Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: X_NUCLEO_COMMON ST_INTERFACES
Components/PowerStep01/PowerStep01.h
- Committer:
- Davidroid
- Date:
- 2017-07-14
- Revision:
- 7:9d772e2a9dbe
- Parent:
- 6:7af3838de91a
File content as of revision 7:9d772e2a9dbe:
/** ****************************************************************************** * @file PowerStep01.h * @author IPC Rennes * @version V1.0.1 * @date September 13th, 2016 * @brief This file contains the class of a Powerstep01 Motor Control component. * @note (C) COPYRIGHT 2016 STMicroelectronics ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __POWERSTEP01_CLASS_H #define __POWERSTEP01_CLASS_H /* Includes ------------------------------------------------------------------*/ /* ACTION 1 ------------------------------------------------------------------* * Include here platform specific header files. * *----------------------------------------------------------------------------*/ #include "mbed.h" #include "DevSPI.h" /* ACTION 2 ------------------------------------------------------------------* * Include here component specific header files. * *----------------------------------------------------------------------------*/ #include "PowerStep01_def.h" /* ACTION 3 ------------------------------------------------------------------* * Include here interface specific header files. * * * * Example: * * #include "HumiditySensor.h" * * #include "TemperatureSensor.h" * *----------------------------------------------------------------------------*/ #include "StepperMotor.h" /* Classes -------------------------------------------------------------------*/ /** * @brief Class representing a Powerstep01 component. */ class PowerStep01 : public StepperMotor { public: /*** Constructor and Destructor Methods ***/ /** * @brief Constructor. * @param flag_irq pin name of the FLAG pin of the component. * @param busy_irq pin name of the BUSY pin of the component. * @param standby_reset pin name of the STBY\RST pin of the component. * @param pwm pin name of the PWM pin of the component. * @param ssel pin name of the SSEL pin of the SPI device to be used for communication. * @param spi SPI device to be used for communication. */ PowerStep01(PinName flag_irq, PinName busy_irq, PinName standby_reset, PinName pwm, PinName ssel, DevSPI &spi) : StepperMotor(), flag_irq(flag_irq), busy_irq(busy_irq), standby_reset(standby_reset), pwm(pwm), ssel(ssel), dev_spi(spi) { /* Checking stackability. */ if (!(numberOfDevices < MAX_NUMBER_OF_DEVICES)) { error("Instantiation of the PowerStep01 component failed: it can be stacked up to %d times.\r\n", MAX_NUMBER_OF_DEVICES); } /* ACTION 4 ----------------------------------------------------------* * Initialize here the component's member variables, one variable per * * line. * * * * Example: * * measure = 0; * * instance_id = number_of_instances++; * *--------------------------------------------------------------------*/ errorHandlerCallback = 0; deviceInstance = numberOfDevices++; memset(spiTxBursts, 0, POWERSTEP01_CMD_ARG_MAX_NB_BYTES * MAX_NUMBER_OF_DEVICES * sizeof(uint8_t)); memset(spiRxBursts, 0, POWERSTEP01_CMD_ARG_MAX_NB_BYTES * MAX_NUMBER_OF_DEVICES * sizeof(uint8_t)); } /** * @brief Destructor. */ virtual ~PowerStep01(void) {} /*** Public Component Related Methods ***/ /* ACTION 5 --------------------------------------------------------------* * Implement here the component's public methods, as wrappers of the C * * component's functions. * * They should be: * * + Methods with the same name of the C component's virtual table's * * functions (1); * * + Methods with the same name of the C component's extended virtual * * table's functions, if any (2). * * * * Example: * * virtual int get_value(float *pData) //(1) * * { * * return COMPONENT_get_value(float *pfData); * * } * * * * virtual int enable_feature(void) //(2) * * { * * return COMPONENT_enable_feature(); * * } * *------------------------------------------------------------------------*/ /** * @brief Public functions inherited from the Component Class */ /** * @brief Initialize the component. * @param init Pointer to device specific initalization structure. * @retval "0" in case of success, an error code otherwise. */ virtual int init(void *init = NULL) { return (int) Powerstep01_Init((void *) init); } /** * @brief Getting the ID of the component. * @param id Pointer to an allocated variable to store the ID into. * @retval "0" in case of success, an error code otherwise. */ virtual int read_id(uint8_t *id = NULL) { return (int) Powerstep01_ReadID((uint8_t *) id); } /** * @brief Public functions inherited from the StepperMotor Class */ /** * @brief Getting the value of the Status Register. * @param None. * @retval None. * @note The Status Register's flags are cleared, contrary to read_status_register(). */ virtual unsigned int get_status(void) { return (unsigned int) Powerstep01_CmdGetStatus(); } /** * @brief Getting the position. * @param None. * @retval The position. */ virtual signed int get_position(void) { return (signed int)Powerstep01_GetPosition(); } /** * @brief Getting the marked position. * @param None. * @retval The marked position. */ virtual signed int get_mark(void) { return (signed int)Powerstep01_GetMark(); } /** * @brief Getting the current speed in step/s. * @param None. * @retval The current speed in step/s. */ virtual unsigned int get_speed(void) { return (unsigned int)round(Powerstep01_GetAnalogValue(POWERSTEP01_SPEED)); } /** * @brief Getting the maximum speed in step/s. * @param None. * @retval The maximum speed in step/s. */ virtual unsigned int get_max_speed(void) { return (unsigned int)round(Powerstep01_GetAnalogValue(POWERSTEP01_MAX_SPEED)); } /** * @brief Getting the minimum speed in step/s. * @param None. * @retval The minimum speed in step/s. */ virtual unsigned int get_min_speed(void) { return (unsigned int)round(Powerstep01_GetAnalogValue(POWERSTEP01_MIN_SPEED)); } /** * @brief Getting the acceleration in step/s^2. * @param None. * @retval The acceleration in step/s^2. */ virtual unsigned int get_acceleration(void) { return (unsigned int)round(Powerstep01_GetAnalogValue(POWERSTEP01_ACC)); } /** * @brief Getting the deceleration in step/s^2. * @param None. * @retval The deceleration in step/s^2. */ virtual unsigned int get_deceleration(void) { return (unsigned int)round(Powerstep01_GetAnalogValue(POWERSTEP01_DEC)); } /** * @brief Getting the direction of rotation. * @param None. * @retval The direction of rotation. */ virtual direction_t get_direction(void) { if ((POWERSTEP01_STATUS_DIR&Powerstep01_ReadStatusRegister())!=0) { return FWD; } else { return BWD; } } /** * @brief Setting the current position to be the home position. * @param None. * @retval None. */ virtual void set_home(void) { Powerstep01_SetHome(); } /** * @brief Setting the current position to be the marked position. * @param None. * @retval None. */ virtual void set_mark(void) { Powerstep01_SetMark(); } /** * @brief Setting the maximum speed in steps/s. * @param speed The maximum speed in steps/s. * @retval TRUE if value is valid, FALSE otherwise. */ virtual bool set_max_speed(unsigned int speed) { return Powerstep01_SetAnalogValue(POWERSTEP01_MAX_SPEED, (float)speed); } /** * @brief Setting the minimum speed in steps/s. * @param speed The minimum speed in steps/s. * @retval TRUE if value is valid, FALSE otherwise. */ virtual bool set_min_speed(unsigned int speed) { return Powerstep01_SetAnalogValue(POWERSTEP01_MIN_SPEED, (float)speed); } /** * @brief Setting the acceleration in steps/s^2. * @param acceleration The acceleration in steps/s^2. * @retval None. */ virtual bool set_acceleration(unsigned int acceleration) { return Powerstep01_SetAnalogValue(POWERSTEP01_ACC, (float)acceleration); } /** * @brief Setting the deceleration in steps/s^2. * @param deceleration The deceleration in steps/s^2. * @retval None. */ virtual bool set_deceleration(unsigned int deceleration) { return Powerstep01_SetAnalogValue(POWERSTEP01_DEC, (float)deceleration); } /** * @brief Setting the Step Mode. * @param step_mode The Step Mode. * @retval None. * @note step_mode can be one of the following: * + STEP_MODE_FULL * + STEP_MODE_HALF * + STEP_MODE_1_4 * + STEP_MODE_1_8 * + STEP_MODE_1_16 * + STEP_MODE_1_32 * + STEP_MODE_1_64 * + STEP_MODE_1_128 */ virtual bool set_step_mode(step_mode_t step_mode) { return Powerstep01_SelectStepMode((motorStepMode_t) step_mode); } /** * @brief Going to a specified position. * @param position The desired position. * @retval None. */ virtual void go_to(signed int position) { Powerstep01_CmdGoTo((int32_t)position); } virtual void go_to(direction_t direction, signed int position) { Powerstep01_CmdGoToDir((motorDir_t) (direction == StepperMotor::FWD ? FORWARD : BACKWARD),(int32_t)position); } /** * @brief Going to the home position. * @param None. * @retval None. */ virtual void go_home(void) { Powerstep01_CmdGoHome(); } /** * @brief Going to the marked position. * @param None. * @retval None. */ virtual void go_mark(void) { Powerstep01_CmdGoMark(); } /** * @brief Running the motor towards a specified direction. * @param direction The direction of rotation. * @retval None. */ virtual void run(direction_t direction) { Powerstep01_CmdRun((motorDir_t) (direction == StepperMotor::FWD ? FORWARD : BACKWARD), Powerstep01_CmdGetParam((powerstep01_Registers_t) POWERSTEP01_MAX_SPEED)); } /** * @brief Moving the motor towards a specified direction for a certain number of steps. * @param direction The direction of rotation. * @param steps The desired number of steps. * @retval None. */ virtual void move(direction_t direction, unsigned int steps) { Powerstep01_CmdMove((motorDir_t) (direction == StepperMotor::FWD ? FORWARD : BACKWARD), (uint32_t)steps); } /** * @brief Stopping the motor through an immediate deceleration up to zero speed. * @param None. * @retval None. */ virtual void soft_stop(void) { Powerstep01_CmdSoftStop(); } /** * @brief Stopping the motor through an immediate infinite deceleration. * @param None. * @retval None. */ virtual void hard_stop(void) { Powerstep01_CmdHardStop(); } /** * @brief Disabling the power bridge after performing a deceleration to zero. * @param None. * @retval None. */ virtual void soft_hiz(void) { Powerstep01_CmdSoftHiZ(); } /** * @brief Disabling the power bridge immediately. * @param None. * @retval None. */ virtual void hard_hiz(void) { Powerstep01_CmdHardHiZ(); } /** * @brief Waiting while the motor is active. * @param None. * @retval None. */ virtual void wait_while_active(void) { Powerstep01_WaitWhileActive(); } /** * @brief Public functions NOT inherited */ /** * @brief Attaching an error handler. * @param fptr An error handler. * @retval None. */ virtual void attach_error_handler(void (*fptr)(uint16_t error)) { Powerstep01_AttachErrorHandler((void (*)(uint16_t error)) fptr); } /** * @brief Checks if the device is busy by reading the busy pin position. * @param None. * @retval One if the device his busy (low logic level on busy output), * otherwise zero */ virtual int check_busy_hw(void) { if (busy_irq!=0) { return 0x01; } else { return 0x00; } } /** * @brief Checks if the device has an alarm flag set by reading the flag pin position. * @param None. * @retval One if the device has an alarm flag set (low logic level on flag output), * otherwise zero */ virtual unsigned int check_status_hw(void) { if (flag_irq!=0) { return 0x01; } else { return 0x00; } } /** * @brief Fetch and clear status flags of all devices * by issuing a GET_STATUS command simultaneously * to all devices. * Then, the fetched status of each device can be retrieved * by using the Powerstep01_GetFetchedStatus function * provided there is no other calls to functions which * use the SPI in between. * @retval None */ virtual void fetch_and_clear_all_status(void) { Powerstep01_FetchAndClearAllStatus(); } /** * @brief Getting a parameter float value. * @param parameter A parameter's register adress. * @retval The parameter's float value. * parameter can be one of the following: * + POWERSTEP01_ABS_POS * + POWERSTEP01_MARK * + POWERSTEP01_ACC * + POWERSTEP01_DEC * + POWERSTEP01_SPEED * + POWERSTEP01_MAX_SPEED * + POWERSTEP01_MIN_SPEED * + POWERSTEP01_FS_SPD * (voltage mode) + POWERSTEP01_INT_SPD * (voltage mode) + POWERSTEP01_K_THERM * + POWERSTEP01_OCD_TH * (voltage mode) + POWERSTEP01_STALL_TH * (voltage mode) + POWERSTEP01_KVAL_HOLD : value in % * (current mode) + POWERSTEP01_TVAL_HOLD : value in mV * (voltage mode) + POWERSTEP01_KVAL_RUN : value in % * (current mode) + POWERSTEP01_TVAL_RUN : value in mV * (voltage mode) + POWERSTEP01_KVAL_ACC : value in % * (current mode) + POWERSTEP01_TVAL_ACC : value in mV * (voltage mode) + POWERSTEP01_KVAL_DEC : value in % * (current mode) + POWERSTEP01_TVAL_DEC : value in mV * (voltage mode) + POWERSTEP01_ST_SLP * (voltage mode) + POWERSTEP01_FN_SLP_ACC * (voltage mode) + POWERSTEP01_FN_SLP_DEC */ virtual float get_analog_value(unsigned int parameter) { return Powerstep01_GetAnalogValue((powerstep01_Registers_t)parameter); } /** * @brief Get the value of the STATUS register which was * fetched by using Powerstep01_FetchAndClearAllStatus. * The fetched values are available as long as there * no other calls to functions which use the SPI. * @retval Last fetched value of the STATUS register. */ virtual uint16_t get_fetched_status(void) { return Powerstep01_GetFetchedStatus(); } /** * @brief Getting the version of the firmware. * @param None. * @retval The version of the firmware. */ virtual unsigned int get_fw_version(void) { return (unsigned int) Powerstep01_GetFwVersion(); } /** * @brief Getting a parameter register value. * @param parameter A parameter's register adress. * @retval The parameter's register value. * parameter can be one of the following: * + POWERSTEP01_ABS_POS * + POWERSTEP01_EL_POS * + POWERSTEP01_MARK * + POWERSTEP01_SPEED * + POWERSTEP01_ACC * + POWERSTEP01_DEC * + POWERSTEP01_MAX_SPEED * + POWERSTEP01_MIN_SPEED * (voltage mode) + POWERSTEP01_KVAL_HOLD : value in % * (current mode) + POWERSTEP01_TVAL_HOLD : value in mV * (voltage mode) + POWERSTEP01_KVAL_RUN : value in % * (current mode) + POWERSTEP01_TVAL_RUN : value in mV * (voltage mode) + POWERSTEP01_KVAL_ACC : value in % * (current mode) + POWERSTEP01_TVAL_ACC : value in mV * (voltage mode) + POWERSTEP01_KVAL_DEC : value in % * (current mode) + POWERSTEP01_TVAL_DEC : value in mV * (voltage mode) + POWERSTEP01_INT_SPD * (voltage mode) + POWERSTEP01_ST_SLP * (current mode) + POWERSTEP01_T_FAST * (voltage mode) + POWERSTEP01_FN_SLP_ACC * (current mode) + POWERSTEP01_TON_MIN * (voltage mode) + POWERSTEP01_FN_SLP_DEC * (current mode) + POWERSTEP01_TOFF_MIN * (voltage mode) + POWERSTEP01_K_THERM * + POWERSTEP01_ADC_OUT * + POWERSTEP01_OCD_TH * (voltage mode) + POWERSTEP01_STALL_TH * + POWERSTEP01_FS_SPD * + POWERSTEP01_STEP_MODE * + POWERSTEP01_ALARM_EN * + POWERSTEP01_GATECFG1 * + POWERSTEP01_GATECFG2 * + POWERSTEP01_CONFIG * + POWERSTEP01_STATUS */ virtual unsigned int get_raw_parameter(unsigned int parameter) { return (unsigned int) Powerstep01_CmdGetParam((powerstep01_Registers_t)parameter); } /** * @brief Issues PowerStep01 Go Until command. * @param action type of action to undertake when the SW * input is forced high (ACTION_RESET or ACTION_COPY). * @param direction The direction of rotation. * @param speed in steps/s. * @retval One if the device has an alarm flag set (low logic level on flag output), * otherwise zero */ virtual void go_until(motorAction_t action, direction_t direction, float speed) { Powerstep01_CmdGoUntil(action, (motorDir_t) (direction == StepperMotor::FWD ? FORWARD : BACKWARD), speed_steps_s_to_reg_val(speed)); } /** * @brief Checks if the device is busy * by reading the Busy flag bit ot its status Register * This operation clears the status register * @retval true if device is busy, false zero */ virtual bool is_device_busy(void) { return Powerstep01_IsDeviceBusy(); } /** * @brief Put commands in queue before synchronous sending * done by calling send_queued_commands. * Any call to functions that use the SPI between the calls of * queue_commands and send_queued_commands * will corrupt the queue. * A command for each device of the daisy chain must be * specified before calling send_queued_commands. * @param command Command to queue (all Powerstep01 commmands * except POWERSTEP01_SET_PARAM, POWERSTEP01_GET_PARAM, * POWERSTEP01_GET_STATUS). * @param value argument of the command to queue. * @retval None. */ virtual void queue_commands(uint8_t command, int32_t value) { Powerstep01_QueueCommands(command, value); } /** * @brief Reading the Status Register. * @param None. * @retval None. * @note The Status Register's flags are not cleared, contrary to get_status(). */ virtual uint16_t read_status_register(void) { return Powerstep01_ReadStatusRegister(); } /** * @brief Issues PowerStep01 Release SW command. * @param action type of action to undertake when the SW * input is forced high (ACTION_RESET or ACTION_COPY). * @param direction The direction of rotation. * @param speed in steps/s. * @retval One if the device has an alarm flag set (low logic level on flag output), * otherwise zero */ virtual void release_sw(motorAction_t action, direction_t direction) { Powerstep01_CmdReleaseSw(action, (motorDir_t) (direction == StepperMotor::FWD ? FORWARD : BACKWARD)); } /** * @brief Issues PowerStep01 Reset Device command. * @param None. * @retval None. */ virtual void reset_command(void) { Powerstep01_CmdResetDevice(); } /** * @brief Issues PowerStep01 ResetPos command. * @param None. * @retval None. * @note Same effect as set_home(). */ virtual void reset_position(void) { Powerstep01_CmdResetPos(); } /** * @brief Running the motor towards a specified direction. * @param direction The direction of rotation. * @param speed in steps/s. * @retval None. */ virtual void run(direction_t direction, float speed) { Powerstep01_CmdRun((motorDir_t) (direction == StepperMotor::FWD ? FORWARD : BACKWARD), speed_steps_s_to_reg_val(speed)); } /** * @brief Sends commands stored previously in the queue by queue_commands. * @param None. * @retval None. */ virtual void send_queued_commands(void) { Powerstep01_SendQueuedCommands(); } /** * @brief Setting a parameter with an input float value. * @param param Register adress. * @param value Float value to convert and set into the register. * @retval TRUE if param and value are valid, FALSE otherwise * @note parameter can be one of the following: * + POWERSTEP01_EL_POS * + POWERSTEP01_ABS_POS * + POWERSTEP01_MARK * + POWERSTEP01_ACC * + POWERSTEP01_DEC * + POWERSTEP01_MAX_SPEED * + POWERSTEP01_MIN_SPEED * + POWERSTEP01_FS_SPD * + POWERSTEP01_INT_SPD * + POWERSTEP01_K_THERM * + POWERSTEP01_OCD_TH * + POWERSTEP01_STALL_TH * + POWERSTEP01_KVAL_HOLD * + POWERSTEP01_KVAL_RUN * + POWERSTEP01_KVAL_ACC * + POWERSTEP01_KVAL_DEC * + POWERSTEP01_ST_SLP * + POWERSTEP01_FN_SLP_ACC * + POWERSTEP01_FN_SLP_DEC * + POWERSTEP01_TVAL_HOLD * + POWERSTEP01_TVAL_RUN * + POWERSTEP01_TVAL_ACC * + POWERSTEP01_TVAL_DEC * + POWERSTEP01_TON_MIN * + POWERSTEP01_TOFF_MIN */ virtual bool set_analog_value(unsigned int param, float value) { return Powerstep01_SetAnalogValue((powerstep01_Registers_t)param, value); } /** * @brief Setting a parameter. * @param parameter A parameter's register adress. * @param value The parameter's value. * @retval None. * parameter can be one of the following: * + POWERSTEP01_ABS_POS * + POWERSTEP01_EL_POS * + POWERSTEP01_MARK * + POWERSTEP01_ACC * + POWERSTEP01_DEC * + POWERSTEP01_MAX_SPEED * + POWERSTEP01_MIN_SPEED * (voltage mode) + POWERSTEP01_KVAL_HOLD : value in % * (current mode) + POWERSTEP01_TVAL_HOLD : value in mV * (voltage mode) + POWERSTEP01_KVAL_RUN : value in % * (current mode) + POWERSTEP01_TVAL_RUN : value in mV * (voltage mode) + POWERSTEP01_KVAL_ACC : value in % * (current mode) + POWERSTEP01_TVAL_ACC : value in mV * (voltage mode) + POWERSTEP01_KVAL_DEC : value in % * (current mode) + POWERSTEP01_TVAL_DEC : value in mV * (voltage mode) + POWERSTEP01_INT_SPD * (voltage mode) + POWERSTEP01_ST_SLP * (current mode) + POWERSTEP01_T_FAST * (voltage mode) + POWERSTEP01_FN_SLP_ACC * (current mode) + POWERSTEP01_TON_MIN * (voltage mode) + POWERSTEP01_FN_SLP_DEC * (current mode) + POWERSTEP01_TOFF_MIN * (voltage mode) + POWERSTEP01_K_THERM * + POWERSTEP01_ADC_OUT * + POWERSTEP01_OCD_TH * (voltage mode) + POWERSTEP01_STALL_TH * + POWERSTEP01_FS_SPD * + POWERSTEP01_STEP_MODE * + POWERSTEP01_ALARM_EN * + POWERSTEP01_GATECFG1 * + POWERSTEP01_GATECFG2 * + POWERSTEP01_CONFIG */ virtual void set_raw_parameter(unsigned int parameter, unsigned int value) { Powerstep01_CmdSetParam((powerstep01_Registers_t)parameter, (uint32_t)value); } /** * @brief Enable the step clock mode. * @param frequency the frequency of PWM. * @retval None. */ virtual void step_clock_mode_enable(direction_t direction) { Powerstep01_CmdStepClock((motorDir_t) (direction == StepperMotor::FWD ? FORWARD : BACKWARD)); } /** * @brief Setting the frequency of PWM. * The frequency controls directly the speed of the device. * @param frequency the frequency of PWM. * @retval None. */ virtual void step_clock_start(uint16_t frequency) { /* Computing the period of PWM. */ double period = 1.0f / frequency; /* Setting the period and the duty-cycle of PWM. */ pwm.period(period); pwm.write(0.5f); } /** * @brief Stopping the PWM. * @param None. * @retval None. */ virtual void step_clock_stop(void) { pwm.write(0.0f); } /** * @brief Public static functions */ static uint8_t get_nb_devices(void) { return numberOfDevices; } /** * @brief To and from register parameter conversion functions */ /********************************************************** * @brief Convert the float formatted acceleration or * deceleration into respectively an ACC or DEC register value * @param[in] steps_s2 the acceleration or deceleration as * steps/s^2, range 14.55 to 59590 steps/s^2 * @retval The acceleration or deceleration as steps/tick^2 **********************************************************/ static uint16_t acc_dec_steps_s2_to_reg_val(float steps_s2) { return ((uint16_t)(((float)(steps_s2)*0.068719476736f)+0.5f)); } /********************************************************** * @brief Convert the ACC or DEC register value into step/s^2 * @param[in] regVal The ACC or DEC register value * @retval The speed as steps/s **********************************************************/ static float acc_dec_reg_val_to_steps_s2(uint32_t regVal) { return (((float)(regVal))*14.5519152283f); } /********************************************************** * @brief Converts BEMF compensation slope to values for ST_SLP, * FN_SLP_ACC or FN_SLP_DEC register * @param[in] percentage BEMF compensation slope percentage, * range 0 to 0.4% (0.004) s/step * @retval value for ST_SLP, FN_SLP_ACC or FN_SLP_DEC register **********************************************************/ static uint8_t bemf_slope_perc_to_reg_val(float percentage) { return ((uint8_t)(((float)(percentage)*637.5f)+0.5f)); } /********************************************************** * @brief Converts values from ST_SLP, FN_SLP_ACC or * FN_SLP_DEC register to BEMF compensation slope percentage * @param[in] regVal The ST_SLP, FN_SLP_ACC or FN_SLP_DEC * register value * @retval BEMF compensation slope percentage **********************************************************/ static float bemf_slope_reg_val_to_perc(uint32_t regVal) { return (((float)(regVal))*0.00156862745098f); } /********************************************************** * @brief Convert the float formatted speed into a FS_SPD * register value * @param[in] steps_s the speed as steps/s, range 15.25 to 15610 steps/s * @retval The speed as steps/tick **********************************************************/ static uint16_t fs_spd_steps_s_to_reg_val(float steps_s) { return ((uint16_t)((float)(steps_s)*0.065536f)); } /********************************************************** * @brief Convert the FS_SPD register value into step/s * @param[in] regVal The FS_SPD register value * @retval The full Step speed as steps/s **********************************************************/ static float fs_spd_reg_val_to_steps_s(uint32_t regVal) { return (((float)regVal+0.999f)*15.258789f); } /********************************************************** * @brief Convert the float formatted speed into a INT_SPEED * register value * @param[in] steps_s the speed as steps/s, range 0 to 976.5 steps/s * @retval The intersect speed as steps/tick **********************************************************/ static uint16_t int_spd_steps_s_to_reg_val(float steps_s) { return ((uint16_t)(((float)(steps_s)*16.777216f)+0.5f)); } /********************************************************** * @brief Convert the INT_SPEED register value into step/s * @param[in] regVal The INT_SPEED register value * @retval The speed as steps/s **********************************************************/ static float int_spd_reg_val_to_steps_s(uint32_t regVal) { return (((float)(regVal))*0.0596045f); } /********************************************************** * @brief Convert the float formatted thermal compensation * factor into a K_THERM register value * @param[in] compFactor the float formatted thermal * compensation factor, range 1 to 1.46875 * @retval value for K_THERM register **********************************************************/ static uint8_t k_therm_comp_to_reg_val(float compFactor) { return ((uint8_t)((((float)(compFactor)-1.0f)*32.0f)+0.5f)); } /********************************************************** * @brief Convert the K_THERM register value into a float * formatted thermal compensation factor * @param[in] regVal The K_THERM register value * @retval The float formatted thermal compensation factor **********************************************************/ static float k_therm_reg_val_to_comp(uint32_t regVal) { return (((float)(regVal))*0.03125f+1); } /********************************************************** * @brief Converts voltage in percentage to values for KVAL_RUN, * KVAL_HOLD, KVAL_ACC or KVAL_DEC register * @param[in] percentage percentage of the power supply voltage * applied to the motor windings, range 0.4% to 99.6% * @retval value for KVAL_RUN, KVAL_HOLD, KVAL_ACC or * KVAL_DEC register * @note The voltage applied is sinusoidal **********************************************************/ static uint8_t k_val_perc_to_reg_val(float percentage) { return ((uint8_t)(((float)(percentage)*2.56f)+0.5f)); } /********************************************************** * @brief Converts values from KVAL_RUN, KVAL_HOLD, KVAL_ACC * or KVAL_DEC register to percentage * @param[in] regVal The KVAL_RUN, KVAL_HOLD, KVAL_ACC * or KVAL_DEC register value * @retval percentage of the power supply voltage applied to * the motor windings * @note The voltage applied is sinusoidal **********************************************************/ static float k_val_reg_val_to_perc(uint32_t regVal) { return (((float)(regVal))*0.390625f); } /********************************************************** * @brief Convert the float formatted speed into a MAX_SPEED * register value * @param[in] steps_s the speed as steps/s, range 15.25 to 15610 steps/s * @retval The speed as steps/tick **********************************************************/ static uint16_t max_spd_steps_s_to_reg_val(float steps_s) { return ((uint16_t)(((float)(steps_s)*0.065536f)+0.5f)); } /********************************************************** * @brief Convert the MAX_SPEED register value into step/s * @param[in] regVal The MAX_SPEED register value * @retval The speed as steps/s **********************************************************/ static float max_spd_reg_val_to_steps_s(uint32_t regVal) { return (((float)(regVal))*15.258789f); } /********************************************************** * @brief Convert the float formatted speed into a MIN_SPEED * register value * @param[in] steps_s the speed as steps/s, range 0 to 976.3 steps/s * @retval The speed as steps/tick **********************************************************/ static uint16_t min_spd_steps_s_to_reg_val(float steps_s) { return ((uint16_t)(((float)(steps_s)*4.194304f)+0.5f)); } /********************************************************** * @brief Convert the MIN_SPEED register value into step/s * @param[in] regVal The MIN_SPEED register value * @retval The speed as steps/s **********************************************************/ static float min_spd_reg_val_to_steps_s(uint32_t regVal) { return (((float)(regVal))*0.238418579f); } /********************************************************** * @brief Convert the float formatted speed into a SPEED * register value * @param[in] steps_s the speed as steps/s, range 0 to 15625 steps/s * @retval The speed as steps/tick **********************************************************/ static uint32_t speed_steps_s_to_reg_val(float steps_s) { return ((uint32_t)(((float)(steps_s)*67.108864f)+0.5f)); } /********************************************************** * @brief Convert the SPEED register value into step/s * @param[in] regVal The SPEED register value * @retval The speed as steps/s **********************************************************/ static float speed_reg_val_to_steps_s(uint32_t regVal) { return (((float)(regVal))*0.01490116119f); } /********************************************************** * @brief Converts STALL or OCD Threshold voltage in mV to * values for STALL_TH or OCD_TH register * @param[in] mV voltage in mV, range 31.25mV to 1000mV * @retval value for STALL_TH or OCD_TH register **********************************************************/ static uint8_t stall_ocd_th_to_reg_val(float mV) { return ((uint8_t)((((float)(mV)-31.25f)*0.032f)+0.5f)); } /********************************************************** * @brief Converts values from STALL_TH or OCD_TH register * to mV * @param[in] regVal The STALL_TH or OCD_TH register value * @retval voltage in mV **********************************************************/ static float stall_ocd_reg_val_to_th(uint32_t regVal) { return (((float)(regVal+1))*31.25f); } /********************************************************** * @brief Converts voltage in mV to values for TVAL_RUN, * TVAL_HOLD, TVAL_ACC or TVAL_DEC register * @param[in] voltage_mV voltage in mV, range 7.8mV to 1000mV * @retval value for TVAL_RUN, TVAL_HOLD, TVAL_ACC or * TVAL_DEC register * @note The voltage corresponds to a peak output current * accross the external sense power resistor **********************************************************/ static uint8_t t_val_ref_voltage_to_reg_val(float voltage_mV) { return ((uint8_t)((((float)(voltage_mV)-7.8125f)*0.128f)+0.5f)); } /********************************************************** * @brief Converts values from TVAL_RUN, TVAL_HOLD, TVAL_ACC * or TVAL_DEC register to mV * @param[in] regVal The TVAL_RUN, TVAL_HOLD, TVAL_ACC * or TVAL_DEC register value * @retval voltage in mV * @note The voltage corresponds to a peak output current * accross the external sense power resistor **********************************************************/ static float t_val_reg_val_to_ref_voltage(uint32_t regVal) { return (((float)(regVal+1))*7.8125f); } /********************************************************** * @brief Convert time in us to values for TON_MIN register * @param[in] tmin_us time in us, range 0.5us to 64us * @retval value for TON_MIN register **********************************************************/ static uint8_t t_min_time_to_reg_val(float tmin_us) { return ((uint8_t)((((float)(tmin_us)-0.5f)*2.0f)+0.5f)); } /********************************************************** * @brief Convert values for TON_MIN or TOFF_MIN register to time in us * @param[in] regVal The TON_MIN or TOFF_MIN register value * @retval time in us **********************************************************/ static float t_min_reg_val_to_time(uint32_t regVal) { return (((float)(regVal+1))*0.5f); } /*** Public Interrupt Related Methods ***/ /* ACTION 6 --------------------------------------------------------------* * Implement here interrupt related methods, if any. * * Note that interrupt handling is platform dependent, e.g.: * * + mbed: * * InterruptIn feature_irq(pin); //Interrupt object. * * feature_irq.rise(callback); //Attach a callback. * * feature_irq.mode(PullNone); //Set interrupt mode. * * feature_irq.enable_irq(); //Enable interrupt. * * feature_irq.disable_irq(); //Disable interrupt. * * + Arduino: * * attachInterrupt(pin, callback, RISING); //Attach a callback. * * detachInterrupt(pin); //Detach a callback. * * * * Example (mbed): * * void attach_feature_irq(void (*fptr) (void)) * * { * * feature_irq.rise(fptr); * * } * * * * void enable_feature_irq(void) * * { * * feature_irq.enable_irq(); * * } * * * * void disable_feature_irq(void) * * { * * feature_irq.disable_irq(); * * } * *------------------------------------------------------------------------*/ /** * @brief Attaching an interrupt handler to the FLAG interrupt. * @param fptr An interrupt handler. * @retval None. */ void attach_flag_irq(void (*fptr)(void)) { flag_irq.fall(fptr); } /** * @brief Enabling the FLAG interrupt handling. * @param None. * @retval None. */ void enable_flag_irq(void) { flag_irq.enable_irq(); } /** * @brief Disabling the FLAG interrupt handling. * @param None. * @retval None. */ void disable_flag_irq(void) { flag_irq.disable_irq(); } /** * @brief Attaching an interrupt handler to the BUSY interrupt. * @param fptr An interrupt handler. * @retval None. */ void attach_busy_irq(void (*fptr)(void)) { busy_irq.fall(fptr); } /** * @brief Enabling the BUSY interrupt handling. * @param None. * @retval None. */ void enable_busy_irq(void) { busy_irq.enable_irq(); } /** * @brief Disabling the BUSY interrupt handling. * @param None. * @retval None. */ void disable_busy_irq(void) { busy_irq.disable_irq(); } protected: /*** Protected Component Related Methods ***/ /* ACTION 7 --------------------------------------------------------------* * Declare here the component's specific methods. * * They should be: * * + Methods with the same name of the C component's virtual table's * * functions (1); * * + Methods with the same name of the C component's extended virtual * * table's functions, if any (2); * * + Helper methods, if any, like functions declared in the component's * * source files but not pointed by the component's virtual table (3). * * * * Example: * * status_t COMPONENT_get_value(float *f); //(1) * * status_t COMPONENT_enable_feature(void); //(2) * * status_t COMPONENT_compute_average(void); //(3) * *------------------------------------------------------------------------*/ status_t Powerstep01_Init(void *init); status_t Powerstep01_ReadID(uint8_t *id); void Powerstep01_AttachErrorHandler(void (*callback)(uint16_t error)); uint8_t Powerstep01_CheckBusyHw(void); uint8_t Powerstep01_CheckStatusHw(void); uint16_t Powerstep01_CmdGetStatus(void); void Powerstep01_CmdGoHome(void); void Powerstep01_CmdGoMark(void); void Powerstep01_CmdGoTo(int32_t targetPosition); void Powerstep01_CmdGoToDir(motorDir_t direction, int32_t targetPosition); void Powerstep01_CmdGoUntil(motorAction_t action, motorDir_t direction, uint32_t speed); void Powerstep01_CmdHardHiZ(void); void Powerstep01_CmdHardStop(void); void Powerstep01_CmdMove(motorDir_t direction, uint32_t stepCount); void Powerstep01_CmdNop(void); void Powerstep01_CmdReleaseSw(motorAction_t action, motorDir_t direction); void Powerstep01_CmdResetDevice(void); void Powerstep01_CmdResetPos(void); void Powerstep01_CmdRun(motorDir_t direction, uint32_t speed); void Powerstep01_CmdSoftHiZ(void); void Powerstep01_CmdSoftStop(void); void Powerstep01_CmdStepClock(motorDir_t direction); void Powerstep01_ErrorHandler(uint16_t error); void Powerstep01_FetchAndClearAllStatus(void); uint16_t Powerstep01_GetFetchedStatus(void); uint32_t Powerstep01_GetFwVersion(void); int32_t Powerstep01_GetMark(void); int32_t Powerstep01_GetPosition(void); bool Powerstep01_IsDeviceBusy(void); uint16_t Powerstep01_ReadStatusRegister(void); bool Powerstep01_SelectStepMode(motorStepMode_t stepMode); void Powerstep01_SetHome(void); void Powerstep01_SetMark(void); void Powerstep01_WaitForAllDevicesNotBusy(void); void Powerstep01_WaitWhileActive(void); /** * @brief To and from register parameter conversion functions */ int32_t Powerstep01_ConvertPosition(uint32_t abs_position_reg); /** * @brief Functions to initialize the registers */ void Powerstep01_SetDeviceParamsToGivenValues(powerstep01_init_u_t *initPrm); void Powerstep01_SetRegisterToPredefinedValues(void); /** * @brief Functions to get and set parameters using digital or analog values */ uint32_t Powerstep01_CmdGetParam(powerstep01_Registers_t param); void Powerstep01_CmdSetParam(powerstep01_Registers_t param, uint32_t value); float Powerstep01_GetAnalogValue(powerstep01_Registers_t param); void Powerstep01_QueueCommands(uint8_t command, int32_t value); void Powerstep01_SendCommand(uint8_t command, uint32_t value); void Powerstep01_SendQueuedCommands(void); bool Powerstep01_SetAnalogValue(powerstep01_Registers_t param, float value); void Powerstep01_WriteBytes(uint8_t *pByteToTransmit, uint8_t *pReceivedByte); /** * @brief Rounding a floating point number to the nearest unsigned integer number. * @param f The floating point number. * @retval The nearest unsigned integer number. */ int round(float f) { if (f >= 0) { return (int) f + (f - (int) f < 0.5f ? 0 : 1); } else { return (int) f - (f - (int) f < -0.5f ? 1 : 0); } } /*** Component's I/O Methods ***/ /** * @brief Utility function to read data from Powerstep01. * @param[out] pBuffer pointer to the buffer to read data into. * @param NumBytesToRead number of bytes to read. * @retval COMPONENT_OK in case of success, COMPONENT_ERROR otherwise. */ status_t Read(uint8_t* pBuffer, uint16_t NumBytesToRead) { if (dev_spi.spi_read(pBuffer, ssel, NumBytesToRead) != 0) { return COMPONENT_ERROR; } return COMPONENT_OK; } /** * @brief Utility function to write data to Powerstep01. * @param pBuffer pointer to the buffer of data to send. * @param NumBytesToWrite number of bytes to write. * @retval COMPONENT_OK in case of success, COMPONENT_ERROR otherwise. */ status_t Write(uint8_t* pBuffer, uint16_t NumBytesToWrite) { if (dev_spi.spi_write(pBuffer, ssel, NumBytesToWrite) != 0) { return COMPONENT_ERROR; } return COMPONENT_OK; } /** * @brief Utility function to read and write data from/to Powerstep01 at the same time. * @param[out] pBufferToRead pointer to the buffer to read data into. * @param pBufferToWrite pointer to the buffer of data to send. * @param NumBytes number of bytes to read and write. * @retval COMPONENT_OK in case of success, COMPONENT_ERROR otherwise. */ status_t ReadWrite(uint8_t* pBufferToRead, uint8_t* pBufferToWrite, uint16_t NumBytes) { if (dev_spi.spi_read_write(pBufferToRead, pBufferToWrite, ssel, NumBytes) != 0) { return COMPONENT_ERROR; } return COMPONENT_OK; } /* ACTION 8 --------------------------------------------------------------* * Implement here other I/O methods beyond those already implemented * * above, which are declared extern within the component's header file. * *------------------------------------------------------------------------*/ /** * @brief Making the CPU wait. * @param None. * @retval None. */ void Powerstep01_Board_Delay(uint32_t delay) { wait_ms(delay); } /** * @brief Enabling interrupts. * @param None. * @retval None. */ void Powerstep01_Board_EnableIrq(void) { __enable_irq(); } /** * @brief Disabling interrupts. * @param None. * @retval None. */ void Powerstep01_Board_DisableIrq(void) { __disable_irq(); } /** * @brief Initialising the PWM. * @param None. * @retval None. */ void Powerstep01_Board_StepClockInit(void) {} /** * @brief Exit the device from reset mode. * @param None. * @retval None. */ void Powerstep01_Board_ReleaseReset(void) { standby_reset = 1; } /** * @brief Put the device in reset mode. * @param None. * @retval None. */ void Powerstep01_Board_reset(void) { standby_reset = 0; } /** * @brief Writing and reading bytes to/from the component through the SPI at the same time. * @param pByteToTransmit pointer to the buffer of data to send. * @param[out] pReceivedByte pointer to the buffer to read data into. * @retval "0" in case of success, "1" otherwise. */ uint8_t Powerstep01_Board_SpiWriteBytes(uint8_t *pByteToTransmit, uint8_t *pReceivedByte) { return (uint8_t) (ReadWrite(pReceivedByte, pByteToTransmit, numberOfDevices) == COMPONENT_OK ? 0 : 1); } /*** Component's Instance Variables ***/ /* ACTION 9 --------------------------------------------------------------* * Declare here interrupt related variables, if needed. * * Note that interrupt handling is platform dependent, see * * "Interrupt Related Methods" above. * * * * Example: * * + mbed: * * InterruptIn feature_irq; * *------------------------------------------------------------------------*/ /* Flag Interrupt. */ InterruptIn flag_irq; /* Busy Interrupt. */ InterruptIn busy_irq; /* ACTION 10 -------------------------------------------------------------* * Declare here other pin related variables, if needed. * * * * Example: * * + mbed: * * DigitalOut standby_reset; * *------------------------------------------------------------------------*/ /* Standby/reset pin. */ DigitalOut standby_reset; /* Pulse Width Modulation pin. */ PwmOut pwm; /* ACTION 11 -------------------------------------------------------------* * Declare here communication related variables, if needed. * * * * Example: * * + mbed: * * DigitalOut ssel; * * DevSPI &dev_spi; * *------------------------------------------------------------------------*/ /* Configuration. */ DigitalOut ssel; /* IO Device. */ DevSPI &dev_spi; /* ACTION 12 -------------------------------------------------------------* * Declare here identity related variables, if needed. * * Note that there should be only a unique identifier for each component, * * which should be the "who_am_i" parameter. * *------------------------------------------------------------------------*/ /* Identity */ uint8_t who_am_i; /* ACTION 13 -------------------------------------------------------------* * Declare here the component's static and non-static data, one variable * * per line. * * * * Example: * * float measure; * * int instance_id; * * static int number_of_instances; * *------------------------------------------------------------------------*/ /* Data. */ void (*errorHandlerCallback)(uint16_t error); uint8_t deviceInstance; /* Static data. */ static uint8_t numberOfDevices; static uint8_t spiTxBursts[POWERSTEP01_CMD_ARG_MAX_NB_BYTES][MAX_NUMBER_OF_DEVICES]; static uint8_t spiRxBursts[POWERSTEP01_CMD_ARG_MAX_NB_BYTES][MAX_NUMBER_OF_DEVICES]; public: /* Static data. */ static bool spiPreemptionByIsr; static bool isrFlag; }; #endif // __POWERSTEP01_CLASS_H /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/