khang_91
plans/ChannelPlan_KR920.cpp
- Committer:
- Jenkins@KEILDM1.dc.multitech.prv
- Date:
- 2018-08-30
- Revision:
- 172:7ec44396a51b
- Parent:
- 167:09fd17fee0f5
- Child:
- 178:8f7d93f3bbb5
File content as of revision 172:7ec44396a51b:
/********************************************************************** * COPYRIGHT 2016 MULTI-TECH SYSTEMS, INC. * * ALL RIGHTS RESERVED BY AND FOR THE EXCLUSIVE BENEFIT OF * MULTI-TECH SYSTEMS, INC. * * MULTI-TECH SYSTEMS, INC. - CONFIDENTIAL AND PROPRIETARY * INFORMATION AND/OR TRADE SECRET. * * NOTICE: ALL CODE, PROGRAM, INFORMATION, SCRIPT, INSTRUCTION, * DATA, AND COMMENT HEREIN IS AND SHALL REMAIN THE CONFIDENTIAL * INFORMATION AND PROPERTY OF MULTI-TECH SYSTEMS, INC. * USE AND DISCLOSURE THEREOF, EXCEPT AS STRICTLY AUTHORIZED IN A * WRITTEN AGREEMENT SIGNED BY MULTI-TECH SYSTEMS, INC. IS PROHIBITED. * ***********************************************************************/ #include "ChannelPlan_KR920.h" #include "limits.h" using namespace lora; // MWF - changed KR920 to match final 1.0.2 regional spec const uint8_t ChannelPlan_KR920::KR920_TX_POWERS[] = { 14, 12, 10, 8, 6, 4, 2, 0 }; const uint8_t ChannelPlan_KR920::KR920_RADIO_POWERS[] = { 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20 }; const uint8_t ChannelPlan_KR920::KR920_MAX_PAYLOAD_SIZE[] = { 51, 51, 51, 115, 242, 242, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; const uint8_t ChannelPlan_KR920::KR920_MAX_PAYLOAD_SIZE_REPEATER[] = { 51, 51, 51, 115, 222, 222, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; ChannelPlan_KR920::ChannelPlan_KR920() : ChannelPlan(NULL, NULL) { } ChannelPlan_KR920::ChannelPlan_KR920(Settings* settings) : ChannelPlan(NULL, settings) { } ChannelPlan_KR920::ChannelPlan_KR920(SxRadio* radio, Settings* settings) : ChannelPlan(radio, settings) { } ChannelPlan_KR920::~ChannelPlan_KR920() { } void ChannelPlan_KR920::Init() { _datarates.clear(); _channels.clear(); _dutyBands.clear(); DutyBand band; band.Index = 0; band.DutyCycle = 0; Datarate dr; _plan = KR920; _planName = "KR920"; _maxTxPower = 14; _minTxPower = 0; _minFrequency = 920900000; _maxFrequency = 923300000; DefaultLBT(); TX_POWERS = KR920_TX_POWERS; RADIO_POWERS = KR920_RADIO_POWERS; MAX_PAYLOAD_SIZE = KR920_MAX_PAYLOAD_SIZE; MAX_PAYLOAD_SIZE_REPEATER = KR920_MAX_PAYLOAD_SIZE_REPEATER; _minDatarate = 0; _maxDatarate = 5; _minRx2Datarate = DR_0; _maxRx2Datarate = DR_5; _minDatarateOffset = 0; _maxDatarateOffset = 5; _numChans125k = 16; _numChans500k = 0; GetSettings()->Session.Rx2Frequency = 921900000; GetSettings()->Session.Rx2DatarateIndex = DR_0; GetSettings()->Session.BeaconFrequency = KR920_BEACON_FREQ; GetSettings()->Session.BeaconDatarateIndex = KR920_BEACON_DR; GetSettings()->Session.PingSlotFrequency = KR920_BEACON_FREQ; GetSettings()->Session.PingSlotDatarateIndex = KR920_BEACON_DR; logInfo("Initialize datarates..."); dr.SpreadingFactor = SF_12; // Add DR0-5 while (dr.SpreadingFactor >= SF_7) { AddDatarate(-1, dr); dr.SpreadingFactor--; dr.Index++; } // Skip DR6-15 RFU dr.SpreadingFactor = SF_INVALID; while (dr.Index++ <= DR_15) { AddDatarate(-1, dr); } GetSettings()->Session.TxDatarate = 0; logInfo("Initialize channels..."); Channel chan; chan.DrRange.Fields.Min = DR_0; chan.DrRange.Fields.Max = DR_5; chan.Index = 0; chan.Frequency = 922100000; SetNumberOfChannels(16); uint8_t numDefaultChannels = 3; for (uint8_t i = 0; i < numDefaultChannels; i++) { AddChannel(i, chan); chan.Index++; chan.Frequency += 200000; } chan.DrRange.Value = 0; chan.Frequency = 0; for (uint8_t i = numDefaultChannels; i < 16; i++) { AddChannel(i, chan); chan.Index++; } // Add downlink channel defaults chan.Index = 0; _dlChannels.resize(16); for (uint8_t i = 0; i < 16; i++) { AddDownlinkChannel(i, chan); chan.Index++; } SetChannelMask(0, 0x07); band.Index = 0; band.FrequencyMin = _minFrequency; band.FrequencyMax = _maxFrequency; band.PowerMax = 14; band.TimeOffEnd = 0; // Disable duty-cycle limits band.DutyCycle = 0; AddDutyBand(-1, band); GetSettings()->Session.TxPower = GetSettings()->Network.TxPower; } uint8_t ChannelPlan_KR920::AddChannel(int8_t index, Channel channel) { logTrace("Add Channel %d : %lu : %02x %d", index, channel.Frequency, channel.DrRange.Value, _channels.size()); assert(index < (int) _channels.size()); if (index >= 0) { _channels[index] = channel; } else { _channels.push_back(channel); } return LORA_OK; } uint8_t ChannelPlan_KR920::HandleJoinAccept(const uint8_t* buffer, uint8_t size) { if (size == 33) { Channel ch; int index = 3; for (int i = 13; i < size - 5; i += 3) { ch.Frequency = ((buffer[i]) | (buffer[i + 1] << 8) | (buffer[i + 2] << 16)) * 100u; if (ch.Frequency > 0) { ch.Index = index; ch.DrRange.Fields.Min = static_cast<int8_t>(DR_0); ch.DrRange.Fields.Max = static_cast<int8_t>(DR_5); AddChannel(index, ch); if (GetDutyBand(ch.Frequency) > -1) _channelMask[0] |= (1 << index); else _channelMask[0] |= ~(1 << index); index += 1; } } } return LORA_OK; } uint8_t ChannelPlan_KR920::SetTxConfig() { logInfo("Configure radio for TX"); uint8_t band = GetDutyBand(GetChannel(_txChannel).Frequency); Datarate txDr = GetDatarate(GetSettings()->Session.TxDatarate); int8_t max_pwr = _dutyBands[band].PowerMax; if (GetChannel(_txChannel).Frequency < 922100000) { max_pwr = 10; } else { max_pwr = 14; } int8_t pwr = 0; pwr = std::min < int8_t > (GetSettings()->Session.TxPower, max_pwr); pwr -= GetSettings()->Network.AntennaGain; for (int i = 20; i >= 0; i--) { if (RADIO_POWERS[i] <= pwr) { pwr = i; break; } if (i == 0) { pwr = i; } } logDebug("Session pwr: %d ant: %d max: %d", GetSettings()->Session.TxPower, GetSettings()->Network.AntennaGain, max_pwr); logDebug("Radio Power index: %d output: %d total: %d", pwr, RADIO_POWERS[pwr], RADIO_POWERS[pwr] + GetSettings()->Network.AntennaGain); uint32_t bw = txDr.Bandwidth; uint32_t sf = txDr.SpreadingFactor; uint8_t cr = txDr.Coderate; uint8_t pl = txDr.PreambleLength; uint16_t fdev = 0; bool crc = txDr.Crc; bool iq = txDr.TxIQ; if (GetSettings()->Network.DisableCRC == true) crc = false; SxRadio::RadioModems_t modem = SxRadio::MODEM_LORA; if (sf == SF_FSK) { modem = SxRadio::MODEM_FSK; sf = 50e3; fdev = 25e3; bw = 0; } GetRadio()->SetTxConfig(modem, pwr, fdev, bw, sf, cr, pl, false, crc, false, 0, iq, 3e3); logDebug("TX PWR: %u DR: %u SF: %u BW: %u CR: %u PL: %u CRC: %d IQ: %d", pwr, txDr.Index, sf, bw, cr, pl, crc, iq); return LORA_OK; } uint8_t ChannelPlan_KR920::SetRxConfig(uint8_t window, bool continuous, uint16_t wnd_growth) { RxWindow rxw = GetRxWindow(window); if (_dlChannels[_txChannel].Frequency != 0 && window == 1) GetRadio()->SetChannel(_dlChannels[_txChannel].Frequency); else GetRadio()->SetChannel(rxw.Frequency); Datarate rxDr = GetDatarate(rxw.DatarateIndex); uint32_t bw = rxDr.Bandwidth; uint32_t sf = rxDr.SpreadingFactor; uint8_t cr = rxDr.Coderate; uint8_t pl = rxDr.PreambleLength; uint16_t sto = rxDr.SymbolTimeout() * wnd_growth; uint32_t afc = 0; bool fixLen = false; uint8_t payloadLen = 0U; bool crc = false; // downlink does not use CRC according to LORAWAN if (GetSettings()->Network.DisableCRC == true) crc = false; Datarate txDr = GetDatarate(GetSettings()->Session.TxDatarate); bool iq = txDr.RxIQ; if (P2PEnabled()) { iq = txDr.TxIQ; } // Beacon modifications - no I/Q inversion, fixed length rx, preamble if (window == RX_BEACON) { iq = txDr.TxIQ; fixLen = true; payloadLen = sizeof(BCNPayload); pl = BEACON_PREAMBLE_LENGTH; } SxRadio::RadioModems_t modem = SxRadio::MODEM_LORA; if (sf == SF_FSK) { modem = SxRadio::MODEM_FSK; sf = 50e3; cr = 0; bw = 50e3; afc = 83333; iq = false; crc = true; // FSK must use CRC } // Disable printf's to actually receive packets, printing to debug may mess up the timing // logTrace("Configure radio for RX%d on freq: %lu", window, rxw.Frequency); // logTrace("RX SF: %u BW: %u CR: %u PL: %u STO: %u CRC: %d IQ: %d", sf, bw, cr, pl, sto, crc, iq); GetRadio()->SetRxConfig(modem, bw, sf, cr, afc, pl, sto, fixLen, payloadLen, crc, false, 0, iq, continuous); return LORA_OK; } Channel ChannelPlan_KR920::GetChannel(int8_t index) { Channel chan; memset(&chan, 0, sizeof(Channel)); chan = _channels[index]; return chan; } uint8_t ChannelPlan_KR920::SetFrequencySubBand(uint8_t sub_band) { return LORA_OK; } void ChannelPlan_KR920::LogRxWindow(uint8_t wnd) { RxWindow rxw = GetRxWindow(wnd); Datarate rxDr = GetDatarate(rxw.DatarateIndex); uint8_t bw = rxDr.Bandwidth; uint8_t sf = rxDr.SpreadingFactor; uint8_t cr = rxDr.Coderate; uint8_t pl = rxDr.PreambleLength; uint16_t sto = rxDr.SymbolTimeout(); bool crc = false; // downlink does not use CRC according to LORAWAN bool iq = GetTxDatarate().RxIQ; uint32_t freq = rxw.Frequency; if (wnd == 1 && _dlChannels[_txChannel].Frequency != 0) freq = _dlChannels[_txChannel].Frequency; logTrace("RX%d on freq: %lu", wnd, freq); logTrace("RX DR: %u SF: %u BW: %u CR: %u PL: %u STO: %u CRC: %d IQ: %d", rxDr.Index, sf, bw, cr, pl, sto, crc, iq); } RxWindow ChannelPlan_KR920::GetRxWindow(uint8_t window) { RxWindow rxw; int index = 0; if (P2PEnabled()) { rxw.Frequency = GetSettings()->Network.TxFrequency; index = GetSettings()->Session.TxDatarate; } else { switch (window) { case RX_1: // Use same frequency as TX rxw.Frequency = _channels[_txChannel].Frequency; if (GetSettings()->Session.TxDatarate > GetSettings()->Session.Rx1DatarateOffset) { index = GetSettings()->Session.TxDatarate - GetSettings()->Session.Rx1DatarateOffset; } else { index = 0; } break; case RX_BEACON: rxw.Frequency = GetSettings()->Session.BeaconFrequency; index = GetSettings()->Session.BeaconDatarateIndex; break; case RX_SLOT: rxw.Frequency = GetSettings()->Session.PingSlotFrequency; index = GetSettings()->Session.PingSlotDatarateIndex; break; // RX2, RXC, RX_TEST, etc.. default: rxw.Frequency = GetSettings()->Session.Rx2Frequency; index = GetSettings()->Session.Rx2DatarateIndex; } } rxw.DatarateIndex = index; return rxw; } uint8_t ChannelPlan_KR920::HandleRxParamSetup(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { status = 0x07; int8_t datarate = 0; int8_t drOffset = 0; uint32_t freq = 0; drOffset = payload[index++]; datarate = drOffset & 0x0F; drOffset = (drOffset >> 4) & 0x07; freq = payload[index++]; freq |= payload[index++] << 8; freq |= payload[index++] << 16; freq *= 100; if (!CheckRfFrequency(freq)) { logInfo("Freq KO"); status &= 0xFE; // Channel frequency KO } if (datarate < _minRx2Datarate || datarate > _maxRx2Datarate) { logInfo("DR KO"); status &= 0xFD; // Datarate KO } if (drOffset < 0 || drOffset > _maxDatarateOffset) { logInfo("DR Offset KO"); status &= 0xFB; // Rx1DrOffset range KO } if ((status & 0x07) == 0x07) { logInfo("RxParamSetup accepted Rx2DR: %d Rx2Freq: %d Rx1Offset: %d", datarate, freq, drOffset); SetRx2DatarateIndex(datarate); SetRx2Frequency(freq); SetRx1Offset(drOffset); } else { logInfo("RxParamSetup rejected Rx2DR: %d Rx2Freq: %d Rx1Offset: %d", datarate, freq, drOffset); } return LORA_OK; } uint8_t ChannelPlan_KR920::HandleNewChannel(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { status = 0x03; uint8_t channelIndex = 0; Channel chParam; channelIndex = payload[index++]; lora::CopyFreqtoInt(payload + index, chParam.Frequency); index += 3; chParam.DrRange.Value = payload[index++]; if (channelIndex < 3 || channelIndex > _channels.size() - 1) { logError("New Channel index KO"); status &= 0xFE; // Channel index KO } if (chParam.Frequency == 0) { chParam.DrRange.Value = 0; } else if (chParam.Frequency < _minFrequency || chParam.Frequency > _maxFrequency) { logError("New Channel frequency KO"); status &= 0xFE; // Channel frequency KO } if (chParam.DrRange.Fields.Min > chParam.DrRange.Fields.Max && chParam.Frequency != 0) { logError("New Channel datarate min/max KO"); status &= 0xFD; // Datarate range KO } else if ((chParam.DrRange.Fields.Min < _minDatarate || chParam.DrRange.Fields.Min > _maxDatarate) && chParam.Frequency != 0) { logError("New Channel datarate min KO"); status &= 0xFD; // Datarate range KO } else if ((chParam.DrRange.Fields.Max < _minDatarate || chParam.DrRange.Fields.Max > _maxDatarate) && chParam.Frequency != 0) { logError("New Channel datarate max KO"); status &= 0xFD; // Datarate range KO } if ((status & 0x03) == 0x03) { logInfo("New Channel accepted index: %d freq: %lu drRange: %02x", channelIndex, chParam.Frequency, chParam.DrRange.Value); AddChannel(channelIndex, chParam); SetChannelMask(0, _channelMask[0] | 1 << (channelIndex)); } return LORA_OK; } uint8_t ChannelPlan_KR920::HandlePingSlotChannelReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { uint8_t datarate = 0; uint32_t freq = 0; status = 0x03; freq = payload[index++]; freq |= payload[index++] << 8; freq |= payload[index++] << 16; freq *= 100; datarate = payload[index] & 0x0F; if (freq == 0U) { logInfo("Received request to reset ping slot frequency to default"); freq = KR920_BEACON_FREQ; } else if (!CheckRfFrequency(freq)) { logInfo("Freq KO"); status &= 0xFE; // Channel frequency KO } if (datarate < _minRx2Datarate || datarate > _maxRx2Datarate) { logInfo("DR KO"); status &= 0xFD; // Datarate KO } if ((status & 0x03) == 0x03) { logInfo("PingSlotChannelReq accepted DR: %d Freq: %d", datarate, freq); GetSettings()->Session.PingSlotFrequency = freq; GetSettings()->Session.PingSlotDatarateIndex = datarate; } else { logInfo("PingSlotChannelReq rejected DR: %d Freq: %d", datarate, freq); } return LORA_OK; } uint8_t ChannelPlan_KR920::HandleBeaconFrequencyReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { uint32_t freq = 0; status = 0x01; freq = payload[index++]; freq |= payload[index++] << 8; freq |= payload[index] << 16; freq *= 100; if (freq == 0U) { logInfo("Received request to reset beacon frequency to default"); freq = KR920_BEACON_FREQ; } else if (!CheckRfFrequency(freq)) { logInfo("Freq KO"); status &= 0xFE; // Channel frequency KO } if (status & 0x01) { logInfo("BeaconFrequencyReq accepted Freq: %d", freq); GetSettings()->Session.BeaconFrequency = freq; } else { logInfo("BeaconFrequencyReq rejected Freq: %d", freq); } return LORA_OK; } uint8_t ChannelPlan_KR920::HandleAdrCommand(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { uint8_t power = 0; uint8_t datarate = 0; uint16_t mask = 0; uint16_t new_mask = 0; uint8_t ctrl = 0; uint8_t nbRep = 0; status = 0x07; datarate = payload[index++]; power = datarate & 0x0F; datarate = (datarate >> 4) & 0x0F; mask = payload[index++]; mask |= payload[index++] << 8; nbRep = payload[index++]; ctrl = (nbRep >> 4) & 0x07; nbRep &= 0x0F; if (nbRep == 0) { nbRep = 1; } if (datarate > _maxDatarate) { status &= 0xFD; // Datarate KO } // // Remark MaxTxPower = 0 and MinTxPower = 7 // if (power > 7) { status &= 0xFB; // TxPower KO } switch (ctrl) { case 0: SetChannelMask(0, mask); break; case 6: // enable all currently defined channels // set bits 0 - N of a number by (2<<N)-1 new_mask = (1 << _channels.size()) - 1; SetChannelMask(0, new_mask); break; default: logWarning("rejecting RFU or unknown control value %d", ctrl); status &= 0xFE; // ChannelMask KO return LORA_ERROR; } if (GetSettings()->Network.ADREnabled) { GetSettings()->Session.TxDatarate = datarate; GetSettings()->Session.TxPower = TX_POWERS[power]; GetSettings()->Session.Redundancy = nbRep; } else { logDebug("ADR is disabled, DR and Power not changed."); status &= 0xFB; // TxPower KO status &= 0xFD; // Datarate KO } logDebug("ADR DR: %u PWR: %u Ctrl: %02x Mask: %04x NbRep: %u Stat: %02x", datarate, power, ctrl, mask, nbRep, status); return LORA_OK; } uint8_t ChannelPlan_KR920::ValidateAdrConfiguration() { uint8_t status = 0x07; uint8_t datarate = GetSettings()->Session.TxDatarate; uint8_t power = GetSettings()->Session.TxPower; if (!GetSettings()->Network.ADREnabled) { logDebug("ADR disabled - no applied changes to validate"); return status; } if (datarate > _maxDatarate) { logWarning("ADR Datarate KO - outside allowed range"); status &= 0xFD; // Datarate KO } if (power < _minTxPower || power > _maxTxPower) { logWarning("ADR TX Power KO - outside allowed range"); status &= 0xFB; // TxPower KO } // mask must not contain any undefined channels for (int i = 3; i < 16; i++) { if ((_channelMask[0] & (1 << i)) && (_channels[i].Frequency == 0)) { logWarning("ADR Channel Mask KO - cannot enable undefined channel"); status &= 0xFE; // ChannelMask KO break; } } return status; } uint8_t ChannelPlan_KR920::HandleAckTimeout() { if (!GetSettings()->Network.ADREnabled) { return LORA_ADR_OFF; } if ((++(GetSettings()->Session.AckCounter) % 2) == 0) { if (GetSettings()->Session.TxPower < GetSettings()->Network.TxPowerMax) { logTrace("ADR Setting power to maximum"); GetSettings()->Session.TxPower = GetSettings()->Network.TxPowerMax; } else if (GetSettings()->Session.TxDatarate > 0) { logTrace("ADR Lowering datarate"); (GetSettings()->Session.TxDatarate)--; } } return LORA_OK; } uint32_t ChannelPlan_KR920::GetTimeOffAir() { if (GetSettings()->Test.DisableDutyCycle == lora::ON) return 0; uint32_t min = 0; uint32_t now = _dutyCycleTimer.read_ms(); min = UINT_MAX; int8_t band = 0; if (P2PEnabled()) { int8_t band = GetDutyBand(GetSettings()->Network.TxFrequency); if (_dutyBands[band].TimeOffEnd > now) { min = _dutyBands[band].TimeOffEnd - now; } else { min = 0; } } else { for (size_t i = 0; i < _channels.size(); i++) { if (IsChannelEnabled(i) && GetChannel(i).Frequency != 0 && !(GetSettings()->Session.TxDatarate < GetChannel(i).DrRange.Fields.Min || GetSettings()->Session.TxDatarate > GetChannel(i).DrRange.Fields.Max)) { band = GetDutyBand(GetChannel(i).Frequency); if (band != -1) { // logDebug("band: %d time-off: %d now: %d", band, _dutyBands[band].TimeOffEnd, now); if (_dutyBands[band].TimeOffEnd > now) { min = std::min < uint32_t > (min, _dutyBands[band].TimeOffEnd - now); } else { min = 0; break; } } } } } if (GetSettings()->Session.AggregatedTimeOffEnd > 0 && GetSettings()->Session.AggregatedTimeOffEnd > now) { min = std::max < uint32_t > (min, GetSettings()->Session.AggregatedTimeOffEnd - now); } now = time(NULL); uint32_t join_time = 0; if (GetSettings()->Session.JoinFirstAttempt != 0 && now < GetSettings()->Session.JoinTimeOffEnd) { join_time = (GetSettings()->Session.JoinTimeOffEnd - now) * 1000; } min = std::max < uint32_t > (join_time, min); return min; } void ChannelPlan_KR920::UpdateDutyCycle(uint32_t freq, uint32_t time_on_air_ms) { if (GetSettings()->Test.DisableDutyCycle == lora::ON) { _dutyCycleTimer.stop(); for (size_t i = 0; i < _dutyBands.size(); i++) { _dutyBands[i].TimeOffEnd = 0; } return; } _dutyCycleTimer.start(); if (GetSettings()->Session.MaxDutyCycle > 0 && GetSettings()->Session.MaxDutyCycle <= 15) { GetSettings()->Session.AggregatedTimeOffEnd = _dutyCycleTimer.read_ms() + time_on_air_ms * GetSettings()->Session.AggregateDutyCycle; logDebug("Updated Aggregate DCycle Time-off: %lu DC: %f%%", GetSettings()->Session.AggregatedTimeOffEnd, 1 / float(GetSettings()->Session.AggregateDutyCycle)); } else { GetSettings()->Session.AggregatedTimeOffEnd = 0; } uint32_t time_off_air = 0; uint32_t now = _dutyCycleTimer.read_ms(); for (size_t i = 0; i < _dutyBands.size(); i++) { if (_dutyBands[i].TimeOffEnd < now) { _dutyBands[i].TimeOffEnd = 0; } else { _dutyBands[i].TimeOffEnd -= now; } if (freq >= _dutyBands[i].FrequencyMin && freq <= _dutyBands[i].FrequencyMax) { logDebug("update TOE: freq: %d i:%d toa: %d DC:%d", freq, i, time_on_air_ms, _dutyBands[i].DutyCycle); if (freq > _minFrequency && freq < _maxFrequency && (GetSettings()->Session.TxPower + GetSettings()->Network.AntennaGain) <= 7) { _dutyBands[i].TimeOffEnd = 0; } else { time_off_air = time_on_air_ms * _dutyBands[i].DutyCycle; _dutyBands[i].TimeOffEnd = time_off_air; } } } ResetDutyCycleTimer(); } std::vector<uint32_t> lora::ChannelPlan_KR920::GetChannels() { std::vector < uint32_t > chans; for (int8_t i = 0; i < (int) _channels.size(); i++) { chans.push_back(_channels[i].Frequency); } chans.push_back(GetRxWindow(2).Frequency); return chans; } std::vector<uint8_t> lora::ChannelPlan_KR920::GetChannelRanges() { std::vector < uint8_t > ranges; for (int8_t i = 0; i < (int) _channels.size(); i++) { ranges.push_back(_channels[i].DrRange.Value); } ranges.push_back(GetRxWindow(2).DatarateIndex); return ranges; } void lora::ChannelPlan_KR920::EnableDefaultChannels() { _channelMask[0] |= 0x0003; } uint8_t ChannelPlan_KR920::GetNextChannel() { if (GetSettings()->Session.AggregatedTimeOffEnd != 0) { return LORA_AGGREGATED_DUTY_CYCLE; } if (P2PEnabled() || GetSettings()->Network.TxFrequency != 0) { logDebug("Using frequency %d", GetSettings()->Network.TxFrequency); if (GetSettings()->Test.DisableDutyCycle != lora::ON) { int8_t band = GetDutyBand(GetSettings()->Network.TxFrequency); logDebug("band: %d freq: %d", band, GetSettings()->Network.TxFrequency); if (band != -1 && _dutyBands[band].TimeOffEnd != 0) { return LORA_NO_CHANS_ENABLED; } } GetRadio()->SetChannel(GetSettings()->Network.TxFrequency); return LORA_OK; } uint8_t start = 0; uint8_t maxChannels = _numChans125k; uint8_t nbEnabledChannels = 0; uint8_t *enabledChannels = new uint8_t[maxChannels]; if (GetTxDatarate().Bandwidth == BW_500) { maxChannels = _numChans500k; start = _numChans125k; } // Search how many channels are enabled DatarateRange range; uint8_t dr_index = GetSettings()->Session.TxDatarate; uint32_t now = _dutyCycleTimer.read_ms(); for (size_t i = 0; i < _dutyBands.size(); i++) { if (_dutyBands[i].TimeOffEnd < now || GetSettings()->Test.DisableDutyCycle == lora::ON) { _dutyBands[i].TimeOffEnd = 0; } } for (uint8_t i = start; i < start + maxChannels; i++) { range = GetChannel(i).DrRange; // logDebug("chan: %d freq: %d range:%02x", i, GetChannel(i).Frequency, range.Value); if (IsChannelEnabled(i) && (dr_index >= range.Fields.Min && dr_index <= range.Fields.Max)) { int8_t band = GetDutyBand(GetChannel(i).Frequency); // logDebug("band: %d freq: %d", band, _channels[i].Frequency); if (band != -1 && _dutyBands[band].TimeOffEnd == 0) { enabledChannels[nbEnabledChannels++] = i; } } } logTrace("Number of available channels: %d", nbEnabledChannels); uint32_t freq = 0; uint8_t sf = GetTxDatarate().SpreadingFactor; uint8_t bw = GetTxDatarate().Bandwidth; int16_t thres = DEFAULT_FREE_CHAN_RSSI_THRESHOLD; if (nbEnabledChannels == 0) { delete [] enabledChannels; return LORA_NO_CHANS_ENABLED; } if (GetSettings()->Network.CADEnabled) { // Search for free channel with ms timeout int16_t timeout = 10000; Timer tmr; tmr.start(); for (uint8_t j = rand_r(0, nbEnabledChannels - 1); tmr.read_ms() < timeout; j++) { freq = GetChannel(enabledChannels[j]).Frequency; if (GetRadio()->IsChannelFree(SxRadio::MODEM_LORA, freq, sf, thres, bw)) { _txChannel = enabledChannels[j]; break; } } } else { uint8_t j = rand_r(0, nbEnabledChannels - 1); _txChannel = enabledChannels[j]; freq = GetChannel(_txChannel).Frequency; } assert(freq != 0); logDebug("Using channel %d : %d", _txChannel, freq); GetRadio()->SetChannel(freq); delete [] enabledChannels; return LORA_OK; } uint8_t lora::ChannelPlan_KR920::GetJoinDatarate() { uint8_t dr = GetSettings()->Session.TxDatarate; static uint8_t cnt = 0; if (GetSettings()->Test.DisableRandomJoinDatarate == lora::OFF) { if ((cnt++ % 20) == 0) { dr = lora::DR_0; } else if ((cnt % 16) == 0) { dr = lora::DR_1; } else if ((cnt % 12) == 0) { dr = lora::DR_2; } else if ((cnt % 8) == 0) { dr = lora::DR_3; } else if ((cnt % 4) == 0) { dr = lora::DR_4; } else { dr = lora::DR_5; } } return dr; } uint8_t ChannelPlan_KR920::CalculateJoinBackoff(uint8_t size) { time_t now = time(NULL); uint32_t time_on_max = 0; static uint32_t time_off_max = 15; uint32_t rand_time_off = 0; // TODO: calc time-off-max based on RTC time from JoinFirstAttempt, time-off-max is lost over sleep if ((time_t)GetSettings()->Session.JoinTimeOffEnd > now) { return LORA_JOIN_BACKOFF; } uint32_t secs_since_first_attempt = (now - GetSettings()->Session.JoinFirstAttempt); uint16_t hours_since_first_attempt = secs_since_first_attempt / (60 * 60); static uint8_t join_cnt = 0; join_cnt = (join_cnt+1) % 8; if (GetSettings()->Session.JoinFirstAttempt == 0) { /* 1 % duty-cycle for first hour * 0.1 % next 10 hours * 0.01 % upto 24 hours */ GetSettings()->Session.JoinFirstAttempt = now; GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + (GetTimeOnAir(size) / 10); } else if (join_cnt == 0) { if (hours_since_first_attempt < 1) { time_on_max = 36000; rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); // time off max 1 hour time_off_max = std::min < uint32_t > (time_off_max * 2, 60 * 60); if (GetSettings()->Session.JoinTimeOnAir < time_on_max) { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); GetSettings()->Session.JoinTimeOffEnd = GetSettings()->Session.JoinFirstAttempt + 60 * 60; } } else if (hours_since_first_attempt < 11) { if (GetSettings()->Session.JoinTimeOnAir < 36000) { GetSettings()->Session.JoinTimeOnAir = 36000; } time_on_max = 72000; rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); // time off max 1 hour time_off_max = std::min < uint32_t > (time_off_max * 2, 60 * 60); if (GetSettings()->Session.JoinTimeOnAir < time_on_max) { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); GetSettings()->Session.JoinTimeOffEnd = GetSettings()->Session.JoinFirstAttempt + 11 * 60 * 60; } } else { if (GetSettings()->Session.JoinTimeOnAir < 72000) { GetSettings()->Session.JoinTimeOnAir = 72000; } uint32_t join_time = 2500; time_on_max = 80700; time_off_max = 1 * 60 * 60; // 1 hour rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); if (GetSettings()->Session.JoinTimeOnAir < time_on_max - join_time) { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); // Reset the join time on air and set end of restriction to the next 24 hour period GetSettings()->Session.JoinTimeOnAir = 72000; uint16_t days = (now - GetSettings()->Session.JoinFirstAttempt) / (24 * 60 * 60) + 1; logWarning("days : %d", days); GetSettings()->Session.JoinTimeOffEnd = GetSettings()->Session.JoinFirstAttempt + ((days * 24) + 11) * 60 * 60; } } logWarning("JoinBackoff: %lu seconds Time On Air: %lu / %lu", GetSettings()->Session.JoinTimeOffEnd - now, GetSettings()->Session.JoinTimeOnAir, time_on_max); } else { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + (GetTimeOnAir(size) / 10); } return LORA_OK; } uint8_t ChannelPlan_KR920::HandleMacCommand(uint8_t* payload, uint8_t& index) { return LORA_ERROR; } void ChannelPlan_KR920::DefaultLBT() { _LBT_TimeUs = 5000; _LBT_Threshold = -65; } bool ChannelPlan_KR920::DecodeBeacon(const uint8_t* payload, size_t size, BeaconData_t& data) { uint16_t crc1, crc1_rx, crc2, crc2_rx; const BCNPayload* beacon = (const BCNPayload*)payload; // First check the size of the packet if (size != sizeof(BCNPayload)) return false; // Next we verify the CRCs are correct crc1 = CRC16(beacon->RFU, sizeof(beacon->RFU) + sizeof(beacon->Time)); memcpy((uint8_t*)&crc1_rx, beacon->CRC1, sizeof(uint16_t)); if (crc1 != crc1_rx) return false; crc2 = CRC16(beacon->GwSpecific, sizeof(beacon->GwSpecific)); memcpy((uint8_t*)&crc2_rx, beacon->CRC2, sizeof(uint16_t)); if (crc2 != crc2_rx) return false; // Now that we have confirmed this packet is a beacon, parse and complete the output struct memcpy(&data.Time, beacon->Time, sizeof(beacon->Time)); data.InfoDesc = beacon->GwSpecific[0]; // Update the GPS fields if we have a gps info descriptor if (data.InfoDesc == GPS_FIRST_ANTENNA || data.InfoDesc == GPS_SECOND_ANTENNA || data.InfoDesc == GPS_THIRD_ANTENNA) { // Latitude and Longitude 3 bytes in length memcpy(&data.Latitude, &beacon->GwSpecific[1], 3); memcpy(&data.Longitude, &beacon->GwSpecific[4], 3); } return true; }