khang_91
plans/ChannelPlan_AU915.cpp
- Committer:
- Jenkins@KEILDM1.dc.multitech.prv
- Date:
- 2018-08-30
- Revision:
- 172:7ec44396a51b
- Parent:
- 157:8e9b1e84ffac
- Child:
- 178:8f7d93f3bbb5
File content as of revision 172:7ec44396a51b:
/********************************************************************** * COPYRIGHT 2016 MULTI-TECH SYSTEMS, INC. * * ALL RIGHTS RESERVED BY AND FOR THE EXCLUSIVE BENEFIT OF * MULTI-TECH SYSTEMS, INC. * * MULTI-TECH SYSTEMS, INC. - CONFIDENTIAL AND PROPRIETARY * INFORMATION AND/OR TRADE SECRET. * * NOTICE: ALL CODE, PROGRAM, INFORMATION, SCRIPT, INSTRUCTION, * DATA, AND COMMENT HEREIN IS AND SHALL REMAIN THE CONFIDENTIAL * INFORMATION AND PROPERTY OF MULTI-TECH SYSTEMS, INC. * USE AND DISCLOSURE THEREOF, EXCEPT AS STRICTLY AUTHORIZED IN A * WRITTEN AGREEMENT SIGNED BY MULTI-TECH SYSTEMS, INC. IS PROHIBITED. * ***********************************************************************/ #include "ChannelPlan_AU915.h" #include "limits.h" using namespace lora; const uint8_t ChannelPlan_AU915::AU915_TX_POWERS[] = { 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10 }; const uint8_t ChannelPlan_AU915::AU915_RADIO_POWERS[] = { 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 19 }; const uint8_t ChannelPlan_AU915::AU915_MAX_PAYLOAD_SIZE[] = { 51, 51, 51, 115, 242, 242, 242, 0, 53, 129, 242, 242, 242, 242, 0, 0 }; const uint8_t ChannelPlan_AU915::AU915_MAX_PAYLOAD_SIZE_REPEATER[] = { 51, 51, 51, 115, 222, 222, 222, 0, 33, 109, 222, 222, 222, 222, 0, 0 }; ChannelPlan_AU915::ChannelPlan_AU915() : ChannelPlan(NULL, NULL) , _bcnFreqHop(true) , _pingFreqHop(true) { } ChannelPlan_AU915::ChannelPlan_AU915(Settings* settings) : ChannelPlan(NULL, settings) , _bcnFreqHop(true) , _pingFreqHop(true) { } ChannelPlan_AU915::ChannelPlan_AU915(SxRadio* radio, Settings* settings) : ChannelPlan(radio, settings) , _bcnFreqHop(true) , _pingFreqHop(true) { } ChannelPlan_AU915::~ChannelPlan_AU915() { } void ChannelPlan_AU915::Init() { _plan = AU915; _planName = "AU915"; _datarates.clear(); _channels.clear(); _dutyBands.clear(); DutyBand band; band.Index = 0; band.DutyCycle = 0; Datarate dr; _maxTxPower = 30; _minTxPower = 0; _minFrequency = AU915_FREQ_MIN; _maxFrequency = AU915_FREQ_MAX; TX_POWERS = AU915_TX_POWERS; RADIO_POWERS = AU915_RADIO_POWERS; MAX_PAYLOAD_SIZE = AU915_MAX_PAYLOAD_SIZE; MAX_PAYLOAD_SIZE_REPEATER = AU915_MAX_PAYLOAD_SIZE_REPEATER; band.FrequencyMin = AU915_FREQ_MIN; band.FrequencyMax = AU915_FREQ_MAX; _freqUBase125k = AU915_125K_FREQ_BASE; _freqUStep125k = AU915_125K_FREQ_STEP; _freqUBase500k = AU915_500K_FREQ_BASE; _freqUStep500k = AU915_500K_FREQ_STEP; _freqDBase500k = AU915_500K_DBASE; _freqDStep500k = AU915_500K_DSTEP; GetSettings()->Session.Rx2Frequency = AU915_500K_DBASE; GetSettings()->Session.BeaconFrequency = AU915_BEACON_FREQ_BASE; GetSettings()->Session.BeaconDatarateIndex = AU915_BEACON_DR; GetSettings()->Session.PingSlotFrequency = AU915_BEACON_FREQ_BASE; GetSettings()->Session.PingSlotDatarateIndex = AU915_BEACON_DR; _minDatarate = AU915_MIN_DATARATE; _maxDatarate = AU915_MAX_DATARATE; _minRx2Datarate = DR_8; _maxRx2Datarate = DR_13; _minDatarateOffset = AU915_MIN_DATARATE_OFFSET; _maxDatarateOffset = AU915_MAX_DATARATE_OFFSET; _numChans125k = AU915_125K_NUM_CHANS; _numChans500k = AU915_500K_NUM_CHANS; logInfo("Initialize channels..."); SetNumberOfChannels(AU915_125K_NUM_CHANS + AU915_500K_NUM_CHANS, false); dr.SpreadingFactor = SF_12; logInfo("Initialize datarates..."); // Add DR0-5 while (dr.SpreadingFactor >= SF_7) { AddDatarate(-1, dr); dr.SpreadingFactor--; dr.Index++; } // Add DR6 dr.SpreadingFactor = SF_8; dr.Bandwidth = BW_500; AddDatarate(-1, dr); dr.Index++; // Skip DR7 RFU dr.SpreadingFactor = SF_INVALID; AddDatarate(-1, dr), dr.Index++; if (GetSettings()->Network.FrequencySubBand == 0) { band.PowerMax = 30; } else { band.PowerMax = 21; } band.TimeOffEnd = 0; AddDutyBand(-1, band); GetSettings()->Session.Rx2DatarateIndex = DR_8; // Add DR8-13 dr.SpreadingFactor = SF_12; while (dr.SpreadingFactor >= SF_7) { AddDatarate(-1, dr); dr.SpreadingFactor--; dr.Index++; } // Skip DR14-15 RFU dr.SpreadingFactor = SF_INVALID; AddDatarate(-1, dr), AddDatarate(-1, dr); GetSettings()->Session.TxDatarate = DR_0; GetSettings()->Session.TxPower = GetSettings()->Network.TxPower; SetFrequencySubBand(GetSettings()->Network.FrequencySubBand); } uint8_t ChannelPlan_AU915::HandleJoinAccept(const uint8_t* buffer, uint8_t size) { if (size > 17) { // TODO: Handle future channel mask settings } return LORA_OK; } void ChannelPlan_AU915::SetNumberOfChannels(uint8_t channels, bool resize) { uint8_t newsize = ((channels - 1) / CHAN_MASK_SIZE) + 1; if (resize) { _channels.resize(channels); } _channelMask.resize(newsize, 0x0); _numChans = channels; } uint8_t ChannelPlan_AU915::GetMinDatarate() { if (GetSettings()->Network.Mode == lora::PEER_TO_PEER) return 8; else return _minDatarate; } uint8_t ChannelPlan_AU915::GetMaxDatarate() { if (GetSettings()->Network.Mode == lora::PEER_TO_PEER) return 13; else return _maxDatarate; } bool ChannelPlan_AU915::IsChannelEnabled(uint8_t channel) { uint8_t index = channel / CHAN_MASK_SIZE; uint8_t shift = channel % CHAN_MASK_SIZE; assert(index < _channelMask.size() * CHAN_MASK_SIZE); // cannot shift over 32 bits assert(shift < 32); // logDebug("index: %d shift %d cm: %04x bit: %04x enabled: %d", index, shift, _channelMask[index], (1 << shift), (_channelMask[index] & (1 << shift)) == (1 << shift)); return (_channelMask[index] & (1 << shift)) == (1 << shift); } uint8_t ChannelPlan_AU915::SetRx1Offset(uint8_t offset) { GetSettings()->Session.Rx1DatarateOffset = offset; return LORA_OK; } uint8_t ChannelPlan_AU915::SetRx2Frequency(uint32_t freq) { GetSettings()->Session.Rx2Frequency = freq; return LORA_OK; } uint8_t ChannelPlan_AU915::SetRx2DatarateIndex(uint8_t index) { GetSettings()->Session.Rx2DatarateIndex = index; return LORA_OK; } uint8_t ChannelPlan_AU915::SetTxConfig() { logInfo("Configure radio for TX"); uint8_t band = GetDutyBand(GetChannel(_txChannel).Frequency); Datarate txDr = GetDatarate(GetSettings()->Session.TxDatarate); int8_t max_pwr = _dutyBands[band].PowerMax; int8_t pwr = 0; pwr = std::min < int8_t > (GetSettings()->Session.TxPower, max_pwr); if (pwr + GetSettings()->Network.AntennaGain >= max_pwr + 6 && GetSettings()->Network.AntennaGain > 6) { pwr -= (GetSettings()->Network.AntennaGain - 6); } for (int i = 20; i >= 0; i--) { if (RADIO_POWERS[i] <= pwr) { pwr = i; break; } if (i == 0) { pwr = i; } } logDebug("Session pwr: %d ant: %d max: %d", GetSettings()->Session.TxPower, GetSettings()->Network.AntennaGain, max_pwr); logDebug("Radio Power index: %d output: %d total: %d", pwr, RADIO_POWERS[pwr], RADIO_POWERS[pwr] + GetSettings()->Network.AntennaGain); uint32_t bw = txDr.Bandwidth; uint32_t sf = txDr.SpreadingFactor; uint8_t cr = txDr.Coderate; uint8_t pl = txDr.PreambleLength; uint16_t fdev = 0; bool crc = txDr.Crc; bool iq = txDr.TxIQ; if (GetSettings()->Network.DisableCRC == true) crc = false; SxRadio::RadioModems_t modem = SxRadio::MODEM_LORA; if (sf == SF_FSK) { modem = SxRadio::MODEM_FSK; sf = 50e3; fdev = 25e3; bw = 0; } GetRadio()->SetTxConfig(modem, pwr, fdev, bw, sf, cr, pl, false, crc, false, 0, iq, 3e3); logDebug("TX PWR: %u DR: %u SF: %u BW: %u CR: %u PL: %u CRC: %d IQ: %d", pwr, txDr.Index, sf, bw, cr, pl, crc, iq); return LORA_OK; } uint8_t ChannelPlan_AU915::SetRxConfig(uint8_t window, bool continuous, uint16_t wnd_growth) { RxWindow rxw = GetRxWindow(window); GetRadio()->SetChannel(rxw.Frequency); Datarate rxDr = GetDatarate(rxw.DatarateIndex); uint32_t bw = rxDr.Bandwidth; uint32_t sf = rxDr.SpreadingFactor; uint8_t cr = rxDr.Coderate; uint8_t pl = rxDr.PreambleLength; uint16_t sto = rxDr.SymbolTimeout() * wnd_growth; uint32_t afc = 0; bool fixLen = false; uint8_t payloadLen = 0U; bool crc = false; // downlink does not use CRC according to LORAWAN if (GetSettings()->Network.DisableCRC == true) crc = false; Datarate txDr = GetDatarate(GetSettings()->Session.TxDatarate); bool iq = txDr.RxIQ; if (P2PEnabled()) { iq = txDr.TxIQ; } // Beacon modifications - no I/Q inversion, fixed length rx, preamble if (window == RX_BEACON) { iq = txDr.TxIQ; fixLen = true; payloadLen = sizeof(BCNPayload); pl = BEACON_PREAMBLE_LENGTH; } SxRadio::RadioModems_t modem = SxRadio::MODEM_LORA; if (sf == SF_FSK) { modem = SxRadio::MODEM_FSK; sf = 50e3; cr = 0; bw = 50e3; afc = 83333; iq = false; crc = true; // FSK must use CRC } // Disable printf's to actually receive packets, printing to debug may mess up the timing // logTrace("Configure radio for RX%d on freq: %lu", window, rxw.Frequency); // logTrace("RX SF: %u BW: %u CR: %u PL: %u STO: %u CRC: %d IQ: %d", sf, bw, cr, pl, sto, crc, iq); GetRadio()->SetRxConfig(modem, bw, sf, cr, afc, pl, sto, fixLen, payloadLen, crc, false, 0, iq, continuous); return LORA_OK; } uint8_t ChannelPlan_AU915::AddChannel(int8_t index, Channel channel) { logTrace("Add Channel %d : %lu : %02x %d", index, channel.Frequency, channel.DrRange.Value, _channels.size()); assert(index < (int) _channels.size()); if (index >= 0) { _channels[index] = channel; } else { _channels.push_back(channel); } return LORA_OK; } Channel ChannelPlan_AU915::GetChannel(int8_t index) { Channel chan; memset(&chan, 0, sizeof(Channel)); if (_channels.size() > 0) { chan = _channels[index]; } else { if (index < 64) { chan.Index = index; chan.DrRange.Fields.Min = _minDatarate; chan.DrRange.Fields.Max = _maxDatarate - 1; chan.Frequency = _freqUBase125k + (_freqUStep125k * index); } else if (index < 72) { chan.Index = index; chan.DrRange.Fields.Min = _maxDatarate; chan.DrRange.Fields.Max = _maxDatarate; chan.Frequency = _freqUBase500k + (_freqUStep500k * (index - 64)); } } return chan; } uint8_t ChannelPlan_AU915::SetFrequencySubBand(uint8_t sub_band) { _txFrequencySubBand = sub_band; if (sub_band > 0) { SetChannelMask(0, 0x0000); SetChannelMask(1, 0x0000); SetChannelMask(2, 0x0000); SetChannelMask(3, 0x0000); SetChannelMask(4, 0x0000); SetChannelMask((sub_band - 1) / 2, (sub_band % 2) ? 0x00FF : 0xFF00); SetChannelMask(4, 1 << (sub_band - 1)); } else { SetChannelMask(0, 0xFFFF); SetChannelMask(1, 0xFFFF); SetChannelMask(2, 0xFFFF); SetChannelMask(3, 0xFFFF); SetChannelMask(4, 0x00FF); } return LORA_OK; } void ChannelPlan_AU915::LogRxWindow(uint8_t wnd) { RxWindow rxw = GetRxWindow(wnd); Datarate rxDr = GetDatarate(rxw.DatarateIndex); uint8_t bw = rxDr.Bandwidth; uint8_t sf = rxDr.SpreadingFactor; uint8_t cr = rxDr.Coderate; uint8_t pl = rxDr.PreambleLength; uint16_t sto = rxDr.SymbolTimeout(); bool crc = false; // downlink does not use CRC according to LORAWAN bool iq = GetTxDatarate().RxIQ; logTrace("RX%d on freq: %lu", wnd, rxw.Frequency); logTrace("RX DR: %u SF: %u BW: %u CR: %u PL: %u STO: %u CRC: %d IQ: %d", rxDr.Index, sf, bw, cr, pl, sto, crc, iq); } RxWindow ChannelPlan_AU915::GetRxWindow(uint8_t window) { RxWindow rxw; int index = 0; if (P2PEnabled()) { rxw.Frequency = GetSettings()->Network.TxFrequency; index = GetSettings()->Session.TxDatarate; } else { switch (window) { case RX_1: if (_txChannel < _numChans125k) { if (GetSettings()->Network.Mode == lora::PRIVATE_MTS) rxw.Frequency = _freqDBase500k + (_txChannel / 8) * _freqDStep500k; else rxw.Frequency = _freqDBase500k + (_txChannel % 8) * _freqDStep500k; } else rxw.Frequency = _freqDBase500k + (_txChannel - _numChans125k) * _freqDStep500k; if (GetSettings()->Session.TxDatarate <= DR_6) { index = GetSettings()->Session.TxDatarate + 8 - GetSettings()->Session.Rx1DatarateOffset; if (index < DR_8) index = DR_8; if (index > DR_13) index = DR_13; } else if (GetSettings()->Session.TxDatarate >= DR_8) { index = GetSettings()->Session.TxDatarate - GetSettings()->Session.Rx1DatarateOffset; if (index < DR_8) index = DR_8; } break; case RX_BEACON: rxw.Frequency = GetSettings()->Session.BeaconFrequency; index = GetSettings()->Session.BeaconDatarateIndex; break; case RX_SLOT: rxw.Frequency = GetSettings()->Session.PingSlotFrequency; index = GetSettings()->Session.PingSlotDatarateIndex; break; // RX2, RXC, RX_TEST, etc.. default: if (GetSettings()->Network.Mode == lora::PRIVATE_MTS) { if (_txChannel < _numChans125k) { rxw.Frequency = _freqDBase500k + (_txChannel / 8) * _freqDStep500k; } else { rxw.Frequency = _freqDBase500k + (_txChannel % 8) * _freqDStep500k; } } else { rxw.Frequency = GetSettings()->Session.Rx2Frequency; } index = GetSettings()->Session.Rx2DatarateIndex; } } rxw.DatarateIndex = index; return rxw; } uint8_t ChannelPlan_AU915::HandleRxParamSetup(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { status = 0x07; int8_t datarate = 0; int8_t drOffset = 0; uint32_t freq = 0; drOffset = payload[index++]; datarate = drOffset & 0x0F; drOffset = (drOffset >> 4) & 0x07; freq = payload[index++]; freq |= payload[index++] << 8; freq |= payload[index++] << 16; freq *= 100; if (!CheckRfFrequency(freq)) { logInfo("Freq KO"); status &= 0xFE; // Channel frequency KO } if (datarate < _minRx2Datarate || datarate > _maxRx2Datarate) { logInfo("DR KO"); status &= 0xFD; // Datarate KO } if (drOffset < 0 || drOffset > _maxDatarateOffset) { logInfo("DR Offset KO"); status &= 0xFB; // Rx1DrOffset range KO } if ((status & 0x07) == 0x07) { logInfo("RxParamSetup accepted Rx2DR: %d Rx2Freq: %d Rx1Offset: %d", datarate, freq, drOffset); SetRx2DatarateIndex(datarate); SetRx2Frequency(freq); SetRx1Offset(drOffset); } else { logInfo("RxParamSetup rejected Rx2DR: %d Rx2Freq: %d Rx1Offset: %d", datarate, freq, drOffset); } return LORA_OK; } uint8_t ChannelPlan_AU915::HandleNewChannel(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { // Not Supported in AU915 status = 0; return LORA_OK; } uint8_t ChannelPlan_AU915::HandleDownlinkChannelReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { // Not Supported in AU915 status = 0; return LORA_OK; } uint8_t ChannelPlan_AU915::HandlePingSlotChannelReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { uint8_t datarate = 0; uint32_t freq = 0; bool freqHop = false; status = 0x03; freq = payload[index++]; freq |= payload[index++] << 8; freq |= payload[index++] << 16; freq *= 100; datarate = payload[index] & 0x0F; if (freq == 0U) { logInfo("Received request to reset ping slot frequency to default"); freq = AU915_BEACON_FREQ_BASE; freqHop = true; } else if (!CheckRfFrequency(freq)) { logInfo("Freq KO"); status &= 0xFE; // Channel frequency KO } if (datarate < _minRx2Datarate || datarate > _maxRx2Datarate) { logInfo("DR KO"); status &= 0xFD; // Datarate KO } if ((status & 0x03) == 0x03) { logInfo("PingSlotChannelReq accepted DR: %d Freq: %d", datarate, freq); GetSettings()->Session.PingSlotFrequency = freq; GetSettings()->Session.PingSlotDatarateIndex = datarate; _pingFreqHop = freqHop; } else { logInfo("PingSlotChannelReq rejected DR: %d Freq: %d", datarate, freq); } return LORA_OK; } uint8_t ChannelPlan_AU915::HandleBeaconFrequencyReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { uint32_t freq = 0; bool freqHop = false; status = 0x01; freq = payload[index++]; freq |= payload[index++] << 8; freq |= payload[index] << 16; freq *= 100; if (freq == 0U) { logInfo("Received request to reset beacon frequency to default"); freq = AU915_BEACON_FREQ_BASE; freqHop = true; } else if (!CheckRfFrequency(freq)) { logInfo("Freq KO"); status &= 0xFE; // Channel frequency KO } if (status & 0x01) { logInfo("BeaconFrequencyReq accepted Freq: %d", freq); GetSettings()->Session.BeaconFrequency = freq; _bcnFreqHop = freqHop; } else { logInfo("BeaconFrequencyReq rejected Freq: %d", freq); } return LORA_OK; } uint8_t ChannelPlan_AU915::HandleAdrCommand(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { uint8_t power = 0; uint8_t datarate = 0; uint16_t mask = 0; uint8_t ctrl = 0; uint8_t nbRep = 0; status = 0x07; datarate = payload[index++]; power = datarate & 0x0F; datarate = (datarate >> 4) & 0x0F; mask = payload[index++]; mask |= payload[index++] << 8; nbRep = payload[index++]; ctrl = (nbRep >> 4) & 0x07; nbRep &= 0x0F; if (nbRep == 0) { nbRep = 1; } if (datarate > _maxDatarate) { status &= 0xFD; // Datarate KO } // // Remark MaxTxPower = 0 and MinTxPower = 10 // if (power > 10) { status &= 0xFB; // TxPower KO } switch (ctrl) { case 0: case 1: case 2: case 3: case 4: SetChannelMask(ctrl, mask); break; case 6: // enable all 125 kHz channels SetChannelMask(0, 0xFFFF); SetChannelMask(1, 0xFFFF); SetChannelMask(2, 0xFFFF); SetChannelMask(3, 0xFFFF); SetChannelMask(4, mask); break; case 7: // disable all 125 kHz channels SetChannelMask(0, 0x0); SetChannelMask(1, 0x0); SetChannelMask(2, 0x0); SetChannelMask(3, 0x0); SetChannelMask(4, mask); break; default: logWarning("rejecting RFU or unknown control value %d", ctrl); status &= 0xFE; // ChannelMask KO return LORA_ERROR; } if (GetSettings()->Network.ADREnabled) { GetSettings()->Session.TxDatarate = datarate; GetSettings()->Session.TxPower = TX_POWERS[power]; GetSettings()->Session.Redundancy = nbRep; } else { logDebug("ADR is disabled, DR and Power not changed."); status &= 0xFB; // TxPower KO status &= 0xFD; // Datarate KO } logDebug("ADR DR: %u PWR: %u Ctrl: %02x Mask: %04x NbRep: %u Stat: %02x", datarate, power, ctrl, mask, nbRep, status); return LORA_OK; } uint8_t ChannelPlan_AU915::ValidateAdrConfiguration() { uint8_t status = 0x07; uint8_t chans_enabled = 0; uint8_t datarate = GetSettings()->Session.TxDatarate; uint8_t power = GetSettings()->Session.TxPower; if (!GetSettings()->Network.ADREnabled) { logDebug("ADR disabled - no applied changes to validate"); return status; } if (datarate > _maxDatarate) { logWarning("ADR Datarate KO - outside allowed range"); status &= 0xFD; // Datarate KO } if (power < _minTxPower || power > _maxTxPower) { logWarning("ADR TX Power KO - outside allowed range"); status &= 0xFB; // TxPower KO } // at least 2 125kHz channels must be enabled chans_enabled += CountBits(_channelMask[0]); chans_enabled += CountBits(_channelMask[1]); chans_enabled += CountBits(_channelMask[2]); chans_enabled += CountBits(_channelMask[3]); // Semtech reference (LoRaMac-node) enforces at least 2 channels if (chans_enabled < 2) { logWarning("ADR Channel Mask KO - at least 2 125kHz channels must be enabled"); status &= 0xFE; // ChannelMask KO } // if TXDR == 4 (SF8@500kHz) at least 1 500kHz channel must be enabled if (datarate == DR_4 && (CountBits(_channelMask[4] & 0xFF) == 0)) { logWarning("ADR Datarate KO - DR4 requires at least 1 500kHz channel enabled"); status &= 0xFD; // Datarate KO } return status; } uint32_t ChannelPlan_AU915::GetTimeOffAir() { if (GetSettings()->Test.DisableDutyCycle == lora::ON) return 0; uint32_t min = 0; uint32_t now = _dutyCycleTimer.read_ms(); if (GetSettings()->Session.AggregatedTimeOffEnd > 0 && GetSettings()->Session.AggregatedTimeOffEnd > now) { min = std::max < uint32_t > (min, GetSettings()->Session.AggregatedTimeOffEnd - now); } now = time(NULL); uint32_t join_time = 0; if (GetSettings()->Session.JoinFirstAttempt != 0 && now < GetSettings()->Session.JoinTimeOffEnd) { join_time = (GetSettings()->Session.JoinTimeOffEnd - now) * 1000; } min = std::max < uint32_t > (join_time, min); return min; } std::vector<uint32_t> lora::ChannelPlan_AU915::GetChannels() { std::vector < uint32_t > chans; if (GetSettings()->Network.FrequencySubBand > 0) { uint8_t chans_per_group = 8; size_t start = (GetSettings()->Network.FrequencySubBand - 1) * chans_per_group; for (int8_t i = start; i < int8_t(start + chans_per_group); i++) { chans.push_back(GetChannel(i).Frequency); } chans.push_back(GetChannel(_numChans125k + (GetSettings()->Network.FrequencySubBand - 1)).Frequency); chans.push_back(GetRxWindow(2).Frequency); } else { for (int8_t i = 0; i < _numChans; i++) { chans.push_back(GetChannel(i).Frequency); } chans.push_back(GetRxWindow(2).Frequency); } return chans; } std::vector<uint8_t> lora::ChannelPlan_AU915::GetChannelRanges() { std::vector < uint8_t > ranges; if (GetSettings()->Network.FrequencySubBand > 0) { uint8_t chans_per_group = 8; size_t start = (GetSettings()->Network.FrequencySubBand - 1) * chans_per_group; for (int8_t i = start; i < int8_t(start + chans_per_group); i++) { ranges.push_back(GetChannel(i).DrRange.Value); } ranges.push_back(GetChannel(_numChans125k + (GetSettings()->Network.FrequencySubBand - 1)).DrRange.Value); ranges.push_back(GetRxWindow(2).DatarateIndex); } else { for (int8_t i = 0; i < _numChans; i++) { ranges.push_back(GetChannel(i).DrRange.Value); } ranges.push_back(GetRxWindow(2).DatarateIndex); } ranges.push_back(GetRxWindow(2).DatarateIndex); return ranges; } void lora::ChannelPlan_AU915::EnableDefaultChannels() { SetFrequencySubBand(GetFrequencySubBand()); } uint8_t ChannelPlan_AU915::GetNextChannel() { if (GetSettings()->Session.AggregatedTimeOffEnd != 0) { return LORA_AGGREGATED_DUTY_CYCLE; } if (P2PEnabled() || GetSettings()->Network.TxFrequency != 0) { logDebug("Using frequency %d", GetSettings()->Network.TxFrequency); if (GetSettings()->Test.DisableDutyCycle != lora::ON) { int8_t band = GetDutyBand(GetSettings()->Network.TxFrequency); logDebug("band: %d freq: %d", band, GetSettings()->Network.TxFrequency); if (band != -1 && _dutyBands[band].TimeOffEnd != 0) { return LORA_NO_CHANS_ENABLED; } } GetRadio()->SetChannel(GetSettings()->Network.TxFrequency); return LORA_OK; } uint8_t start = 0; uint8_t maxChannels = _numChans125k; uint8_t nbEnabledChannels = 0; uint8_t *enabledChannels = new uint8_t[maxChannels]; if (GetTxDatarate().Bandwidth == BW_500) { maxChannels = _numChans500k; start = _numChans125k; } // Search how many channels are enabled DatarateRange range; uint8_t dr_index = GetSettings()->Session.TxDatarate; uint32_t now = _dutyCycleTimer.read_ms(); for (size_t i = 0; i < _dutyBands.size(); i++) { if (_dutyBands[i].TimeOffEnd < now || GetSettings()->Test.DisableDutyCycle == lora::ON) { _dutyBands[i].TimeOffEnd = 0; } } for (uint8_t i = start; i < start + maxChannels; i++) { range = GetChannel(i).DrRange; // logDebug("chan: %d freq: %d range:%02x", i, GetChannel(i).Frequency, range.Value); if (IsChannelEnabled(i) && (dr_index >= range.Fields.Min && dr_index <= range.Fields.Max)) { int8_t band = GetDutyBand(GetChannel(i).Frequency); // logDebug("band: %d freq: %d", band, _channels[i].Frequency); if (band != -1 && _dutyBands[band].TimeOffEnd == 0) { enabledChannels[nbEnabledChannels++] = i; } } } if (GetTxDatarate().Bandwidth == BW_500) { _dutyBands[0].PowerMax = 26; } else { if (nbEnabledChannels < 50) _dutyBands[0].PowerMax = 21; else _dutyBands[0].PowerMax = 30; } logTrace("Number of available channels: %d", nbEnabledChannels); uint32_t freq = 0; uint8_t sf = GetTxDatarate().SpreadingFactor; uint8_t bw = GetTxDatarate().Bandwidth; int16_t thres = DEFAULT_FREE_CHAN_RSSI_THRESHOLD; if (nbEnabledChannels == 0) { delete [] enabledChannels; return LORA_NO_CHANS_ENABLED; } if (GetSettings()->Network.CADEnabled) { // Search for free channel with ms timeout int16_t timeout = 10000; Timer tmr; tmr.start(); for (uint8_t j = rand_r(0, nbEnabledChannels - 1); tmr.read_ms() < timeout; j++) { freq = GetChannel(enabledChannels[j]).Frequency; if (GetRadio()->IsChannelFree(SxRadio::MODEM_LORA, freq, sf, thres, bw)) { _txChannel = enabledChannels[j]; break; } } } else { uint8_t j = rand_r(0, nbEnabledChannels - 1); _txChannel = enabledChannels[j]; freq = GetChannel(_txChannel).Frequency; } assert(freq != 0); logDebug("Using channel %d : %d", _txChannel, freq); GetRadio()->SetChannel(freq); delete [] enabledChannels; return LORA_OK; } uint8_t lora::ChannelPlan_AU915::GetJoinDatarate() { uint8_t dr = GetSettings()->Session.TxDatarate; if (GetSettings()->Test.DisableRandomJoinDatarate == lora::OFF) { static bool altDatarate = false; if (GetSettings()->Network.FrequencySubBand == 0) { static uint16_t used_bands_125k = 0; static uint16_t used_bands_500k = 0; uint8_t frequency_sub_band = 0; if (altDatarate) { // 500k channel if (CountBits(used_bands_500k) == 8) { used_bands_500k = 0; } while ((frequency_sub_band = rand_r(1, 8)) && (used_bands_500k & (1 << (frequency_sub_band - 1))) != 0) ; used_bands_500k |= (1 << (frequency_sub_band - 1)); } else { // 125k channel if (CountBits(used_bands_125k) == 8) { used_bands_125k = 0; } while ((frequency_sub_band = rand_r(1, 8)) && (used_bands_125k & (1 << (frequency_sub_band - 1))) != 0) ; used_bands_125k |= (1 << (frequency_sub_band - 1)); } logWarning("JoinDatarate setting frequency sub band to %d 125k: %04x 500k: %04x", frequency_sub_band, used_bands_125k, used_bands_500k); SetFrequencySubBand(frequency_sub_band); } if (altDatarate && CountBits(_channelMask[4] > 0)) { dr = lora::DR_6; } else { dr = lora::DR_0; } altDatarate = !altDatarate; } return dr; } uint8_t lora::ChannelPlan_AU915::CalculateJoinBackoff(uint8_t size) { time_t now = time(NULL); uint32_t time_on_max = 0; static uint32_t time_off_max = 15; uint32_t rand_time_off = 0; static uint16_t join_cnt = 0; // TODO: calc time-off-max based on RTC time from JoinFirstAttempt, time-off-max is lost over sleep if ((time_t)GetSettings()->Session.JoinTimeOffEnd > now) { return LORA_JOIN_BACKOFF; } uint32_t secs_since_first_attempt = (now - GetSettings()->Session.JoinFirstAttempt); uint16_t hours_since_first_attempt = secs_since_first_attempt / (60 * 60); join_cnt = (join_cnt+1) % 16; if (GetSettings()->Session.JoinFirstAttempt == 0) { /* 1 % duty-cycle for first hour * 0.1 % next 10 hours * 0.01 % upto 24 hours */ GetSettings()->Session.JoinFirstAttempt = now; GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_r(GetSettings()->Network.JoinDelay + 2, GetSettings()->Network.JoinDelay + 3); } else if (join_cnt == 0) { if (hours_since_first_attempt < 1) { time_on_max = 36000; rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); // time off max 1 hour time_off_max = std::min < uint32_t > (time_off_max * 2, 60 * 60); if (GetSettings()->Session.JoinTimeOnAir < time_on_max) { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); GetSettings()->Session.JoinTimeOffEnd = GetSettings()->Session.JoinFirstAttempt + 60 * 60; } } else if (hours_since_first_attempt < 11) { if (GetSettings()->Session.JoinTimeOnAir < 36000) { GetSettings()->Session.JoinTimeOnAir = 36000; } time_on_max = 72000; rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); // time off max 1 hour time_off_max = std::min < uint32_t > (time_off_max * 2, 60 * 60); if (GetSettings()->Session.JoinTimeOnAir < time_on_max) { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); GetSettings()->Session.JoinTimeOffEnd = GetSettings()->Session.JoinFirstAttempt + 11 * 60 * 60; } } else { if (GetSettings()->Session.JoinTimeOnAir < 72000) { GetSettings()->Session.JoinTimeOnAir = 72000; } uint32_t join_time = 2500; // 16 join attempts is ~2754 ms, check if this is the third of the 24 hour period time_on_max = 80700; time_off_max = 1 * 60 * 60; // 1 hour rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); if (GetSettings()->Session.JoinTimeOnAir < time_on_max - join_time) { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); // Reset the join time on air and set end of restriction to the next 24 hour period GetSettings()->Session.JoinTimeOnAir = 72000; uint16_t days = (now - GetSettings()->Session.JoinFirstAttempt) / (24 * 60 * 60) + 1; logWarning("days : %d", days); GetSettings()->Session.JoinTimeOffEnd = GetSettings()->Session.JoinFirstAttempt + ((days * 24) + 11) * 60 * 60; } } logWarning("JoinBackoff: %lu seconds Time On Air: %lu / %lu", GetSettings()->Session.JoinTimeOffEnd - now, GetSettings()->Session.JoinTimeOnAir, time_on_max); } else { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_r(GetSettings()->Network.JoinDelay + 2, GetSettings()->Network.JoinDelay + 3); } return LORA_OK; } bool ChannelPlan_AU915::DecodeBeacon(const uint8_t* payload, size_t size, BeaconData_t& data) { uint16_t crc1, crc1_rx, crc2, crc2_rx; const BCNPayload* beacon = (const BCNPayload*)payload; // First check the size of the packet if (size != sizeof(BCNPayload)) return false; // Next we verify the CRCs are correct crc1 = CRC16(beacon->RFU1, sizeof(beacon->RFU1) + sizeof(beacon->Time)); memcpy((uint8_t*)&crc1_rx, beacon->CRC1, sizeof(uint16_t)); if (crc1 != crc1_rx) return false; crc2 = CRC16(beacon->GwSpecific, sizeof(beacon->GwSpecific) + sizeof(beacon->RFU2)); memcpy((uint8_t*)&crc2_rx, beacon->CRC2, sizeof(uint16_t)); if (crc2 != crc2_rx) return false; // Now that we have confirmed this packet is a beacon, parse and complete the output struct memcpy(&data.Time, beacon->Time, sizeof(beacon->Time)); data.InfoDesc = beacon->GwSpecific[0]; // Update the GPS fields if we have a gps info descriptor if (data.InfoDesc == GPS_FIRST_ANTENNA || data.InfoDesc == GPS_SECOND_ANTENNA || data.InfoDesc == GPS_THIRD_ANTENNA) { // Latitude and Longitude 3 bytes in length memcpy(&data.Latitude, &beacon->GwSpecific[1], 3); memcpy(&data.Longitude, &beacon->GwSpecific[4], 3); } return true; } void ChannelPlan_AU915::FrequencyHop(uint32_t time, uint32_t period, uint32_t devAddr) { uint32_t channel; uint32_t freq; if (_bcnFreqHop) { channel = (time / period) % AU915_BEACON_CHANNELS; freq = AU915_BEACON_FREQ_BASE + (channel * AU915_BEACON_FREQ_STEP); GetSettings()->Session.BeaconFrequency = freq; } if (_pingFreqHop) { channel = (time / period + devAddr) % AU915_BEACON_CHANNELS; freq = AU915_BEACON_FREQ_BASE + (channel * AU915_BEACON_FREQ_STEP); GetSettings()->Session.PingSlotFrequency = freq; } }