Preliminary main mbed library for nexpaq development
TESTS/mbedmicro-rtos-mbed/queue/main.cpp
- Committer:
- nexpaq
- Date:
- 2016-11-04
- Revision:
- 0:6c56fb4bc5f0
File content as of revision 0:6c56fb4bc5f0:
#include "mbed.h" #include "greentea-client/test_env.h" #include "rtos.h" #if defined(MBED_RTOS_SINGLE_THREAD) #error [NOT_SUPPORTED] test not supported #endif typedef struct { float voltage; /* AD result of measured voltage */ float current; /* AD result of measured current */ uint32_t counter; /* A counter value */ } message_t; #define CREATE_VOLTAGE(COUNTER) (COUNTER * 0.1) * 33 #define CREATE_CURRENT(COUNTER) (COUNTER * 0.1) * 11 #define QUEUE_SIZE 16 #define QUEUE_PUT_DELAY 100 /* * The stack size is defined in cmsis_os.h mainly dependent on the underlying toolchain and * the C standard library. For GCC, ARM_STD and IAR it is defined with a size of 2048 bytes * and for ARM_MICRO 512. Because of reduce RAM size some targets need a reduced stacksize. */ #if (defined(TARGET_STM32L053R8) || defined(TARGET_STM32L053C8)) && defined(TOOLCHAIN_GCC) #define STACK_SIZE DEFAULT_STACK_SIZE/4 #elif (defined(TARGET_STM32F030R8)) && defined(TOOLCHAIN_GCC) #define STACK_SIZE DEFAULT_STACK_SIZE/4 #elif (defined(TARGET_STM32F030R8)) && defined(TOOLCHAIN_IAR) #define STACK_SIZE DEFAULT_STACK_SIZE/2 #elif (defined(TARGET_EFM32HG_STK3400)) && !defined(TOOLCHAIN_ARM_MICRO) #define STACK_SIZE 512 #elif (defined(TARGET_EFM32LG_STK3600) || defined(TARGET_EFM32WG_STK3800) || defined(TARGET_EFM32PG_STK3401)) && !defined(TOOLCHAIN_ARM_MICRO) #define STACK_SIZE 768 #elif (defined(TARGET_EFM32GG_STK3700)) && !defined(TOOLCHAIN_ARM_MICRO) #define STACK_SIZE 1536 #elif defined(TARGET_MCU_NRF51822) || defined(TARGET_MCU_NRF52832) #define STACK_SIZE 768 #else #define STACK_SIZE DEFAULT_STACK_SIZE #endif MemoryPool<message_t, QUEUE_SIZE> mpool; Queue<message_t, QUEUE_SIZE> queue; /* Send Thread */ void send_thread (void const *argument) { static uint32_t i = 10; while (true) { i++; // Fake data update message_t *message = mpool.alloc(); message->voltage = CREATE_VOLTAGE(i); message->current = CREATE_CURRENT(i); message->counter = i; queue.put(message); Thread::wait(QUEUE_PUT_DELAY); } } int main (void) { GREENTEA_SETUP(20, "default_auto"); Thread thread(send_thread, NULL, osPriorityNormal, STACK_SIZE); bool result = true; int result_counter = 0; while (true) { osEvent evt = queue.get(); if (evt.status == osEventMessage) { message_t *message = (message_t*)evt.value.p; const float expected_voltage = CREATE_VOLTAGE(message->counter); const float expected_current = CREATE_CURRENT(message->counter); // Check using macros if received values correspond to values sent via queue bool expected_values = (expected_voltage == message->voltage) && (expected_current == message->current); result = result && expected_values; const char *result_msg = expected_values ? "OK" : "FAIL"; printf("%3d %.2fV %.2fA ... [%s]\r\n", message->counter, message->voltage, message->current, result_msg); mpool.free(message); if (result == false || ++result_counter == QUEUE_SIZE) { break; } } } GREENTEA_TESTSUITE_RESULT(result); return 0; }