STM Imu acquisition setup using ethernet
Dependencies: F7_Ethernet mbed HTS221 LPS22HB LSM303AGR LSM6DSL
Fork of Nucleo_F746ZG_Ethernet by
mbed-rtos/rtos/Thread.cpp
- Committer:
- nirnakern
- Date:
- 2018-10-15
- Revision:
- 9:45a96c88754d
- Parent:
- 0:f9b6112278fe
File content as of revision 9:45a96c88754d:
/* mbed Microcontroller Library * Copyright (c) 2006-2012 ARM Limited * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Thread.h" #include "mbed_error.h" #include "rtos_idle.h" // rt_tid2ptcb is an internal function which we exposed to get TCB for thread id #undef NULL //Workaround for conflicting macros in rt_TypeDef.h and stdio.h #include "rt_TypeDef.h" extern "C" P_TCB rt_tid2ptcb(osThreadId thread_id); namespace rtos { Thread::Thread(void (*task)(void const *argument), void *argument, osPriority priority, uint32_t stack_size, unsigned char *stack_pointer) { #if defined(__MBED_CMSIS_RTOS_CA9) || defined(__MBED_CMSIS_RTOS_CM) _thread_def.pthread = task; _thread_def.tpriority = priority; _thread_def.stacksize = stack_size; if (stack_pointer != NULL) { _thread_def.stack_pointer = (uint32_t*)stack_pointer; _dynamic_stack = false; } else { _thread_def.stack_pointer = new uint32_t[stack_size/sizeof(uint32_t)]; if (_thread_def.stack_pointer == NULL) error("Error allocating the stack memory\n"); _dynamic_stack = true; } //Fill the stack with a magic word for maximum usage checking for (uint32_t i = 0; i < (stack_size / sizeof(uint32_t)); i++) { _thread_def.stack_pointer[i] = 0xE25A2EA5; } #endif _tid = osThreadCreate(&_thread_def, argument); } osStatus Thread::terminate() { return osThreadTerminate(_tid); } osStatus Thread::set_priority(osPriority priority) { return osThreadSetPriority(_tid, priority); } osPriority Thread::get_priority() { return osThreadGetPriority(_tid); } int32_t Thread::signal_set(int32_t signals) { return osSignalSet(_tid, signals); } int32_t Thread::signal_clr(int32_t signals) { return osSignalClear(_tid, signals); } Thread::State Thread::get_state() { #if !defined(__MBED_CMSIS_RTOS_CA9) && !defined(__MBED_CMSIS_RTOS_CM) #ifdef CMSIS_OS_RTX return ((State)_thread_def.tcb.state); #endif #else uint8_t status; status = osThreadGetState(_tid); return ((State)status); #endif } uint32_t Thread::stack_size() { #ifndef __MBED_CMSIS_RTOS_CA9 #if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM) return _thread_def.tcb.priv_stack; #else P_TCB tcb = rt_tid2ptcb(_tid); return tcb->priv_stack; #endif #else return 0; #endif } uint32_t Thread::free_stack() { #ifndef __MBED_CMSIS_RTOS_CA9 #if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM) uint32_t bottom = (uint32_t)_thread_def.tcb.stack; return _thread_def.tcb.tsk_stack - bottom; #else P_TCB tcb = rt_tid2ptcb(_tid); uint32_t bottom = (uint32_t)tcb->stack; return tcb->tsk_stack - bottom; #endif #else return 0; #endif } uint32_t Thread::used_stack() { #ifndef __MBED_CMSIS_RTOS_CA9 #if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM) uint32_t top = (uint32_t)_thread_def.tcb.stack + _thread_def.tcb.priv_stack; return top - _thread_def.tcb.tsk_stack; #else P_TCB tcb = rt_tid2ptcb(_tid); uint32_t top = (uint32_t)tcb->stack + tcb->priv_stack; return top - tcb->tsk_stack; #endif #else return 0; #endif } uint32_t Thread::max_stack() { #ifndef __MBED_CMSIS_RTOS_CA9 #if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM) uint32_t high_mark = 0; while (_thread_def.tcb.stack[high_mark] == 0xE25A2EA5) high_mark++; return _thread_def.tcb.priv_stack - (high_mark * 4); #else P_TCB tcb = rt_tid2ptcb(_tid); uint32_t high_mark = 0; while (tcb->stack[high_mark] == 0xE25A2EA5) high_mark++; return tcb->priv_stack - (high_mark * 4); #endif #else return 0; #endif } osEvent Thread::signal_wait(int32_t signals, uint32_t millisec) { return osSignalWait(signals, millisec); } osStatus Thread::wait(uint32_t millisec) { return osDelay(millisec); } osStatus Thread::yield() { return osThreadYield(); } osThreadId Thread::gettid() { return osThreadGetId(); } void Thread::attach_idle_hook(void (*fptr)(void)) { rtos_attach_idle_hook(fptr); } Thread::~Thread() { terminate(); #ifdef __MBED_CMSIS_RTOS_CM if (_dynamic_stack) { delete[] (_thread_def.stack_pointer); } #endif } }