Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: X_NUCLEO_IKS01A2 driver_mbed_TH02 mbed LoRaWAN-lib-v1_0_1 SX1272Lib
Fork of Training-Aug2018-SX1272-X-NUCLEO-IKS01A2 by
app/LoRaApp.cpp
- Committer:
- ubhat
- Date:
- 2017-04-06
- Revision:
- 0:6cc76d70e2a1
- Child:
- 2:19dd7bfcacf7
File content as of revision 0:6cc76d70e2a1:
/*
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2015 Semtech
Description: User-defined applications such as GPS, Temp, Accelerometer, LED indications etc.
Event based actions such as LED blink on Tx, LED toggle on downlink etc
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Uttam Bhat
*/
#include "LoRaApp.h"
#ifdef USE_IKS01A1_SENSOR
float iks01a1_data;
int32_t Accl_Value[3] = {0};
#endif
#ifdef USE_CAYENNE_LPP
/*
.... Pressure
.... Temperature
.... Humidity
.... Accelerometer
*/
uint8_t maxLPPsize[4] = {4, 4, 3, 8};
#endif
bool VerticalStatus = false;
Application::Application( uint8_t * memptr )
{
BuffAddr = memptr;
memset( BuffAddr, 0, LORAWAN_APP_DATA_MAX_SIZE );
BuffPtr = 0;
}
Application::~Application( )
{
}
void Application::ApplicationAppendData( uint8_t *pData, uint8_t len )
{
memcpy( BuffAddr + BuffPtr, pData, len );
BuffPtr += len;
}
void Application::ApplicationPtrPos( uint8_t ptrPos )
{
BuffPtr = ptrPos;
}
void Application::ApplicationCall( eAppType App )
{
switch( App )
{
// Appends 1 Byte to TX buffer
case AppTemp:
{
#ifdef USE_IKS01A1_SENSOR
temp_sensor2->GetTemperature(&iks01a1_data);
printf("Temp = %f, %d\r\n", iks01a1_data, (int8_t) iks01a1_data);
if( ( BuffPtr + 1 ) <= LORAWAN_APP_DATA_SIZE )
{
#ifdef USE_CAYENNE_LPP
BuffAddr[BuffPtr++] = 0;
BuffAddr[BuffPtr++] = (int8_t) ( iks01a1_data * 10 );
#else
BuffAddr[BuffPtr++] = (int8_t) iks01a1_data;
#endif
}
#endif
break;
}
// Appends 2 Bytes to TX buffer
case AppPressr:
{
#ifdef USE_IKS01A1_SENSOR
pressure_sensor->GetPressure(&iks01a1_data);
printf("Pressure = %f, %d\r\n", iks01a1_data, (uint16_t) iks01a1_data);
if( ( BuffPtr + 2 ) <= LORAWAN_APP_DATA_SIZE )
{
#ifdef USE_CAYENNE_LPP
int16_t tmp;
tmp = (int16_t) ( iks01a1_data * 10 );
BuffAddr[BuffPtr++] = ( tmp >> 8 ) & 0xFF;
BuffAddr[BuffPtr++] = ( tmp ) & 0xFF;
#else
BuffAddr[BuffPtr++] = ( (int16_t) iks01a1_data >> 8 ) & 0xFF;
BuffAddr[BuffPtr++] = ( (int16_t) iks01a1_data ) & 0xFF;
#endif
}
#endif
break;
}
// Appends 2 Bytes to TX buffer
case AppHumid:
{
#ifdef USE_IKS01A1_SENSOR
humidity_sensor->GetHumidity(&iks01a1_data);
printf("Humidity = %f, %d\r\n", iks01a1_data, (uint8_t) iks01a1_data);
if( ( BuffPtr + 1 ) <= LORAWAN_APP_DATA_SIZE )
{
#ifdef USE_CAYENNE_LPP
BuffAddr[BuffPtr++] = (uint8_t) ( iks01a1_data * 2 );
#else
BuffAddr[BuffPtr++] = (int8_t) iks01a1_data;
#endif
}
#endif
break;
}
// Appends 1 Byte to TX buffer
case AppBat:
{
if( ( BuffPtr + 1 ) <= LORAWAN_APP_DATA_SIZE )
{
BuffAddr[BuffPtr++] = BoardGetBatteryLevel( ); // Per LoRaWAN spec; 0 = Charging; 1...254 = level, 255 = N/A
}
break;
}
// Appends incremental values of 1 Byte each to TX buffer until Full
case AppRamp:
{
int32_t i, j;
// Populate Tx Buffer with increasing byte values starting from 0x00, 0x01, 0x02 ...
for( i = BuffPtr, j = 0; i < LORAWAN_APP_DATA_SIZE; i++ )
{
BuffAddr[i] = j++;
}
BuffPtr = LORAWAN_APP_DATA_SIZE;
break;
}
// Appends 2 Bytes to TX buffer
case AppAccl:
{
#ifdef USE_IKS01A1_SENSOR
accelerometer->Get_X_Axes(Accl_Value);
printf("X/Y/Z = %d/%d/%d\r\n", Accl_Value[0], Accl_Value[1], Accl_Value[2]);
if( ( BuffPtr + 6 ) <= LORAWAN_APP_DATA_SIZE )
{
BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[0] >> 8 ) & 0xFF;
BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[0] ) & 0xFF;
BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[1] >> 8 ) & 0xFF;
BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[1] ) & 0xFF;
BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[2] >> 8 ) & 0xFF;
BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[2] ) & 0xFF;
}
#endif
break;
}
case AppPushButton:
{
uint16_t PushButtonCnt;
uint8_t *p = (uint8_t *) &PushButtonCnt;
PushButtonCnt = LoRaMacUplinkStatus.UplinkCounter;
memcpy( &BuffAddr[BuffPtr], p, sizeof(uint16_t) );
break;
}
default:
{
break;
}
}
}
/*
static void OnRedLedTimerEvent( void )
{
TimerStop( &RedLedTimer.LedTimer );
if( RedLed == LED_OFF )
{
RedLed = LED_ON;
}
else
{
RedLed = LED_OFF;
}
}
static void OnYellowLedTimerEvent( void )
{
TimerStop( &YellowLedTimer.LedTimer );
if( YellowLed == LED_OFF )
{
YellowLed = LED_ON;
}
else
{
YellowLed = LED_OFF;
}
}
static void OnGreenLedTimerEvent( void )
{
TimerStop( &GreenLedTimer.LedTimer );
if( GreenLed == LED_OFF )
{
GreenLed = LED_ON;
}
else
{
GreenLed = LED_OFF;
}
}
TimerLed::TimerLed( eLedType led )
{
switch( led )
{
case Red:
{
TimerInit( &LedTimer, OnRedLedTimerEvent );
break;
}
case Yellow:
{
TimerInit( &LedTimer, OnYellowLedTimerEvent );
break;
}
case Green:
{
TimerInit( &LedTimer, OnGreenLedTimerEvent );
break;
}
}
}
TimerLed::~TimerLed( )
{
}
void BlinkLED( eLedType led, uint32_t time )
{
switch( led )
{
case Red:
{
TimerSetValue( &RedLedTimer.LedTimer, time );
TimerStart( &RedLedTimer.LedTimer );
RedLed = LED_ON;
break;
}
case Yellow:
{
TimerSetValue( &YellowLedTimer.LedTimer, time );
TimerStart( &YellowLedTimer.LedTimer );
YellowLed = LED_ON;
break;
}
case Green:
{
TimerSetValue( &GreenLedTimer.LedTimer, time );
TimerStart( &GreenLedTimer.LedTimer );
GreenLed = LED_ON;
break;
}
}
}
void ToggleLED( eLedType led )
{
switch( led )
{
case Red:
{
if( RedLed == LED_OFF )
{
RedLed = LED_ON;
}
else
{
RedLed = LED_OFF;
}
break;
}
case Yellow:
{
if( YellowLed == LED_OFF )
{
YellowLed = LED_ON;
}
else
{
YellowLed = LED_OFF;
}
break;
}
case Green:
{
if( GreenLed == LED_OFF )
{
GreenLed = LED_ON;
}
else
{
GreenLed = LED_OFF;
}
break;
}
}
}
void CtrlLED( eLedType led, uint8_t state )
{
switch( led )
{
case Red:
{
RedLed = state;
break;
}
case Yellow:
{
YellowLed = state;
break;
}
case Green:
{
GreenLed = state;
break;
}
case Usr:
{
if( state )
{
UsrLed = LED_ON;
}
else
{
UsrLed = LED_OFF;
}
break;
}
}
}
*/
void CheckOrientation( void )
{
/*
uint8_t statusReg;
// Read the PS_STATUS register
statusReg = Mma8451q.read_single( MMA8451_PL_STATUS );
// If Orientation of the Mote changed then populate Upper Nibble of 0th Byte of Tx Buffer
if( ( statusReg & 0x40 ) != 0 )
{
CtrlLED( Green, LED_OFF );
VerticalStatus = false; // horizontal
}
else
{
CtrlLED( Green, LED_ON );
VerticalStatus = true; // vertical
}
*/
}
