A Jedi light saber controller program with the following "features": - Using RGB LEDs - User can change light colors with a button - Motion dependent (PWM) sounds with a MPU6050 motion sensor - Low voltage detection

Dependencies:   L152RE_USBDevice STM32_USB48MHz Watchdog mbed

Committer:
nightmechanic
Date:
Tue Mar 22 10:30:16 2016 +0000
Revision:
0:0bb3687e39da
Child:
1:8143972a0587
First and not so stable version

Who changed what in which revision?

UserRevisionLine numberNew contents of line
nightmechanic 0:0bb3687e39da 1 #ifndef MPU6050_H
nightmechanic 0:0bb3687e39da 2 #define MPU6050_H
nightmechanic 0:0bb3687e39da 3
nightmechanic 0:0bb3687e39da 4 #include "mbed.h"
nightmechanic 0:0bb3687e39da 5 #include "math.h"
nightmechanic 0:0bb3687e39da 6
nightmechanic 0:0bb3687e39da 7 // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
nightmechanic 0:0bb3687e39da 8 // Invensense Inc., www.invensense.com
nightmechanic 0:0bb3687e39da 9 // See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in
nightmechanic 0:0bb3687e39da 10 // above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
nightmechanic 0:0bb3687e39da 11 //
nightmechanic 0:0bb3687e39da 12 #define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
nightmechanic 0:0bb3687e39da 13 #define YGOFFS_TC 0x01
nightmechanic 0:0bb3687e39da 14 #define ZGOFFS_TC 0x02
nightmechanic 0:0bb3687e39da 15 #define X_FINE_GAIN 0x03 // [7:0] fine gain
nightmechanic 0:0bb3687e39da 16 #define Y_FINE_GAIN 0x04
nightmechanic 0:0bb3687e39da 17 #define Z_FINE_GAIN 0x05
nightmechanic 0:0bb3687e39da 18 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
nightmechanic 0:0bb3687e39da 19 #define XA_OFFSET_L_TC 0x07
nightmechanic 0:0bb3687e39da 20 #define YA_OFFSET_H 0x08
nightmechanic 0:0bb3687e39da 21 #define YA_OFFSET_L_TC 0x09
nightmechanic 0:0bb3687e39da 22 #define ZA_OFFSET_H 0x0A
nightmechanic 0:0bb3687e39da 23 #define ZA_OFFSET_L_TC 0x0B
nightmechanic 0:0bb3687e39da 24 #define SELF_TEST_X 0x0D
nightmechanic 0:0bb3687e39da 25 #define SELF_TEST_Y 0x0E
nightmechanic 0:0bb3687e39da 26 #define SELF_TEST_Z 0x0F
nightmechanic 0:0bb3687e39da 27 #define SELF_TEST_A 0x10
nightmechanic 0:0bb3687e39da 28 #define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050?
nightmechanic 0:0bb3687e39da 29 #define XG_OFFS_USRL 0x14
nightmechanic 0:0bb3687e39da 30 #define YG_OFFS_USRH 0x15
nightmechanic 0:0bb3687e39da 31 #define YG_OFFS_USRL 0x16
nightmechanic 0:0bb3687e39da 32 #define ZG_OFFS_USRH 0x17
nightmechanic 0:0bb3687e39da 33 #define ZG_OFFS_USRL 0x18
nightmechanic 0:0bb3687e39da 34 #define SMPLRT_DIV 0x19
nightmechanic 0:0bb3687e39da 35 #define CONFIG 0x1A
nightmechanic 0:0bb3687e39da 36 #define GYRO_CONFIG 0x1B
nightmechanic 0:0bb3687e39da 37 #define ACCEL_CONFIG 0x1C
nightmechanic 0:0bb3687e39da 38 #define FF_THR 0x1D // Free-fall
nightmechanic 0:0bb3687e39da 39 #define FF_DUR 0x1E // Free-fall
nightmechanic 0:0bb3687e39da 40 #define MOT_THR 0x1F // Motion detection threshold bits [7:0]
nightmechanic 0:0bb3687e39da 41 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
nightmechanic 0:0bb3687e39da 42 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
nightmechanic 0:0bb3687e39da 43 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
nightmechanic 0:0bb3687e39da 44 #define FIFO_EN 0x23
nightmechanic 0:0bb3687e39da 45 #define I2C_MST_CTRL 0x24
nightmechanic 0:0bb3687e39da 46 #define I2C_SLV0_ADDR 0x25
nightmechanic 0:0bb3687e39da 47 #define I2C_SLV0_REG 0x26
nightmechanic 0:0bb3687e39da 48 #define I2C_SLV0_CTRL 0x27
nightmechanic 0:0bb3687e39da 49 #define I2C_SLV1_ADDR 0x28
nightmechanic 0:0bb3687e39da 50 #define I2C_SLV1_REG 0x29
nightmechanic 0:0bb3687e39da 51 #define I2C_SLV1_CTRL 0x2A
nightmechanic 0:0bb3687e39da 52 #define I2C_SLV2_ADDR 0x2B
nightmechanic 0:0bb3687e39da 53 #define I2C_SLV2_REG 0x2C
nightmechanic 0:0bb3687e39da 54 #define I2C_SLV2_CTRL 0x2D
nightmechanic 0:0bb3687e39da 55 #define I2C_SLV3_ADDR 0x2E
nightmechanic 0:0bb3687e39da 56 #define I2C_SLV3_REG 0x2F
nightmechanic 0:0bb3687e39da 57 #define I2C_SLV3_CTRL 0x30
nightmechanic 0:0bb3687e39da 58 #define I2C_SLV4_ADDR 0x31
nightmechanic 0:0bb3687e39da 59 #define I2C_SLV4_REG 0x32
nightmechanic 0:0bb3687e39da 60 #define I2C_SLV4_DO 0x33
nightmechanic 0:0bb3687e39da 61 #define I2C_SLV4_CTRL 0x34
nightmechanic 0:0bb3687e39da 62 #define I2C_SLV4_DI 0x35
nightmechanic 0:0bb3687e39da 63 #define I2C_MST_STATUS 0x36
nightmechanic 0:0bb3687e39da 64 #define INT_PIN_CFG 0x37
nightmechanic 0:0bb3687e39da 65 #define INT_ENABLE 0x38
nightmechanic 0:0bb3687e39da 66 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
nightmechanic 0:0bb3687e39da 67 #define INT_STATUS 0x3A
nightmechanic 0:0bb3687e39da 68 #define ACCEL_XOUT_H 0x3B
nightmechanic 0:0bb3687e39da 69 #define ACCEL_XOUT_L 0x3C
nightmechanic 0:0bb3687e39da 70 #define ACCEL_YOUT_H 0x3D
nightmechanic 0:0bb3687e39da 71 #define ACCEL_YOUT_L 0x3E
nightmechanic 0:0bb3687e39da 72 #define ACCEL_ZOUT_H 0x3F
nightmechanic 0:0bb3687e39da 73 #define ACCEL_ZOUT_L 0x40
nightmechanic 0:0bb3687e39da 74 #define TEMP_OUT_H 0x41
nightmechanic 0:0bb3687e39da 75 #define TEMP_OUT_L 0x42
nightmechanic 0:0bb3687e39da 76 #define GYRO_XOUT_H 0x43
nightmechanic 0:0bb3687e39da 77 #define GYRO_XOUT_L 0x44
nightmechanic 0:0bb3687e39da 78 #define GYRO_YOUT_H 0x45
nightmechanic 0:0bb3687e39da 79 #define GYRO_YOUT_L 0x46
nightmechanic 0:0bb3687e39da 80 #define GYRO_ZOUT_H 0x47
nightmechanic 0:0bb3687e39da 81 #define GYRO_ZOUT_L 0x48
nightmechanic 0:0bb3687e39da 82 #define EXT_SENS_DATA_00 0x49
nightmechanic 0:0bb3687e39da 83 #define EXT_SENS_DATA_01 0x4A
nightmechanic 0:0bb3687e39da 84 #define EXT_SENS_DATA_02 0x4B
nightmechanic 0:0bb3687e39da 85 #define EXT_SENS_DATA_03 0x4C
nightmechanic 0:0bb3687e39da 86 #define EXT_SENS_DATA_04 0x4D
nightmechanic 0:0bb3687e39da 87 #define EXT_SENS_DATA_05 0x4E
nightmechanic 0:0bb3687e39da 88 #define EXT_SENS_DATA_06 0x4F
nightmechanic 0:0bb3687e39da 89 #define EXT_SENS_DATA_07 0x50
nightmechanic 0:0bb3687e39da 90 #define EXT_SENS_DATA_08 0x51
nightmechanic 0:0bb3687e39da 91 #define EXT_SENS_DATA_09 0x52
nightmechanic 0:0bb3687e39da 92 #define EXT_SENS_DATA_10 0x53
nightmechanic 0:0bb3687e39da 93 #define EXT_SENS_DATA_11 0x54
nightmechanic 0:0bb3687e39da 94 #define EXT_SENS_DATA_12 0x55
nightmechanic 0:0bb3687e39da 95 #define EXT_SENS_DATA_13 0x56
nightmechanic 0:0bb3687e39da 96 #define EXT_SENS_DATA_14 0x57
nightmechanic 0:0bb3687e39da 97 #define EXT_SENS_DATA_15 0x58
nightmechanic 0:0bb3687e39da 98 #define EXT_SENS_DATA_16 0x59
nightmechanic 0:0bb3687e39da 99 #define EXT_SENS_DATA_17 0x5A
nightmechanic 0:0bb3687e39da 100 #define EXT_SENS_DATA_18 0x5B
nightmechanic 0:0bb3687e39da 101 #define EXT_SENS_DATA_19 0x5C
nightmechanic 0:0bb3687e39da 102 #define EXT_SENS_DATA_20 0x5D
nightmechanic 0:0bb3687e39da 103 #define EXT_SENS_DATA_21 0x5E
nightmechanic 0:0bb3687e39da 104 #define EXT_SENS_DATA_22 0x5F
nightmechanic 0:0bb3687e39da 105 #define EXT_SENS_DATA_23 0x60
nightmechanic 0:0bb3687e39da 106 #define MOT_DETECT_STATUS 0x61
nightmechanic 0:0bb3687e39da 107 #define I2C_SLV0_DO 0x63
nightmechanic 0:0bb3687e39da 108 #define I2C_SLV1_DO 0x64
nightmechanic 0:0bb3687e39da 109 #define I2C_SLV2_DO 0x65
nightmechanic 0:0bb3687e39da 110 #define I2C_SLV3_DO 0x66
nightmechanic 0:0bb3687e39da 111 #define I2C_MST_DELAY_CTRL 0x67
nightmechanic 0:0bb3687e39da 112 #define SIGNAL_PATH_RESET 0x68
nightmechanic 0:0bb3687e39da 113 #define MOT_DETECT_CTRL 0x69
nightmechanic 0:0bb3687e39da 114 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
nightmechanic 0:0bb3687e39da 115 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
nightmechanic 0:0bb3687e39da 116 #define PWR_MGMT_2 0x6C
nightmechanic 0:0bb3687e39da 117 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
nightmechanic 0:0bb3687e39da 118 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
nightmechanic 0:0bb3687e39da 119 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
nightmechanic 0:0bb3687e39da 120 #define DMP_REG_1 0x70
nightmechanic 0:0bb3687e39da 121 #define DMP_REG_2 0x71
nightmechanic 0:0bb3687e39da 122 #define FIFO_COUNTH 0x72
nightmechanic 0:0bb3687e39da 123 #define FIFO_COUNTL 0x73
nightmechanic 0:0bb3687e39da 124 #define FIFO_R_W 0x74
nightmechanic 0:0bb3687e39da 125 #define WHO_AM_I_MPU6050 0x75 // Should return 0x68
nightmechanic 0:0bb3687e39da 126
nightmechanic 0:0bb3687e39da 127 // Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
nightmechanic 0:0bb3687e39da 128 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
nightmechanic 0:0bb3687e39da 129 #define ADO 0
nightmechanic 0:0bb3687e39da 130 #if ADO
nightmechanic 0:0bb3687e39da 131 #define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1
nightmechanic 0:0bb3687e39da 132 #else
nightmechanic 0:0bb3687e39da 133 #define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0
nightmechanic 0:0bb3687e39da 134 #endif
nightmechanic 0:0bb3687e39da 135
nightmechanic 0:0bb3687e39da 136 // Set initial input parameters
nightmechanic 0:0bb3687e39da 137 enum Ascale {
nightmechanic 0:0bb3687e39da 138 AFS_2G = 0,
nightmechanic 0:0bb3687e39da 139 AFS_4G,
nightmechanic 0:0bb3687e39da 140 AFS_8G,
nightmechanic 0:0bb3687e39da 141 AFS_16G
nightmechanic 0:0bb3687e39da 142 };
nightmechanic 0:0bb3687e39da 143
nightmechanic 0:0bb3687e39da 144 enum Gscale {
nightmechanic 0:0bb3687e39da 145 GFS_250DPS = 0,
nightmechanic 0:0bb3687e39da 146 GFS_500DPS,
nightmechanic 0:0bb3687e39da 147 GFS_1000DPS,
nightmechanic 0:0bb3687e39da 148 GFS_2000DPS
nightmechanic 0:0bb3687e39da 149 };
nightmechanic 0:0bb3687e39da 150
nightmechanic 0:0bb3687e39da 151 // Specify sensor full scale
nightmechanic 0:0bb3687e39da 152 int Gscale = GFS_250DPS;
nightmechanic 0:0bb3687e39da 153 int Ascale = AFS_8G;
nightmechanic 0:0bb3687e39da 154
nightmechanic 0:0bb3687e39da 155 //Set up I2C, (SDA,SCL)
nightmechanic 0:0bb3687e39da 156 I2C MPU_i2c(PB_9, PB_8);
nightmechanic 0:0bb3687e39da 157
nightmechanic 0:0bb3687e39da 158 //DigitalOut myled(LED1);
nightmechanic 0:0bb3687e39da 159
nightmechanic 0:0bb3687e39da 160 float aRes, gRes; // scale resolutions per LSB for the sensors
nightmechanic 0:0bb3687e39da 161
nightmechanic 0:0bb3687e39da 162 // Pin definitions
nightmechanic 0:0bb3687e39da 163 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
nightmechanic 0:0bb3687e39da 164
nightmechanic 0:0bb3687e39da 165 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
nightmechanic 0:0bb3687e39da 166 float ax, ay, az; // Stores the real accel value in g's
nightmechanic 0:0bb3687e39da 167 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
nightmechanic 0:0bb3687e39da 168 float gx, gy, gz; // Stores the real gyro value in degrees per seconds
nightmechanic 0:0bb3687e39da 169 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
nightmechanic 0:0bb3687e39da 170 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
nightmechanic 0:0bb3687e39da 171 float temperature;
nightmechanic 0:0bb3687e39da 172 float SelfTest[6];
nightmechanic 0:0bb3687e39da 173
nightmechanic 0:0bb3687e39da 174 int delt_t = 0; // used to control display output rate
nightmechanic 0:0bb3687e39da 175 //int count = 0; // used to control display output rate
nightmechanic 0:0bb3687e39da 176
nightmechanic 0:0bb3687e39da 177 // parameters for 6 DoF sensor fusion calculations
nightmechanic 0:0bb3687e39da 178 float PI = 3.14159265358979323846f;
nightmechanic 0:0bb3687e39da 179 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
nightmechanic 0:0bb3687e39da 180 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
nightmechanic 0:0bb3687e39da 181 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
nightmechanic 0:0bb3687e39da 182 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
nightmechanic 0:0bb3687e39da 183 float pitch, yaw, roll;
nightmechanic 0:0bb3687e39da 184 float deltat = 0.0f; // integration interval for both filter schemes
nightmechanic 0:0bb3687e39da 185 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
nightmechanic 0:0bb3687e39da 186 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
nightmechanic 0:0bb3687e39da 187
nightmechanic 0:0bb3687e39da 188 class MPU6050 {
nightmechanic 0:0bb3687e39da 189
nightmechanic 0:0bb3687e39da 190 protected:
nightmechanic 0:0bb3687e39da 191
nightmechanic 0:0bb3687e39da 192 public:
nightmechanic 0:0bb3687e39da 193 //===================================================================================================================
nightmechanic 0:0bb3687e39da 194 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
nightmechanic 0:0bb3687e39da 195 //===================================================================================================================
nightmechanic 0:0bb3687e39da 196
nightmechanic 0:0bb3687e39da 197 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
nightmechanic 0:0bb3687e39da 198 {
nightmechanic 0:0bb3687e39da 199 char data_write[2];
nightmechanic 0:0bb3687e39da 200 data_write[0] = subAddress;
nightmechanic 0:0bb3687e39da 201 data_write[1] = data;
nightmechanic 0:0bb3687e39da 202 __disable_irq();
nightmechanic 0:0bb3687e39da 203 MPU_i2c.write(address, data_write, 2, 0);
nightmechanic 0:0bb3687e39da 204 __enable_irq();
nightmechanic 0:0bb3687e39da 205 }
nightmechanic 0:0bb3687e39da 206
nightmechanic 0:0bb3687e39da 207 char readByte(uint8_t address, uint8_t subAddress)
nightmechanic 0:0bb3687e39da 208 {
nightmechanic 0:0bb3687e39da 209 char data[1]; // `data` will store the register data
nightmechanic 0:0bb3687e39da 210 char data_write[1];
nightmechanic 0:0bb3687e39da 211 data_write[0] = subAddress;
nightmechanic 0:0bb3687e39da 212 __disable_irq();
nightmechanic 0:0bb3687e39da 213 MPU_i2c.write(address, data_write, 1, 1); // no stop
nightmechanic 0:0bb3687e39da 214 MPU_i2c.read(address, data, 1, 0);
nightmechanic 0:0bb3687e39da 215 __enable_irq();
nightmechanic 0:0bb3687e39da 216 return data[0];
nightmechanic 0:0bb3687e39da 217 }
nightmechanic 0:0bb3687e39da 218
nightmechanic 0:0bb3687e39da 219 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
nightmechanic 0:0bb3687e39da 220 {
nightmechanic 0:0bb3687e39da 221 char data[14];
nightmechanic 0:0bb3687e39da 222 char data_write[1];
nightmechanic 0:0bb3687e39da 223 data_write[0] = subAddress;
nightmechanic 0:0bb3687e39da 224 __disable_irq();
nightmechanic 0:0bb3687e39da 225 MPU_i2c.write(address, data_write, 1, 1); // no stop
nightmechanic 0:0bb3687e39da 226 MPU_i2c.read(address, data, count, 0);
nightmechanic 0:0bb3687e39da 227 __enable_irq();
nightmechanic 0:0bb3687e39da 228 for(int ii = 0; ii < count; ii++) {
nightmechanic 0:0bb3687e39da 229 dest[ii] = data[ii];
nightmechanic 0:0bb3687e39da 230 }
nightmechanic 0:0bb3687e39da 231 }
nightmechanic 0:0bb3687e39da 232
nightmechanic 0:0bb3687e39da 233
nightmechanic 0:0bb3687e39da 234 void getGres() {
nightmechanic 0:0bb3687e39da 235 switch (Gscale)
nightmechanic 0:0bb3687e39da 236 {
nightmechanic 0:0bb3687e39da 237 // Possible gyro scales (and their register bit settings) are:
nightmechanic 0:0bb3687e39da 238 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
nightmechanic 0:0bb3687e39da 239 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
nightmechanic 0:0bb3687e39da 240 case GFS_250DPS:
nightmechanic 0:0bb3687e39da 241 gRes = 250.0/32768.0;
nightmechanic 0:0bb3687e39da 242 break;
nightmechanic 0:0bb3687e39da 243 case GFS_500DPS:
nightmechanic 0:0bb3687e39da 244 gRes = 500.0/32768.0;
nightmechanic 0:0bb3687e39da 245 break;
nightmechanic 0:0bb3687e39da 246 case GFS_1000DPS:
nightmechanic 0:0bb3687e39da 247 gRes = 1000.0/32768.0;
nightmechanic 0:0bb3687e39da 248 break;
nightmechanic 0:0bb3687e39da 249 case GFS_2000DPS:
nightmechanic 0:0bb3687e39da 250 gRes = 2000.0/32768.0;
nightmechanic 0:0bb3687e39da 251 break;
nightmechanic 0:0bb3687e39da 252 }
nightmechanic 0:0bb3687e39da 253 }
nightmechanic 0:0bb3687e39da 254
nightmechanic 0:0bb3687e39da 255 void getAres() {
nightmechanic 0:0bb3687e39da 256 switch (Ascale)
nightmechanic 0:0bb3687e39da 257 {
nightmechanic 0:0bb3687e39da 258 // Possible accelerometer scales (and their register bit settings) are:
nightmechanic 0:0bb3687e39da 259 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
nightmechanic 0:0bb3687e39da 260 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
nightmechanic 0:0bb3687e39da 261 case AFS_2G:
nightmechanic 0:0bb3687e39da 262 aRes = 2.0/32768.0;
nightmechanic 0:0bb3687e39da 263 break;
nightmechanic 0:0bb3687e39da 264 case AFS_4G:
nightmechanic 0:0bb3687e39da 265 aRes = 4.0/32768.0;
nightmechanic 0:0bb3687e39da 266 break;
nightmechanic 0:0bb3687e39da 267 case AFS_8G:
nightmechanic 0:0bb3687e39da 268 aRes = 8.0/32768.0;
nightmechanic 0:0bb3687e39da 269 break;
nightmechanic 0:0bb3687e39da 270 case AFS_16G:
nightmechanic 0:0bb3687e39da 271 aRes = 16.0/32768.0;
nightmechanic 0:0bb3687e39da 272 break;
nightmechanic 0:0bb3687e39da 273 }
nightmechanic 0:0bb3687e39da 274 }
nightmechanic 0:0bb3687e39da 275
nightmechanic 0:0bb3687e39da 276
nightmechanic 0:0bb3687e39da 277 void readAccelData(int16_t * destination)
nightmechanic 0:0bb3687e39da 278 {
nightmechanic 0:0bb3687e39da 279 uint8_t rawData[6]; // x/y/z accel register data stored here
nightmechanic 0:0bb3687e39da 280 readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
nightmechanic 0:0bb3687e39da 281 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
nightmechanic 0:0bb3687e39da 282 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
nightmechanic 0:0bb3687e39da 283 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
nightmechanic 0:0bb3687e39da 284 }
nightmechanic 0:0bb3687e39da 285
nightmechanic 0:0bb3687e39da 286 void readGyroData(int16_t * destination)
nightmechanic 0:0bb3687e39da 287 {
nightmechanic 0:0bb3687e39da 288 uint8_t rawData[6]; // x/y/z gyro register data stored here
nightmechanic 0:0bb3687e39da 289 readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
nightmechanic 0:0bb3687e39da 290 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
nightmechanic 0:0bb3687e39da 291 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
nightmechanic 0:0bb3687e39da 292 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
nightmechanic 0:0bb3687e39da 293 }
nightmechanic 0:0bb3687e39da 294
nightmechanic 0:0bb3687e39da 295 int16_t readTempData()
nightmechanic 0:0bb3687e39da 296 {
nightmechanic 0:0bb3687e39da 297 uint8_t rawData[2]; // x/y/z gyro register data stored here
nightmechanic 0:0bb3687e39da 298 readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
nightmechanic 0:0bb3687e39da 299 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
nightmechanic 0:0bb3687e39da 300 }
nightmechanic 0:0bb3687e39da 301
nightmechanic 0:0bb3687e39da 302
nightmechanic 0:0bb3687e39da 303
nightmechanic 0:0bb3687e39da 304 // Configure the motion detection control for low power accelerometer mode
nightmechanic 0:0bb3687e39da 305 void LowPowerAccelOnly()
nightmechanic 0:0bb3687e39da 306 {
nightmechanic 0:0bb3687e39da 307
nightmechanic 0:0bb3687e39da 308 // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
nightmechanic 0:0bb3687e39da 309 // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
nightmechanic 0:0bb3687e39da 310 // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
nightmechanic 0:0bb3687e39da 311 // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
nightmechanic 0:0bb3687e39da 312 // consideration for these threshold evaluations; otherwise, the flags would be set all the time!
nightmechanic 0:0bb3687e39da 313
nightmechanic 0:0bb3687e39da 314 uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
nightmechanic 0:0bb3687e39da 315 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
nightmechanic 0:0bb3687e39da 316 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
nightmechanic 0:0bb3687e39da 317
nightmechanic 0:0bb3687e39da 318 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
nightmechanic 0:0bb3687e39da 319 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
nightmechanic 0:0bb3687e39da 320 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
nightmechanic 0:0bb3687e39da 321
nightmechanic 0:0bb3687e39da 322 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
nightmechanic 0:0bb3687e39da 323 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
nightmechanic 0:0bb3687e39da 324 // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
nightmechanic 0:0bb3687e39da 325 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
nightmechanic 0:0bb3687e39da 326
nightmechanic 0:0bb3687e39da 327 c = readByte(MPU6050_ADDRESS, CONFIG);
nightmechanic 0:0bb3687e39da 328 writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
nightmechanic 0:0bb3687e39da 329 writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
nightmechanic 0:0bb3687e39da 330
nightmechanic 0:0bb3687e39da 331 c = readByte(MPU6050_ADDRESS, INT_ENABLE);
nightmechanic 0:0bb3687e39da 332 writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
nightmechanic 0:0bb3687e39da 333 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only
nightmechanic 0:0bb3687e39da 334
nightmechanic 0:0bb3687e39da 335 // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
nightmechanic 0:0bb3687e39da 336 // for at least the counter duration
nightmechanic 0:0bb3687e39da 337 writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
nightmechanic 0:0bb3687e39da 338 writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate
nightmechanic 0:0bb3687e39da 339
nightmechanic 0:0bb3687e39da 340 wait(0.1); // Add delay for accumulation of samples
nightmechanic 0:0bb3687e39da 341
nightmechanic 0:0bb3687e39da 342 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
nightmechanic 0:0bb3687e39da 343 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
nightmechanic 0:0bb3687e39da 344 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
nightmechanic 0:0bb3687e39da 345
nightmechanic 0:0bb3687e39da 346 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
nightmechanic 0:0bb3687e39da 347 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
nightmechanic 0:0bb3687e39da 348 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
nightmechanic 0:0bb3687e39da 349
nightmechanic 0:0bb3687e39da 350 c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
nightmechanic 0:0bb3687e39da 351 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
nightmechanic 0:0bb3687e39da 352 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
nightmechanic 0:0bb3687e39da 353
nightmechanic 0:0bb3687e39da 354 }
nightmechanic 0:0bb3687e39da 355
nightmechanic 0:0bb3687e39da 356
nightmechanic 0:0bb3687e39da 357 void resetMPU6050() {
nightmechanic 0:0bb3687e39da 358 // reset device
nightmechanic 0:0bb3687e39da 359 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
nightmechanic 0:0bb3687e39da 360 wait(0.1);
nightmechanic 0:0bb3687e39da 361 }
nightmechanic 0:0bb3687e39da 362
nightmechanic 0:0bb3687e39da 363
nightmechanic 0:0bb3687e39da 364 void initMPU6050()
nightmechanic 0:0bb3687e39da 365 {
nightmechanic 0:0bb3687e39da 366 // Initialize MPU6050 device
nightmechanic 0:0bb3687e39da 367 // wake up device
nightmechanic 0:0bb3687e39da 368 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
nightmechanic 0:0bb3687e39da 369 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
nightmechanic 0:0bb3687e39da 370
nightmechanic 0:0bb3687e39da 371 // get stable time source
nightmechanic 0:0bb3687e39da 372 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
nightmechanic 0:0bb3687e39da 373
nightmechanic 0:0bb3687e39da 374 // Configure Gyro and Accelerometer
nightmechanic 0:0bb3687e39da 375 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
nightmechanic 0:0bb3687e39da 376 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
nightmechanic 0:0bb3687e39da 377 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
nightmechanic 0:0bb3687e39da 378 writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
nightmechanic 0:0bb3687e39da 379
nightmechanic 0:0bb3687e39da 380 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
nightmechanic 0:0bb3687e39da 381 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
nightmechanic 0:0bb3687e39da 382
nightmechanic 0:0bb3687e39da 383 // Set gyroscope full scale range
nightmechanic 0:0bb3687e39da 384 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
nightmechanic 0:0bb3687e39da 385 uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
nightmechanic 0:0bb3687e39da 386 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
nightmechanic 0:0bb3687e39da 387 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
nightmechanic 0:0bb3687e39da 388 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
nightmechanic 0:0bb3687e39da 389
nightmechanic 0:0bb3687e39da 390 // Set accelerometer configuration
nightmechanic 0:0bb3687e39da 391 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
nightmechanic 0:0bb3687e39da 392 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
nightmechanic 0:0bb3687e39da 393 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
nightmechanic 0:0bb3687e39da 394 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
nightmechanic 0:0bb3687e39da 395
nightmechanic 0:0bb3687e39da 396 // Configure Interrupts and Bypass Enable
nightmechanic 0:0bb3687e39da 397 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
nightmechanic 0:0bb3687e39da 398 // can join the I2C bus and all can be controlled by the Arduino as master
nightmechanic 0:0bb3687e39da 399 writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
nightmechanic 0:0bb3687e39da 400 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
nightmechanic 0:0bb3687e39da 401 }
nightmechanic 0:0bb3687e39da 402
nightmechanic 0:0bb3687e39da 403 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
nightmechanic 0:0bb3687e39da 404 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
nightmechanic 0:0bb3687e39da 405 void calibrateMPU6050(float * dest1, float * dest2)
nightmechanic 0:0bb3687e39da 406 {
nightmechanic 0:0bb3687e39da 407 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
nightmechanic 0:0bb3687e39da 408 uint16_t ii, packet_count, fifo_count;
nightmechanic 0:0bb3687e39da 409 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
nightmechanic 0:0bb3687e39da 410
nightmechanic 0:0bb3687e39da 411 // reset device, reset all registers, clear gyro and accelerometer bias registers
nightmechanic 0:0bb3687e39da 412 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
nightmechanic 0:0bb3687e39da 413 wait(0.1);
nightmechanic 0:0bb3687e39da 414
nightmechanic 0:0bb3687e39da 415 // get stable time source
nightmechanic 0:0bb3687e39da 416 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
nightmechanic 0:0bb3687e39da 417 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
nightmechanic 0:0bb3687e39da 418 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
nightmechanic 0:0bb3687e39da 419 wait(0.2);
nightmechanic 0:0bb3687e39da 420
nightmechanic 0:0bb3687e39da 421 // Configure device for bias calculation
nightmechanic 0:0bb3687e39da 422 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
nightmechanic 0:0bb3687e39da 423 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
nightmechanic 0:0bb3687e39da 424 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
nightmechanic 0:0bb3687e39da 425 writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
nightmechanic 0:0bb3687e39da 426 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
nightmechanic 0:0bb3687e39da 427 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
nightmechanic 0:0bb3687e39da 428 wait(0.015);
nightmechanic 0:0bb3687e39da 429
nightmechanic 0:0bb3687e39da 430 // Configure MPU6050 gyro and accelerometer for bias calculation
nightmechanic 0:0bb3687e39da 431 writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
nightmechanic 0:0bb3687e39da 432 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
nightmechanic 0:0bb3687e39da 433 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
nightmechanic 0:0bb3687e39da 434 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
nightmechanic 0:0bb3687e39da 435
nightmechanic 0:0bb3687e39da 436 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
nightmechanic 0:0bb3687e39da 437 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
nightmechanic 0:0bb3687e39da 438
nightmechanic 0:0bb3687e39da 439 // Configure FIFO to capture accelerometer and gyro data for bias calculation
nightmechanic 0:0bb3687e39da 440 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
nightmechanic 0:0bb3687e39da 441 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
nightmechanic 0:0bb3687e39da 442 wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
nightmechanic 0:0bb3687e39da 443
nightmechanic 0:0bb3687e39da 444 // At end of sample accumulation, turn off FIFO sensor read
nightmechanic 0:0bb3687e39da 445 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
nightmechanic 0:0bb3687e39da 446 readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
nightmechanic 0:0bb3687e39da 447 fifo_count = ((uint16_t)data[0] << 8) | data[1];
nightmechanic 0:0bb3687e39da 448 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
nightmechanic 0:0bb3687e39da 449
nightmechanic 0:0bb3687e39da 450 for (ii = 0; ii < packet_count; ii++) {
nightmechanic 0:0bb3687e39da 451 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
nightmechanic 0:0bb3687e39da 452 readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
nightmechanic 0:0bb3687e39da 453 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
nightmechanic 0:0bb3687e39da 454 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
nightmechanic 0:0bb3687e39da 455 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
nightmechanic 0:0bb3687e39da 456 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
nightmechanic 0:0bb3687e39da 457 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
nightmechanic 0:0bb3687e39da 458 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
nightmechanic 0:0bb3687e39da 459
nightmechanic 0:0bb3687e39da 460 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
nightmechanic 0:0bb3687e39da 461 accel_bias[1] += (int32_t) accel_temp[1];
nightmechanic 0:0bb3687e39da 462 accel_bias[2] += (int32_t) accel_temp[2];
nightmechanic 0:0bb3687e39da 463 gyro_bias[0] += (int32_t) gyro_temp[0];
nightmechanic 0:0bb3687e39da 464 gyro_bias[1] += (int32_t) gyro_temp[1];
nightmechanic 0:0bb3687e39da 465 gyro_bias[2] += (int32_t) gyro_temp[2];
nightmechanic 0:0bb3687e39da 466
nightmechanic 0:0bb3687e39da 467 }
nightmechanic 0:0bb3687e39da 468 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
nightmechanic 0:0bb3687e39da 469 accel_bias[1] /= (int32_t) packet_count;
nightmechanic 0:0bb3687e39da 470 accel_bias[2] /= (int32_t) packet_count;
nightmechanic 0:0bb3687e39da 471 gyro_bias[0] /= (int32_t) packet_count;
nightmechanic 0:0bb3687e39da 472 gyro_bias[1] /= (int32_t) packet_count;
nightmechanic 0:0bb3687e39da 473 gyro_bias[2] /= (int32_t) packet_count;
nightmechanic 0:0bb3687e39da 474
nightmechanic 0:0bb3687e39da 475 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
nightmechanic 0:0bb3687e39da 476 else {accel_bias[2] += (int32_t) accelsensitivity;}
nightmechanic 0:0bb3687e39da 477
nightmechanic 0:0bb3687e39da 478 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
nightmechanic 0:0bb3687e39da 479 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
nightmechanic 0:0bb3687e39da 480 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
nightmechanic 0:0bb3687e39da 481 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
nightmechanic 0:0bb3687e39da 482 data[3] = (-gyro_bias[1]/4) & 0xFF;
nightmechanic 0:0bb3687e39da 483 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
nightmechanic 0:0bb3687e39da 484 data[5] = (-gyro_bias[2]/4) & 0xFF;
nightmechanic 0:0bb3687e39da 485
nightmechanic 0:0bb3687e39da 486 // Push gyro biases to hardware registers
nightmechanic 0:0bb3687e39da 487 writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
nightmechanic 0:0bb3687e39da 488 writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
nightmechanic 0:0bb3687e39da 489 writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
nightmechanic 0:0bb3687e39da 490 writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
nightmechanic 0:0bb3687e39da 491 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
nightmechanic 0:0bb3687e39da 492 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
nightmechanic 0:0bb3687e39da 493
nightmechanic 0:0bb3687e39da 494 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
nightmechanic 0:0bb3687e39da 495 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
nightmechanic 0:0bb3687e39da 496 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
nightmechanic 0:0bb3687e39da 497
nightmechanic 0:0bb3687e39da 498 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
nightmechanic 0:0bb3687e39da 499 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
nightmechanic 0:0bb3687e39da 500 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
nightmechanic 0:0bb3687e39da 501 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
nightmechanic 0:0bb3687e39da 502 // the accelerometer biases calculated above must be divided by 8.
nightmechanic 0:0bb3687e39da 503
nightmechanic 0:0bb3687e39da 504 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
nightmechanic 0:0bb3687e39da 505 readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
nightmechanic 0:0bb3687e39da 506 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
nightmechanic 0:0bb3687e39da 507 readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
nightmechanic 0:0bb3687e39da 508 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
nightmechanic 0:0bb3687e39da 509 readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
nightmechanic 0:0bb3687e39da 510 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
nightmechanic 0:0bb3687e39da 511
nightmechanic 0:0bb3687e39da 512 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
nightmechanic 0:0bb3687e39da 513 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
nightmechanic 0:0bb3687e39da 514
nightmechanic 0:0bb3687e39da 515 for(ii = 0; ii < 3; ii++) {
nightmechanic 0:0bb3687e39da 516 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
nightmechanic 0:0bb3687e39da 517 }
nightmechanic 0:0bb3687e39da 518
nightmechanic 0:0bb3687e39da 519 // Construct total accelerometer bias, including calculated average accelerometer bias from above
nightmechanic 0:0bb3687e39da 520 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
nightmechanic 0:0bb3687e39da 521 accel_bias_reg[1] -= (accel_bias[1]/8);
nightmechanic 0:0bb3687e39da 522 accel_bias_reg[2] -= (accel_bias[2]/8);
nightmechanic 0:0bb3687e39da 523
nightmechanic 0:0bb3687e39da 524 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
nightmechanic 0:0bb3687e39da 525 data[1] = (accel_bias_reg[0]) & 0xFF;
nightmechanic 0:0bb3687e39da 526 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
nightmechanic 0:0bb3687e39da 527 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
nightmechanic 0:0bb3687e39da 528 data[3] = (accel_bias_reg[1]) & 0xFF;
nightmechanic 0:0bb3687e39da 529 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
nightmechanic 0:0bb3687e39da 530 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
nightmechanic 0:0bb3687e39da 531 data[5] = (accel_bias_reg[2]) & 0xFF;
nightmechanic 0:0bb3687e39da 532 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
nightmechanic 0:0bb3687e39da 533
nightmechanic 0:0bb3687e39da 534 // Push accelerometer biases to hardware registers
nightmechanic 0:0bb3687e39da 535 // writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
nightmechanic 0:0bb3687e39da 536 // writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
nightmechanic 0:0bb3687e39da 537 // writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
nightmechanic 0:0bb3687e39da 538 // writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
nightmechanic 0:0bb3687e39da 539 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
nightmechanic 0:0bb3687e39da 540 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
nightmechanic 0:0bb3687e39da 541
nightmechanic 0:0bb3687e39da 542 // Output scaled accelerometer biases for manual subtraction in the main program
nightmechanic 0:0bb3687e39da 543 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
nightmechanic 0:0bb3687e39da 544 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
nightmechanic 0:0bb3687e39da 545 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
nightmechanic 0:0bb3687e39da 546 }
nightmechanic 0:0bb3687e39da 547
nightmechanic 0:0bb3687e39da 548
nightmechanic 0:0bb3687e39da 549 // Accelerometer and gyroscope self test; check calibration wrt factory settings
nightmechanic 0:0bb3687e39da 550 void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
nightmechanic 0:0bb3687e39da 551 {
nightmechanic 0:0bb3687e39da 552 uint8_t rawData[4] = {0, 0, 0, 0};
nightmechanic 0:0bb3687e39da 553 uint8_t selfTest[6];
nightmechanic 0:0bb3687e39da 554 float factoryTrim[6];
nightmechanic 0:0bb3687e39da 555
nightmechanic 0:0bb3687e39da 556 // Configure the accelerometer for self-test
nightmechanic 0:0bb3687e39da 557 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
nightmechanic 0:0bb3687e39da 558 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
nightmechanic 0:0bb3687e39da 559 wait(0.25); // Delay a while to let the device execute the self-test
nightmechanic 0:0bb3687e39da 560 rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
nightmechanic 0:0bb3687e39da 561 rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
nightmechanic 0:0bb3687e39da 562 rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
nightmechanic 0:0bb3687e39da 563 rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
nightmechanic 0:0bb3687e39da 564 // Extract the acceleration test results first
nightmechanic 0:0bb3687e39da 565 selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
nightmechanic 0:0bb3687e39da 566 selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
nightmechanic 0:0bb3687e39da 567 selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
nightmechanic 0:0bb3687e39da 568 // Extract the gyration test results first
nightmechanic 0:0bb3687e39da 569 selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
nightmechanic 0:0bb3687e39da 570 selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
nightmechanic 0:0bb3687e39da 571 selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
nightmechanic 0:0bb3687e39da 572 // Process results to allow final comparison with factory set values
nightmechanic 0:0bb3687e39da 573 factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
nightmechanic 0:0bb3687e39da 574 factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
nightmechanic 0:0bb3687e39da 575 factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
nightmechanic 0:0bb3687e39da 576 factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
nightmechanic 0:0bb3687e39da 577 factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
nightmechanic 0:0bb3687e39da 578 factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
nightmechanic 0:0bb3687e39da 579
nightmechanic 0:0bb3687e39da 580 // Output self-test results and factory trim calculation if desired
nightmechanic 0:0bb3687e39da 581 // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
nightmechanic 0:0bb3687e39da 582 // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
nightmechanic 0:0bb3687e39da 583 // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
nightmechanic 0:0bb3687e39da 584 // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
nightmechanic 0:0bb3687e39da 585
nightmechanic 0:0bb3687e39da 586 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
nightmechanic 0:0bb3687e39da 587 // To get to percent, must multiply by 100 and subtract result from 100
nightmechanic 0:0bb3687e39da 588 for (int i = 0; i < 6; i++) {
nightmechanic 0:0bb3687e39da 589 destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
nightmechanic 0:0bb3687e39da 590 }
nightmechanic 0:0bb3687e39da 591
nightmechanic 0:0bb3687e39da 592 }
nightmechanic 0:0bb3687e39da 593
nightmechanic 0:0bb3687e39da 594
nightmechanic 0:0bb3687e39da 595 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
nightmechanic 0:0bb3687e39da 596 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
nightmechanic 0:0bb3687e39da 597 // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
nightmechanic 0:0bb3687e39da 598 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
nightmechanic 0:0bb3687e39da 599 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
nightmechanic 0:0bb3687e39da 600 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
nightmechanic 0:0bb3687e39da 601 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
nightmechanic 0:0bb3687e39da 602 {
nightmechanic 0:0bb3687e39da 603 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
nightmechanic 0:0bb3687e39da 604 float norm; // vector norm
nightmechanic 0:0bb3687e39da 605 float f1, f2, f3; // objective funcyion elements
nightmechanic 0:0bb3687e39da 606 float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
nightmechanic 0:0bb3687e39da 607 float qDot1, qDot2, qDot3, qDot4;
nightmechanic 0:0bb3687e39da 608 float hatDot1, hatDot2, hatDot3, hatDot4;
nightmechanic 0:0bb3687e39da 609 float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
nightmechanic 0:0bb3687e39da 610
nightmechanic 0:0bb3687e39da 611 // Auxiliary variables to avoid repeated arithmetic
nightmechanic 0:0bb3687e39da 612 float _halfq1 = 0.5f * q1;
nightmechanic 0:0bb3687e39da 613 float _halfq2 = 0.5f * q2;
nightmechanic 0:0bb3687e39da 614 float _halfq3 = 0.5f * q3;
nightmechanic 0:0bb3687e39da 615 float _halfq4 = 0.5f * q4;
nightmechanic 0:0bb3687e39da 616 float _2q1 = 2.0f * q1;
nightmechanic 0:0bb3687e39da 617 float _2q2 = 2.0f * q2;
nightmechanic 0:0bb3687e39da 618 float _2q3 = 2.0f * q3;
nightmechanic 0:0bb3687e39da 619 float _2q4 = 2.0f * q4;
nightmechanic 0:0bb3687e39da 620 // float _2q1q3 = 2.0f * q1 * q3;
nightmechanic 0:0bb3687e39da 621 // float _2q3q4 = 2.0f * q3 * q4;
nightmechanic 0:0bb3687e39da 622
nightmechanic 0:0bb3687e39da 623 // Normalise accelerometer measurement
nightmechanic 0:0bb3687e39da 624 norm = sqrt(ax * ax + ay * ay + az * az);
nightmechanic 0:0bb3687e39da 625 if (norm == 0.0f) return; // handle NaN
nightmechanic 0:0bb3687e39da 626 norm = 1.0f/norm;
nightmechanic 0:0bb3687e39da 627 ax *= norm;
nightmechanic 0:0bb3687e39da 628 ay *= norm;
nightmechanic 0:0bb3687e39da 629 az *= norm;
nightmechanic 0:0bb3687e39da 630
nightmechanic 0:0bb3687e39da 631 // Compute the objective function and Jacobian
nightmechanic 0:0bb3687e39da 632 f1 = _2q2 * q4 - _2q1 * q3 - ax;
nightmechanic 0:0bb3687e39da 633 f2 = _2q1 * q2 + _2q3 * q4 - ay;
nightmechanic 0:0bb3687e39da 634 f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
nightmechanic 0:0bb3687e39da 635 J_11or24 = _2q3;
nightmechanic 0:0bb3687e39da 636 J_12or23 = _2q4;
nightmechanic 0:0bb3687e39da 637 J_13or22 = _2q1;
nightmechanic 0:0bb3687e39da 638 J_14or21 = _2q2;
nightmechanic 0:0bb3687e39da 639 J_32 = 2.0f * J_14or21;
nightmechanic 0:0bb3687e39da 640 J_33 = 2.0f * J_11or24;
nightmechanic 0:0bb3687e39da 641
nightmechanic 0:0bb3687e39da 642 // Compute the gradient (matrix multiplication)
nightmechanic 0:0bb3687e39da 643 hatDot1 = J_14or21 * f2 - J_11or24 * f1;
nightmechanic 0:0bb3687e39da 644 hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
nightmechanic 0:0bb3687e39da 645 hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
nightmechanic 0:0bb3687e39da 646 hatDot4 = J_14or21 * f1 + J_11or24 * f2;
nightmechanic 0:0bb3687e39da 647
nightmechanic 0:0bb3687e39da 648 // Normalize the gradient
nightmechanic 0:0bb3687e39da 649 norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
nightmechanic 0:0bb3687e39da 650 hatDot1 /= norm;
nightmechanic 0:0bb3687e39da 651 hatDot2 /= norm;
nightmechanic 0:0bb3687e39da 652 hatDot3 /= norm;
nightmechanic 0:0bb3687e39da 653 hatDot4 /= norm;
nightmechanic 0:0bb3687e39da 654
nightmechanic 0:0bb3687e39da 655 // Compute estimated gyroscope biases
nightmechanic 0:0bb3687e39da 656 gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
nightmechanic 0:0bb3687e39da 657 gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
nightmechanic 0:0bb3687e39da 658 gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
nightmechanic 0:0bb3687e39da 659
nightmechanic 0:0bb3687e39da 660 // Compute and remove gyroscope biases
nightmechanic 0:0bb3687e39da 661 gbiasx += gerrx * deltat * zeta;
nightmechanic 0:0bb3687e39da 662 gbiasy += gerry * deltat * zeta;
nightmechanic 0:0bb3687e39da 663 gbiasz += gerrz * deltat * zeta;
nightmechanic 0:0bb3687e39da 664 // gx -= gbiasx;
nightmechanic 0:0bb3687e39da 665 // gy -= gbiasy;
nightmechanic 0:0bb3687e39da 666 // gz -= gbiasz;
nightmechanic 0:0bb3687e39da 667
nightmechanic 0:0bb3687e39da 668 // Compute the quaternion derivative
nightmechanic 0:0bb3687e39da 669 qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
nightmechanic 0:0bb3687e39da 670 qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
nightmechanic 0:0bb3687e39da 671 qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
nightmechanic 0:0bb3687e39da 672 qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
nightmechanic 0:0bb3687e39da 673
nightmechanic 0:0bb3687e39da 674 // Compute then integrate estimated quaternion derivative
nightmechanic 0:0bb3687e39da 675 q1 += (qDot1 -(beta * hatDot1)) * deltat;
nightmechanic 0:0bb3687e39da 676 q2 += (qDot2 -(beta * hatDot2)) * deltat;
nightmechanic 0:0bb3687e39da 677 q3 += (qDot3 -(beta * hatDot3)) * deltat;
nightmechanic 0:0bb3687e39da 678 q4 += (qDot4 -(beta * hatDot4)) * deltat;
nightmechanic 0:0bb3687e39da 679
nightmechanic 0:0bb3687e39da 680 // Normalize the quaternion
nightmechanic 0:0bb3687e39da 681 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
nightmechanic 0:0bb3687e39da 682 norm = 1.0f/norm;
nightmechanic 0:0bb3687e39da 683 q[0] = q1 * norm;
nightmechanic 0:0bb3687e39da 684 q[1] = q2 * norm;
nightmechanic 0:0bb3687e39da 685 q[2] = q3 * norm;
nightmechanic 0:0bb3687e39da 686 q[3] = q4 * norm;
nightmechanic 0:0bb3687e39da 687
nightmechanic 0:0bb3687e39da 688 }
nightmechanic 0:0bb3687e39da 689
nightmechanic 0:0bb3687e39da 690
nightmechanic 0:0bb3687e39da 691 };
nightmechanic 0:0bb3687e39da 692 #endif