A Jedi light saber controller program with the following "features": - Using RGB LEDs - User can change light colors with a button - Motion dependent (PWM) sounds with a MPU6050 motion sensor - Low voltage detection

Dependencies:   L152RE_USBDevice STM32_USB48MHz Watchdog mbed

Revision:
2:59a7d4677474
Parent:
0:0bb3687e39da
Child:
3:0c2d9355ed8c
diff -r 8143972a0587 -r 59a7d4677474 main.cpp
--- a/main.cpp	Thu Mar 24 21:53:12 2016 +0000
+++ b/main.cpp	Thu Mar 24 22:42:59 2016 +0000
@@ -50,16 +50,18 @@
 //Ticker
 Ticker button_ticker, sound_ticker;
 
-//MPU 6050
-float sum = 0;
-uint32_t sumCount = 0;
-
 //Set up I2C, (SDA,SCL)
 //I2C MPU_i2c(PB_9, PB_8); //defined in MPU6050.h...
 
 //MPU interrupt line
 DigitalIn MPU_Intr(PB_1);
 
+//MPU6050 data rate 
+int delt_t = 0; // used to control display output rate
+
+extern float sum;
+extern uint32_t sumCount;
+
 MPU6050 mpu6050;
    
 Timer t;
@@ -171,7 +173,7 @@
     init_color(&current_color,light_intensity); 
 
 //Set up I2C
-    MPU_i2c.frequency(300000);  // use fast (400 kHz) I2C
+    MPU6050_set_I2C_freq(300000);  // use fast (400 kHz) I2C
 
 // start "clock"
     t.start();
@@ -186,7 +188,7 @@
     sound_is_playing_flag = TRUE;
     
 // initialize the motion sensor
-    motion_is_init = motion_sensor_init();
+    motion_is_init = mpu6050.motion_sensor_init();
     
     button_ticker.attach(&button_inth, 0.025);
         
@@ -264,7 +266,7 @@
         
         if (motion_is_init)
         {
-            new_data = motion_update_data(&MPU_data[mpu_pointer]);
+            new_data = mpu6050.motion_update_data(&MPU_data[mpu_pointer], t.read_us());
         }
         
         if (new_data)
@@ -413,142 +415,7 @@
 }
 
 
-bool motion_sensor_init()
-{
 
-    
-// Read the WHO_AM_I register, this is a good test of communication
-    uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
-    //serial.printf("I AM 0x%x\n\r", whoami);
-    //serial.printf("I SHOULD BE 0x68\n\r");
-
-    if (whoami == 0x68) { // WHO_AM_I should always be 0x68
-       // serial.printf("MPU6050 is online...");
-        wait(1);
-
-
-        mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
-/*
-        serial.printf("x-axis self test: acceleration trim within : ");
-        serial.printf("%f", SelfTest[0]);
-        serial.printf("% of factory value \n\r");
-        serial.printf("y-axis self test: acceleration trim within : ");
-        serial.printf("%f", SelfTest[1]);
-        serial.printf("% of factory value \n\r");
-        serial.printf("z-axis self test: acceleration trim within : ");
-        serial.printf("%f", SelfTest[2]);
-        serial.printf("% of factory value \n\r");
-        serial.printf("x-axis self test: gyration trim within : ");
-        serial.printf("%f", SelfTest[3]);
-        serial.printf("% of factory value \n\r");
-        serial.printf("y-axis self test: gyration trim within : ");
-        serial.printf("%f", SelfTest[4]);
-        serial.printf("% of factory value \n\r");
-        serial.printf("z-axis self test: gyration trim within : ");
-        serial.printf("%f", SelfTest[5]);
-        serial.printf("% of factory value \n\r");
-*/
-        wait(1);
-
-        if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
-            mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
-            mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
-            mpu6050.initMPU6050();
-            //serial.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-
-            return TRUE;
-        } else {
-            //serial.printf("Device did not the pass self-test!\n\r");
-            return FALSE;
-
-        }
-    } else {
-        //serial.printf("Could not connect to MPU6050: \n\r");
-        //serial.printf("%#x \n",  whoami);
-
-        return FALSE;
-    }
-
-
-}
-
-bool motion_update_data(MPU_data_type *new_data)
-{
-    if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {
-        mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
-        mpu6050.getAres();
-
-        // Now we'll calculate the accleration value into actual g's
-        ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-        ay = (float)accelCount[1]*aRes - accelBias[1];
-        az = (float)accelCount[2]*aRes - accelBias[2];
-
-        mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
-        mpu6050.getGres();
-
-        // Calculate the gyro value into actual degrees per second
-        gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
-        gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
-        gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
-
-        tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
-        temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
-
-
-        Now = t.read_us();
-        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
-        lastUpdate = Now;
-
-        sum += deltat;
-        sumCount++;
-
-        if(lastUpdate - firstUpdate > 10000000.0f) {
-            beta = 0.04;  // decrease filter gain after stabilized
-            zeta = 0.015; // increase bias drift gain after stabilized
-        }
-
-        // Pass gyro rate as rad/s
-        mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
-
-
-
-
-        // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-        // In this coordinate system, the positive z-axis is down toward Earth.
-        // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-        // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-        // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-        // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-        // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-        // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-        // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-        yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
-        pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-        roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-        pitch *= 180.0f / PI;
-        yaw   *= 180.0f / PI;
-        roll  *= 180.0f / PI;
-/*
-        new_data->ax = (int) (ax / 16384.0f);
-        new_data->ay = (int) (ay / 16384.0f);
-        new_data->az = (int) (az / 16384.0f);
-        new_data->yaw = (int) (yaw / 16384.0f);
-        new_data->pitch = (int) (pitch / 16384.0f);
-        new_data->roll = (int) (roll / 16384.0f);
-*/
-        new_data->ax = (int) (ax * 1000);
-        new_data->ay = (int) (ay * 1000);
-        new_data->az = (int) (az * 1000);
-        new_data->yaw = (int) (yaw * 10);
-        new_data->pitch = (int) (pitch * 10);
-        new_data->roll = (int) (roll * 10);
-        return TRUE;
-
-    } else {
-        return FALSE;
-    }
-
-}
 
 void mpu_calc_avg(MPU_data_type * MPU_data,int mpu_pointer, MPU_data_type * MPU_avg_data, int avg_len)
 {