo-Header will be built memcpy( pseudoHeader+0, srcAdr, 8); // IP source and destination addresses from IP header memset( pseudoHeader+8, 0, 1); // reserved, set to zero memset( pseudoHeader+9, protocolIP, 1); // protocol from IP header memset( pseudoHeader+10, tcpSize>>8, 1); // size of IP data (TCP packet size) memset( pseudoHeader+11, tcpSize, 1); // size of IP data (TCP packet size) // pseudo-header built, now we can calculate TCP checksum checksumtcp[0]=0; checksumtcp[1]=0; unsigned int pseudoHeaderSum=dataCheckSum((unsigned char *)pseudoHeader,tcpSize+12); // calculate the TCP checksum starting at the pseudo-header checksumtcp[0]=pseudoHeaderSum>>8; checksumtcp[1]=pseudoHeaderSum; memcpy( tcp-12, tempHold, 12); // restore the 12 bytes that the pseudo-header overwrote dumpHeaderIP(1); // dump outgoing IP header dumpHeaderTCP(1); // dump outgoing TCP header for (int i=0; i<70*1000/10; i++) { // 70 ms delay before sending frame - a typical internet delay time fillbuf(); // catch any incoming characters wait_us(10); // wait less than 1 character duration at 115200 } send_pppFrame(); // All preparation complete - send the TCP response if(0) dumpPPPFrame(); // set to 1 to dump transmitted ppp frame memset(ppp.pkt.buf+44,0,500); // flush out traces of previous data that we may scan for } void dumpDataTCP() { int ipPktLen = (ppp.pkt.buf[6]<<8)|ppp.pkt.buf[7]; // overall length of ip packet int ipHeaderLen = (ppp.pkt.buf[4]&0xf)*4; // length of ip header int headerSizeTCP = ((ppp.pkt.buf[4+ipHeaderLen+12]>>4)&0xf)*4;; // length of tcp header int dataLen = ipPktLen - ipHeaderLen - headerSizeTCP; // data is what's left after the two headers if (v1) { char pbuf[50]; // local print buffer fillbuf(); sprintf(pbuf, "TCP %d ipHeader %d tcpHeader %d Data %d\n", ipPktLen, ipHeaderLen, headerSizeTCP, dataLen); // 1 for more verbose fillbuf(); putsWhileCheckingInput( pbuf ); } if (dataLen > 0) { ppp.pkt.buf[4+ipHeaderLen+headerSizeTCP+dataLen]=0; // insert a null after the data so debug printf stops printing after the data putsWhileCheckingInput( ppp.pkt.buf+4+ipHeaderLen+headerSizeTCP ); // print the tcp payload data putsWhileCheckingInput("\n"); } } void TCPpacket() { dumpHeaderIP(0); // dump incoming packet header dumpHeaderTCP(0); // dump incoming packet header if (v2) dumpDataTCP(); tcpHandler(); } void otherProtocol() { debugPrintf("Other IP protocol"); } void IPframe() { int protocol = ppp.pkt.buf[13]; switch (protocol) { case 1: ICMPpacket(); break; case 2: IGMPpacket(); break; case 17: UDPpacket(); break; case 6: TCPpacket(); break; default: otherProtocol(); } } void LCPconfReq() { debugPrintf("LCP Config "); if (ppp.pkt.buf[7] != 4) { ppp.pkt.buf[4]=4; // allow only "no options" which means Maximum Receive Unit (MRU) is default 1500 bytes debugPrintf("Reject\n"); send_pppFrame(); } else { ppp.pkt.buf[4]=2; // ack zero conf debugPrintf("Ack\n"); send_pppFrame(); debugPrintf("LCP Ask\n"); ppp.pkt.buf[4]=1; // request no options send_pppFrame(); } } void LCPconfAck() { debugPrintf("LCP Ack\n"); } void LCPend() { ppp.pkt.buf[4]=6; send_pppFrame(); // acknowledge ppp.online=0; // start hunting for connect string again pppInitStruct(); // flush the receive buffer debugPrintf("LCP End\n"); } void LCPother() { debugPrintf("LCP Other\n"); dumpPPPFrame(); } void LCPframe() { int code = ppp.pkt.buf[4]; switch (code) { case 1: LCPconfReq(); break; // config request case 2: LCPconfAck(); break; // config ack case 5: LCPend(); break; // end connection default: LCPother(); } } void discardedFrame() { if (v0) debugPrintf("Frame is not IP, IPCP or LCP: %02x %02x %02x %02x\n", ppp.pkt.buf[0],ppp.pkt.buf[1],ppp.pkt.buf[2],ppp.pkt.buf[3]); } void determinePacketType() { if ( ppp.pkt.buf[0] != 0xff ) { debugPrintf("byte0 != ff\n"); return; } if ( ppp.pkt.buf[1] != 3 ) { debugPrintf("byte1 != 3\n"); return; } if ( ppp.pkt.buf[3] != 0x21 ) { debugPrintf("byte2 != 21\n"); return; } int packetType = ppp.pkt.buf[2]; switch (packetType) { case 0xc0: LCPframe(); break; // link control case 0x80: IPCPframe(); break; // IP control case 0x00: IPframe(); break; // IP itself default: discardedFrame(); } } void wait_for_PPP_frame() // scan the PPP serial input stream for frame start markers { while(1) { fillbuf(); // handle received characters if ( ppp.rx.head != ppp.rx.tail ) { int oldTail = ppp.rx.tail; // remember where the character is located in the buffer int rx = pc_getBuf(); // get the character if (rx==FRAME_7E) { if (ppp.firstFrame) { // is this the start of the first frame start ppp.firstFrame=0; ppp.rx.rtail = ppp.rx.tail; // update real-time tail with the virtual tail ppp.hdlc.frameStartIndex = ppp.rx.tail; // remember where first frame started } else { ppp.hdlc.frameEndIndex=oldTail; // mark the frame end character processPPPFrame(ppp.hdlc.frameStartIndex, ppp.hdlc.frameEndIndex); // process the frame ppp.rx.rtail = ppp.rx.tail; // update real-time tail with the virtual tail ppp.hdlc.frameStartIndex = ppp.rx.tail; // remember where next frame started break; } } } } } void scanForConnectString() { while(ppp.online == 0) { fillbuf(); // gather received characters // search for Windows Dialup Networking "Direct Connection Between Two Computers" expected connect string char * found1 = strstr( (char *)ppp.rx.buf, "CLIENT" ); if (found1 != NULL) { // respond with Windows Dialup networking expected "Direct Connection Between Two Computers" response string if (v0) debugPrintf("Found connect string \"CLIENT\", sent \"CLIENTSERVER\"\n"); pc.puts("CLIENTSERVER"); ppp.online=1; // we are connected - set flag so we stop looking for the connect string fillbuf(); } } } int main() { pc.baud(115200); // USB serial port to pc debugBaudRate(115200); // baud rate for our (optional) debug port debugPrintf("\x1b[2J\x1b[H\x1b[30mmbed PPP-Blinky HTTP & WebSocket server ready :)\n"); // VT100 codes for clear_screen, home, black_text - Tera Term is a handy VT100 terminal pppInitStruct(); // initialize all the PPP properties while(1) { scanForConnectString(); // wait for connect from PC dial-up networking while(ppp.online) { wait_for_PPP_frame(); // wait for a PPP frame } } }