fix LPC812 PWM

Dependents:   IR_LED_Send

Fork of mbed-dev by mbed official

Revision:
0:9b334a45a8ff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/cmsis/TARGET_STM/TARGET_STM32L4/stm32l4xx_hal_cryp_ex.c	Thu Oct 01 15:25:22 2015 +0300
@@ -0,0 +1,2311 @@
+/**
+  ******************************************************************************
+  * @file    stm32l4xx_hal_cryp_ex.c
+  * @author  MCD Application Team
+  * @version V1.0.0
+  * @date    26-June-2015
+  * @brief   CRYPEx HAL module driver.
+  *          This file provides firmware functions to manage the extended 
+  *          functionalities of the Cryptography (CRYP) peripheral.  
+  *         
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
+  *
+  * Redistribution and use in source and binary forms, with or without modification,
+  * are permitted provided that the following conditions are met:
+  *   1. Redistributions of source code must retain the above copyright notice,
+  *      this list of conditions and the following disclaimer.
+  *   2. Redistributions in binary form must reproduce the above copyright notice,
+  *      this list of conditions and the following disclaimer in the documentation
+  *      and/or other materials provided with the distribution.
+  *   3. Neither the name of STMicroelectronics nor the names of its contributors
+  *      may be used to endorse or promote products derived from this software
+  *      without specific prior written permission.
+  *
+  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+  *
+  ******************************************************************************  
+  */ 
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l4xx_hal.h"
+
+#ifdef HAL_CRYP_MODULE_ENABLED
+
+#if defined(STM32L485xx) || defined(STM32L486xx)
+
+/** @addtogroup STM32L4xx_HAL_Driver
+  * @{
+  */
+
+/** @defgroup CRYPEx CRYPEx
+  * @brief CRYP Extended HAL module driver
+  * @{
+  */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup CRYPEx_Private_Constants CRYPEx Private Constants
+  * @{
+  */
+#define CRYP_CCF_TIMEOUTVALUE                      22000  /*!< CCF flag raising time-out value */
+#define CRYP_BUSY_TIMEOUTVALUE                     22000  /*!< BUSY flag reset time-out value  */
+/**
+  * @}
+  */
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup CRYPEx_Private_Functions CRYPEx Private Functions
+ * @{
+ */
+static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_ReadKey(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t Timeout);
+static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
+static void CRYP_GCMCMAC_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
+static void CRYP_GCMCMAC_DMAInCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_GCMCMAC_DMAError(DMA_HandleTypeDef *hdma);
+static void CRYP_GCMCMAC_DMAOutCplt(DMA_HandleTypeDef *hdma);
+static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_WaitOnBusyFlagReset(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
+/**
+  * @}
+  */
+
+/* Exported functions ---------------------------------------------------------*/
+
+/** @defgroup CRYPEx_Exported_Functions CRYPEx Exported Functions
+  * @{
+  */
+
+
+/** @defgroup CRYPEx_Exported_Functions_Group1 Extended callback function 
+ *  @brief    Extended callback functions. 
+ *
+@verbatim   
+ ===============================================================================
+                 ##### Extended callback functions #####
+ =============================================================================== 
+    [..]  This section provides callback function:
+      (+) Computation completed.
+
+@endverbatim
+  * @{
+  */
+
+
+/**
+  * @brief  Computation completed callbacks.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @retval None
+  */
+__weak void HAL_CRYPEx_ComputationCpltCallback(CRYP_HandleTypeDef *hcryp)
+{
+  /* NOTE : This function should not be modified; when the callback is needed,
+            the HAL_CRYP_ErrorCallback can be implemented in the user file
+   */ 
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup CRYPEx_Exported_Functions_Group2 AES extended processing functions 
+ *  @brief   Extended processing functions. 
+ *
+@verbatim   
+  ==============================================================================
+                      ##### AES extended processing functions #####
+  ==============================================================================  
+    [..]  This section provides functions allowing to:
+      (+) Encrypt plaintext or decrypt cipher text using AES algorithm in different chaining modes.
+          Functions are generic (handles ECB, CBC and CTR and all modes) and are only differentiated
+          based on the processing type. Three processing types are available:
+          (++) Polling mode
+          (++) Interrupt mode
+          (++) DMA mode
+      (+) Generate and authentication tag in addition to encrypt/decrypt a plain/cipher text using AES 
+          algorithm in different chaining modes.
+          Functions are generic (handles GCM, GMAC and CMAC) and process only one phase so that steps
+          can be skipped if so required. Functions are only differentiated based on the processing type. 
+          Three processing types are available:
+          (++) Polling mode
+          (++) Interrupt mode
+          (++) DMA mode          
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Carry out in polling mode the ciphering or deciphering operation according to
+  *         hcryp->Init structure fields, all operating modes (encryption, key derivation and/or decryption) and 
+  *         chaining modes ECB, CBC and CTR are managed by this function in polling mode.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData: Pointer to the plain text in case of encryption or cipher text in case of decryption
+  *                     or key derivation+decryption.
+  *                     Parameter is meaningless in case of key derivation.      
+  * @param  Size: Length of the input data buffer in bytes, must be a multiple of 16.
+  *               Parameter is meaningless in case of key derivation.  
+  * @param  pOutputData: Pointer to the cipher text in case of encryption or plain text in case of 
+  *                     decryption/key derivation+decryption, or pointer to the derivative keys in
+  *                     case of key derivation only.   
+  * @param  Timeout: Specify Timeout value 
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData, uint32_t Timeout)
+{
+
+  if (hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Check parameters setting */
+    if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+    {
+      if (pOutputData == NULL) 
+      {
+        return  HAL_ERROR;
+      }
+    }
+    else
+    {
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+  
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+    /* Call CRYP_ReadKey() API if the operating mode is set to
+       key derivation, CRYP_ProcessData() otherwise  */
+    if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+    {
+      if(CRYP_ReadKey(hcryp, pOutputData, Timeout) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }    
+    }
+    else
+    {
+      if(CRYP_ProcessData(hcryp, pInputData, Size, pOutputData, Timeout) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+    }
+  
+    /* If the state has not been set to SUSPENDED, set it to
+       READY, otherwise keep it as it is */
+    if (hcryp->State != HAL_CRYP_STATE_SUSPENDED)
+    {
+      hcryp->State = HAL_CRYP_STATE_READY;
+    }
+  
+    /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+  
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+
+
+/**
+  * @brief  Carry out in interrupt mode the ciphering or deciphering operation according to
+  *         hcryp->Init structure fields, all operating modes (encryption, key derivation and/or decryption) and 
+  *         chaining modes ECB, CBC and CTR are managed by this function in interrupt mode.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData: Pointer to the plain text in case of encryption or cipher text in case of decryption
+  *                     or key derivation+decryption.
+  *                     Parameter is meaningless in case of key derivation.      
+  * @param  Size: Length of the input data buffer in bytes, must be a multiple of 16.
+  *               Parameter is meaningless in case of key derivation.  
+  * @param  pOutputData: Pointer to the cipher text in case of encryption or plain text in case of 
+  *                     decryption/key derivation+decryption, or pointer to the derivative keys in 
+  *                     case of key derivation only.    
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES_IT(CRYP_HandleTypeDef *hcryp,  uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData)
+{
+  uint32_t inputaddr = 0;
+  
+  if(hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Check parameters setting */
+    if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+    {
+      if (pOutputData == NULL) 
+      {
+        return  HAL_ERROR;
+      }
+    }
+    else
+    {
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    /* If operating mode is not limited to key derivation only,
+       get the buffers addresses and sizes */
+    if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION)
+    {
+
+      hcryp->CrypInCount = Size;
+      hcryp->pCrypInBuffPtr = pInputData;
+      hcryp->pCrypOutBuffPtr = pOutputData;
+      hcryp->CrypOutCount = Size;
+    }
+    
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+      /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Enable Computation Complete Flag and Error Interrupts */
+    __HAL_CRYP_ENABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+    
+    
+    /* If operating mode is key derivation only, the input data have 
+       already been entered during the initialization process. For
+       the other operating modes, they are fed to the CRYP hardware 
+       block at this point. */
+    if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION)
+    {
+      /* Initiate the processing under interrupt in entering 
+         the first input data */
+      inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+      /* Increment/decrement instance pointer/counter */
+      hcryp->pCrypInBuffPtr += 16;
+      hcryp->CrypInCount -= 16;
+      /* Write the first input block in the Data Input register */
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      inputaddr+=4;
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      inputaddr+=4;
+      hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+      inputaddr+=4;
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    }
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;   
+  }
+}
+  
+  
+  
+
+
+/**
+  * @brief  Carry out in DMA mode the ciphering or deciphering operation according to
+  *         hcryp->Init structure fields.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData: Pointer to the plain text in case of encryption or cipher text in case of decryption
+  *                     or key derivation+decryption.    
+  * @param  Size: Length of the input data buffer in bytes, must be a multiple of 16.
+  * @param  pOutputData: Pointer to the cipher text in case of encryption or plain text in case of 
+  *                     decryption/key derivation+decryption.
+  * @note   Chaining modes ECB, CBC and CTR are managed by this function in DMA mode.   
+  * @note   Supported operating modes are encryption, decryption and key derivation with decryption. 
+  * @note   No DMA channel is provided for key derivation only and therefore, access to AES_KEYRx 
+  *         registers must be done by software.   
+  * @note  This API is not applicable to key derivation only; for such a mode, access to AES_KEYRx 
+  *        registers must be done by software thru HAL_CRYPEx_AES() or HAL_CRYPEx_AES_IT() APIs.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES_DMA(CRYP_HandleTypeDef *hcryp,  uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData)
+{
+  uint32_t inputaddr = 0;
+  uint32_t outputaddr = 0;
+  
+  if (hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Check parameters setting */
+    if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+    {
+      /* no DMA channel is provided for key derivation operating mode, 
+         access to AES_KEYRx registers must be done by software */
+      return  HAL_ERROR;
+    }
+    else
+    {
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    
+    
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    inputaddr  = (uint32_t)pInputData;
+    outputaddr = (uint32_t)pOutputData;
+    
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Set the input and output addresses and start DMA transfer */ 
+    CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+    
+    /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;   
+  }
+}
+  
+
+
+
+
+
+/**
+  * @brief  Carry out in polling mode the authentication tag generation as well as the ciphering or deciphering 
+  *         operation according to hcryp->Init structure fields. 
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData: Pointer to payload data in GCM payload phase,
+  *                     Parameter is meaningless in case of GCM/GMAC init, header and final phases, 
+  *                     Pointer to B0 blocks in CMAC header phase,
+  *                     Pointer to C block in CMAC final phase.                             
+  * @param  Size: Length of the input payload data buffer in bytes, must be a multiple of 16,
+  *               Parameter is meaningless in case of GCM/GMAC init and header phases,
+  *               Length of B blocks (in bytes, must be a multiple of 16) in CMAC header phase,
+  *               Length of C block (in bytes) in CMAC final phase.                              
+  * @param  pOutputData: Pointer to plain or cipher text in GCM payload phase, 
+  *                      pointer to authentication tag in GCM/GMAC and CMAC final phases.
+  *                      Parameter is meaningless in case of GCM/GMAC init and header phases
+  *                      and in case of CMAC header phase.  
+  * @param  Timeout: Specify Timeout value 
+  * @note   Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC and CMAC.
+  * @note   Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes 
+  *         can be skipped by the user if so required.          
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES_Auth(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData, uint32_t Timeout)
+{
+  uint32_t index        = 0;
+  uint32_t inputaddr    = 0;
+  uint32_t outputaddr   = 0;
+  uint32_t tagaddr      = 0;
+  uint64_t headerlength = 0; 
+  uint64_t inputlength  = 0; 
+  
+  if (hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* input/output parameters check */
+    if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+    {
+      if ((hcryp->Init.Header == NULL) || (hcryp->Init.HeaderSize == 0))
+      {
+        return  HAL_ERROR;
+      }
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+        /* In case of CMAC header phase resumption, we can have pInputData = NULL and  Size = 0 */
+        if (((pInputData != NULL) && (Size == 0)) || ((pInputData == NULL) && (Size != 0)))
+        {
+          return  HAL_ERROR;
+        }
+      }
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+    {   
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+    {
+      if (pOutputData == NULL)
+      {
+        return  HAL_ERROR;
+      }
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
+      {
+        return  HAL_ERROR;
+      }
+    }
+      
+      
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+  
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+    /*=====================*/
+    /* GCM/GMAC init phase */
+    /*=====================*/
+    /* In case of init phase, the input data (Key and Initialization Vector) have 
+       already been entered during the initialization process. Therefore, the
+       API just waits for the CCF flag to be set. */
+    if (hcryp->Init.GCMCMACPhase == CRYP_GCM_INIT_PHASE)
+    {
+      /* just wait for hash computation */
+      if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+      { 
+        hcryp->State = HAL_CRYP_STATE_READY;        
+        __HAL_UNLOCK(hcryp);
+        return HAL_TIMEOUT;
+      }
+      
+      /* Clear CCF Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      /* Mark that the initialization phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
+    }
+    /*===============================*/
+    /* GCM/GMAC or CMAC header phase */
+    /*===============================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+    {      
+      /* Set header phase; for GCM or GMAC, set data-byte at this point */
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_GCMCMAC_HEADER_PHASE|hcryp->Init.DataType);
+      }
+      else
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_HEADER_PHASE);
+      }
+         
+      /* Enable the Peripheral */
+      __HAL_CRYP_ENABLE();
+      
+      /* in case of CMAC, enter B0 block in header phase, before the header itself. */
+      /* If Size = 0 (possible case of resumption after CMAC header phase suspension),
+         skip these steps and go directly to header buffer feeding to the HW */
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (Size != 0))
+      {
+        inputaddr = (uint32_t)pInputData; 
+        
+        for(index=0; (index < Size); index += 16)
+        {
+          /* Write the Input block in the Data Input register */
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4;
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4;
+          hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+          inputaddr+=4;
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4;
+          
+          if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+          { 
+            hcryp->State = HAL_CRYP_STATE_READY;        
+            __HAL_UNLOCK(hcryp);
+            return HAL_TIMEOUT;
+          }
+          /* Clear CCF Flag */
+          __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);           
+
+          /* If the suspension flag has been raised and if the processing is not about
+           to end, suspend processing */  
+          if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16) < Size))        
+          {
+            /* reset SuspendRequest */
+            hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+            /* Change the CRYP state */
+            hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+            /* Mark that the header phase is over */
+            hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+            
+           /* Save current reading and writing locations of Input and Output buffers */
+           hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+           /* Save the total number of bytes (B blocks + header) that remain to be 
+              processed at this point */
+           hcryp->CrypInCount     =  hcryp->Init.HeaderSize + Size - (index+16);
+        
+           /* Process Unlocked */
+            __HAL_UNLOCK(hcryp);
+        
+            return HAL_OK;
+          } 
+        } /* for(index=0; (index < Size); index += 16) */             
+      }
+      
+      /* Enter header */  
+      inputaddr = (uint32_t)hcryp->Init.Header; 
+      for(index=0; (index < hcryp->Init.HeaderSize); index += 16)
+      {
+        /* Write the Input block in the Data Input register */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        
+        if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+        { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+        }
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR); 
+        
+        /* If the suspension flag has been raised and if the processing is not about
+         to end, suspend processing */  
+        if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16) < hcryp->Init.HeaderSize))        
+        {
+          /* reset SuspendRequest */
+          hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+          /* Change the CRYP state */
+          hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+          /* Mark that the header phase is over */
+          hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+          
+         /* Save current reading and writing locations of Input and Output buffers */
+         hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+         /* Save the total number of bytes that remain to be processed at this point */
+          hcryp->CrypInCount =  hcryp->Init.HeaderSize - (index+16);
+      
+         /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+      
+          return HAL_OK;
+        }       
+      }
+      /* Mark that the header phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
+    }
+    /*========================*/
+    /* GCM/GMAC payload phase */
+    /*========================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+    {
+      
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCM_PAYLOAD_PHASE);
+      
+      /* if the header phase has been bypassed, AES must be enabled again */
+      if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+      {
+        __HAL_CRYP_ENABLE();  
+      }
+      
+      inputaddr  = (uint32_t)pInputData;
+      outputaddr = (uint32_t)pOutputData;
+      
+      /* Enter payload */
+      for(index=0; (index < Size); index += 16)
+      {
+        /* Write the Input block in the Data Input register */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        
+        if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+        { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+        }
+          
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+        
+        /* Retrieve output data: read the output block 
+           from the Data Output Register */
+        *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+        outputaddr+=4;
+        *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+        outputaddr+=4;
+        *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+        outputaddr+=4;
+        *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+        outputaddr+=4;
+       
+        /* If the suspension flag has been raised and if the processing is not about
+         to end, suspend processing */  
+        if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16) < Size))
+        {
+          if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
+          {
+            /* Ensure that Busy flag is reset */
+            if(CRYP_WaitOnBusyFlagReset(hcryp, CRYP_BUSY_TIMEOUTVALUE) != HAL_OK)  
+            {   
+              hcryp->State = HAL_CRYP_STATE_READY;        
+              __HAL_UNLOCK(hcryp);
+              return HAL_TIMEOUT;
+            }
+          }       
+          /* reset SuspendRequest */
+          hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+          /* Change the CRYP state */
+          hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+          /* Mark that the header phase is over */
+          hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+          
+         /* Save current reading and writing locations of Input and Output buffers */
+         hcryp->pCrypOutBuffPtr =  (uint8_t *)outputaddr;
+         hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+         /* Save the number of bytes that remain to be processed at this point */
+         hcryp->CrypInCount     =  Size - (index+16);          
+        
+         /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+        
+          return HAL_OK;
+        }            
+        
+      }
+      /* Mark that the payload phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;         
+    }
+    /*==============================*/
+    /* GCM/GMAC or CMAC final phase */
+    /*==============================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+    {    
+      tagaddr = (uint32_t)pOutputData;
+      
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_FINAL_PHASE);
+      
+      /* if the header and payload phases have been bypassed, AES must be enabled again */
+      if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+      {
+        __HAL_CRYP_ENABLE();  
+      }
+      
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */
+        inputlength = Size * 8;                    /* input length in bits */ 
+        
+           
+        if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+        {
+          hcryp->Instance->DINR = __RBIT((headerlength)>>32);
+          hcryp->Instance->DINR = __RBIT(headerlength);
+          hcryp->Instance->DINR = __RBIT((inputlength)>>32);
+          hcryp->Instance->DINR = __RBIT(inputlength);
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+        {
+          hcryp->Instance->DINR = __REV((headerlength)>>32);
+          hcryp->Instance->DINR = __REV(headerlength);
+          hcryp->Instance->DINR = __REV((inputlength)>>32);
+          hcryp->Instance->DINR = __REV(inputlength);
+        } 
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+        {
+          hcryp->Instance->DINR = __ROR((headerlength)>>32, 16);
+          hcryp->Instance->DINR = __ROR(headerlength, 16);
+          hcryp->Instance->DINR = __ROR((inputlength)>>32, 16);
+          hcryp->Instance->DINR = __ROR(inputlength, 16);          
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+        {
+          hcryp->Instance->DINR = (uint32_t)(headerlength>>32);
+          hcryp->Instance->DINR = (uint32_t)(headerlength);
+          hcryp->Instance->DINR = (uint32_t)(inputlength>>32);
+          hcryp->Instance->DINR = (uint32_t)(inputlength);
+        }
+      }
+      else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+        inputaddr  = (uint32_t)pInputData;
+        /* Enter the last block made of a 128-bit value formatted
+           from the original B0 packet. */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      }
+      
+      
+      if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+      { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+      }
+
+      /* Read the Auth TAG in the Data Out register */
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR; 
+         
+
+      /* Clear CCF Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      /* Mark that the final phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
+      /* Disable the Peripheral */
+      __HAL_CRYP_DISABLE();
+    }
+    /*=================================================*/
+    /* case incorrect hcryp->Init.GCMCMACPhase setting */
+    /*=================================================*/
+    else
+    {
+      hcryp->State = HAL_CRYP_STATE_ERROR; 
+      __HAL_UNLOCK(hcryp); 
+      return HAL_ERROR;
+    }
+ 
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_READY;
+  
+    /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+  
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+
+
+
+/**
+  * @brief  Carry out in interrupt mode the authentication tag generation as well as the ciphering or deciphering 
+  *         operation according to hcryp->Init structure fields. 
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData: Pointer to payload data in GCM payload phase,
+  *                     Parameter is meaningless in case of GCM/GMAC init, header and final phases, 
+  *                     Pointer to B0 blocks in CMAC header phase,
+  *                     Pointer to C block in CMAC final phase.       
+  * @param  Size: Length of the input payload data buffer in bytes, must be a multiple of 16,
+  *               Parameter is meaningless in case of GCM/GMAC init and header phases,
+  *               Length of B blocks (in bytes, must be a multiple of 16) in CMAC header phase,
+  *               Length of C block (in bytes) in CMAC final phase.           
+  * @param  pOutputData: Pointer to plain or cipher text in GCM payload phase, 
+  *                      pointer to authentication tag in GCM/GMAC and CMAC final phases.
+  *                      Parameter is meaningless in case of GCM/GMAC init and header phases
+  *                      and in case of CMAC header phase.
+  * @note   Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC and CMAC.
+  * @note   Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes 
+  *         can be skipped by the user if so required.                                 
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES_Auth_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData)
+{
+
+  uint32_t inputaddr    = 0;
+  uint64_t headerlength = 0;
+  uint64_t inputlength  = 0;
+ 
+
+  if (hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* input/output parameters check */
+    if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+    {
+      if ((hcryp->Init.Header == NULL) || (hcryp->Init.HeaderSize == 0))
+      {
+        return  HAL_ERROR;
+      }
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+        /* In case of CMAC header phase resumption, we can have pInputData = NULL and  Size = 0 */
+        if (((pInputData != NULL) && (Size == 0)) || ((pInputData == NULL) && (Size != 0)))
+        {
+          return  HAL_ERROR;
+        }
+      }      
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+    {   
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+    {
+      if (pOutputData == NULL)
+      {
+        return  HAL_ERROR;
+      }
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    
+    
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+                           
+    /* Enable Computation Complete Flag and Error Interrupts */
+    __HAL_CRYP_ENABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+    
+
+    
+    /*=====================*/
+    /* GCM/GMAC init phase */
+    /*=====================*/
+    if (hcryp->Init.GCMCMACPhase == CRYP_GCM_INIT_PHASE)
+    {    
+    /* In case of init phase, the input data (Key and Initialization Vector) have 
+       already been entered during the initialization process. Therefore, the
+       software just waits for the CCF interrupt to be raised and which will
+       be handled by CRYP_AES_Auth_IT() API. */
+    }
+    /*===============================*/
+    /* GCM/GMAC or CMAC header phase */
+    /*===============================*/   
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+    {
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+        /* In case of CMAC, B blocks are first entered, before the header.
+           Therefore, B blocks and the header are entered back-to-back
+           as if it was only one single block. 
+           However, in case of resumption after suspension, if all the
+           B blocks have been entered (in that case, Size = 0), only the
+           remainder of the non-processed header bytes are entered. */
+          if (Size != 0)
+          {
+            hcryp->CrypInCount = Size + hcryp->Init.HeaderSize;
+            hcryp->pCrypInBuffPtr = pInputData;
+          }
+          else
+          {
+            hcryp->CrypInCount = hcryp->Init.HeaderSize;
+            hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+          }
+      }
+      else
+      {
+        /* Get the header addresses and sizes */
+        hcryp->CrypInCount = hcryp->Init.HeaderSize;
+        hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+      }    
+    
+      inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+      
+      /* Set header phase; for GCM or GMAC, set data-byte at this point */
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_GCMCMAC_HEADER_PHASE|hcryp->Init.DataType);
+      }
+      else
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_HEADER_PHASE);
+      }
+       
+      /* Enable the Peripheral */
+      __HAL_CRYP_ENABLE();
+    
+      /* Increment/decrement instance pointer/counter */
+      hcryp->pCrypInBuffPtr += 16;
+      hcryp->CrypInCount -= 16;
+      
+      
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      { 
+        if (hcryp->CrypInCount == hcryp->Init.HeaderSize)
+        {
+          /* All B blocks will have been entered after the next
+             four DINR writing, so point at header buffer for
+             the next iteration */
+          hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+        }
+      }       
+    
+      /* Enter header first block to initiate the process
+         in the Data Input register */
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      inputaddr+=4;
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      inputaddr+=4;
+      hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+      inputaddr+=4;
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    }
+    /*========================*/
+    /* GCM/GMAC payload phase */
+    /*========================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+    {
+      /* Get the buffer addresses and sizes */
+      hcryp->CrypInCount = Size;
+      hcryp->pCrypInBuffPtr = pInputData;
+      hcryp->pCrypOutBuffPtr = pOutputData;
+      hcryp->CrypOutCount = Size; 
+    
+      inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+      
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCM_PAYLOAD_PHASE);
+       
+      /* if the header phase has been bypassed, AES must be enabled again */
+      if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+      {
+        __HAL_CRYP_ENABLE();  
+      }
+    
+      /* Increment/decrement instance pointer/counter */
+      hcryp->pCrypInBuffPtr += 16;
+      hcryp->CrypInCount -= 16;
+    
+      /* Enter payload first block to initiate the process
+         in the Data Input register */
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      inputaddr+=4;
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      inputaddr+=4;
+      hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+      inputaddr+=4;
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    }
+    /*==============================*/
+    /* GCM/GMAC or CMAC final phase */
+    /*==============================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+    {
+       hcryp->pCrypOutBuffPtr = pOutputData;
+       
+       MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_FINAL_PHASE);
+       
+      /* if the header and payload phases have been bypassed, AES must be enabled again */
+      if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+      {
+        __HAL_CRYP_ENABLE();  
+      }
+      
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */
+        inputlength = Size * 8;                   /* input length in bits */ 
+        /* Write the number of bits in the header on 64 bits followed by the number
+           of bits in the payload on 64 bits as well */
+        if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+        {
+          hcryp->Instance->DINR = __RBIT((headerlength)>>32);
+          hcryp->Instance->DINR = __RBIT(headerlength);
+          hcryp->Instance->DINR = __RBIT((inputlength)>>32);
+          hcryp->Instance->DINR = __RBIT(inputlength);
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+        {
+          hcryp->Instance->DINR = __REV((headerlength)>>32);
+          hcryp->Instance->DINR = __REV(headerlength);
+          hcryp->Instance->DINR = __REV((inputlength)>>32);
+          hcryp->Instance->DINR = __REV(inputlength);
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+        {
+          hcryp->Instance->DINR = __ROR((headerlength)>>32, 16);
+          hcryp->Instance->DINR = __ROR(headerlength, 16);
+          hcryp->Instance->DINR = __ROR((inputlength)>>32, 16);
+          hcryp->Instance->DINR = __ROR(inputlength, 16);             
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+        {
+          hcryp->Instance->DINR = (uint32_t)(headerlength>>32);
+          hcryp->Instance->DINR = (uint32_t)(headerlength);
+          hcryp->Instance->DINR = (uint32_t)(inputlength>>32);
+          hcryp->Instance->DINR = (uint32_t)(inputlength);
+        }
+      }
+      else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+        inputaddr  = (uint32_t)pInputData;
+        /* Enter the last block made of a 128-bit value formatted
+           from the original B0 packet. */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+      }
+    }
+    /*=================================================*/
+    /* case incorrect hcryp->Init.GCMCMACPhase setting */
+    /*=================================================*/
+    else
+    {
+      hcryp->State = HAL_CRYP_STATE_ERROR; 
+      return HAL_ERROR;
+    }
+  
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+
+
+
+/**
+  * @brief  Carry out in DMA mode the authentication tag generation as well as the ciphering or deciphering 
+  *         operation according to hcryp->Init structure fields. 
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData: Pointer to payload data in GCM payload phase,
+  *                     Parameter is meaningless in case of GCM/GMAC init, header and final phases, 
+  *                     Pointer to B0 blocks in CMAC header phase,
+  *                     Pointer to C block in CMAC final phase.      
+  * @param  Size: Length of the input payload data buffer in bytes, must be a multiple of 16,
+  *               Parameter is meaningless in case of GCM/GMAC init and header phases,
+  *               Length of B blocks (in bytes, must be a multiple of 16) in CMAC header phase,
+  *               Length of C block (in bytes) in CMAC final phase.          
+  * @param  pOutputData: Pointer to plain or cipher text in GCM payload phase, 
+  *                      pointer to authentication tag in GCM/GMAC and CMAC final phases.
+  *                      Parameter is meaningless in case of GCM/GMAC init and header phases
+  *                      and in case of CMAC header phase.
+  * @note   Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC and CMAC.
+  * @note   Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes 
+  *         can be skipped by the user if so required.           
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES_Auth_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData)
+{
+  uint32_t inputaddr    = 0;
+  uint32_t outputaddr   = 0;
+  uint32_t tagaddr      = 0;
+  uint64_t headerlength = 0;
+  uint64_t inputlength  = 0; 
+  
+  
+  if (hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* input/output parameters check */
+    if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+    {
+      if ((hcryp->Init.Header == NULL) || (hcryp->Init.HeaderSize == 0))
+      {
+        return  HAL_ERROR;
+      }
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+        if ((pInputData == NULL) || (Size == 0))
+        {
+          return  HAL_ERROR;
+        }
+      }      
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+    {   
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+    {
+      if (pOutputData == NULL)
+      {
+        return  HAL_ERROR;
+      }
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    
+    
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+  
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+    /*=====================*/
+    /* GCM/GMAC init phase */
+    /*=====================*/
+    /* In case of init phase, the input data (Key and Initialization Vector) have 
+       already been entered during the initialization process. No DMA transfer is
+       required at that point therefore, the software just waits for the CCF flag 
+       to be raised. */
+    if (hcryp->Init.GCMCMACPhase == CRYP_GCM_INIT_PHASE)
+    {
+      /* just wait for hash computation */
+      if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+      { 
+        hcryp->State = HAL_CRYP_STATE_READY;        
+        __HAL_UNLOCK(hcryp);
+        return HAL_TIMEOUT;
+      }
+      
+      /* Clear CCF Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      /* Mark that the initialization phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
+      hcryp->State = HAL_CRYP_STATE_READY;
+    }
+    /*===============================*/
+    /* GCM/GMAC or CMAC header phase */
+    /*===============================*/     
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+    {
+      /* Set header phase; for GCM or GMAC, set data-byte at this point */
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_GCMCMAC_HEADER_PHASE|hcryp->Init.DataType);
+      }
+      else
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_HEADER_PHASE);
+      }
+      
+      /* enter first B0 block in polling mode (no DMA transfer for B0) */
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+         /* Enable the CRYP peripheral */
+        __HAL_CRYP_ENABLE();
+  
+        inputaddr  = (uint32_t)pInputData;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      
+        if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+        { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+        }
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      }
+      
+      
+      inputaddr = (uint32_t)hcryp->Init.Header;
+      /* Set the input address and start DMA transfer */ 
+      CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, hcryp->Init.HeaderSize, 0);
+    }
+    /*========================*/
+    /* GCM/GMAC payload phase */
+    /*========================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+    {
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCM_PAYLOAD_PHASE);
+      
+      inputaddr  = (uint32_t)pInputData;
+      outputaddr = (uint32_t)pOutputData;
+      /* Set the input and output addresses and start DMA transfer */ 
+      CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);   
+    }
+    /*==============================*/
+    /* GCM/GMAC or CMAC final phase */
+    /*==============================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+    {
+      tagaddr = (uint32_t)pOutputData;
+      
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_FINAL_PHASE);
+      
+      /* if the header and payload phases have been bypassed, AES must be enabled again */
+      if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+      {
+        __HAL_CRYP_ENABLE();  
+      }
+      
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */
+        inputlength = Size * 8;  /* input length in bits */ 
+        /* Write the number of bits in the header on 64 bits followed by the number
+           of bits in the payload on 64 bits as well */
+        if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+        {
+          hcryp->Instance->DINR = __RBIT((headerlength)>>32);
+          hcryp->Instance->DINR = __RBIT(headerlength);
+          hcryp->Instance->DINR = __RBIT((inputlength)>>32);
+          hcryp->Instance->DINR = __RBIT(inputlength);
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+        {
+          hcryp->Instance->DINR = __REV((headerlength)>>32);
+          hcryp->Instance->DINR = __REV(headerlength);
+          hcryp->Instance->DINR = __REV((inputlength)>>32);
+          hcryp->Instance->DINR = __REV(inputlength);
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+        {
+          hcryp->Instance->DINR = __ROR((headerlength)>>32, 16);
+          hcryp->Instance->DINR = __ROR(headerlength, 16);
+          hcryp->Instance->DINR = __ROR((inputlength)>>32, 16);
+          hcryp->Instance->DINR = __ROR(inputlength, 16);            
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+        {
+          hcryp->Instance->DINR = (uint32_t)(headerlength>>32);
+          hcryp->Instance->DINR = (uint32_t)(headerlength);
+          hcryp->Instance->DINR = (uint32_t)(inputlength>>32);
+          hcryp->Instance->DINR = (uint32_t)(inputlength);
+        }
+      }
+      else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+        
+        inputaddr  = (uint32_t)pInputData;
+        /* Enter the last block made of a 128-bit value formatted
+           from the original B0 packet. */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+      }
+      
+      /* No DMA transfer is required at that point therefore, the software 
+         just waits for the CCF flag to be raised. */
+      if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+      { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+      }
+      /* Clear CCF Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      /* Read the Auth TAG in the IN FIFO */
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+  
+      /* Mark that the final phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Disable the Peripheral */
+      __HAL_CRYP_DISABLE();
+    }
+    /*=================================================*/
+    /* case incorrect hcryp->Init.GCMCMACPhase setting */
+    /*=================================================*/
+    else
+    {
+      hcryp->State = HAL_CRYP_STATE_ERROR;
+      __HAL_UNLOCK(hcryp); 
+      return HAL_ERROR;
+    }    
+  
+    /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+  
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup CRYPEx_Exported_Functions_Group3 AES suspension/resumption functions 
+ *  @brief   Extended processing functions. 
+ *
+@verbatim   
+  ==============================================================================
+                    ##### AES extended suspension and resumption functions #####
+  ==============================================================================  
+    [..]  This section provides functions allowing to:
+      (+) save in memory the Initialization Vector, the Key registers, the Control register or
+          the Suspend registers when a process is suspended by a higher priority message
+      (+) write back in CRYP hardware block the saved values listed above when the suspended
+          lower priority message processing is resumed.     
+
+@endverbatim
+  * @{
+  */
+
+
+/**
+  * @brief  In case of message processing suspension, read the Initialization Vector. 
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.    
+  * @param  Output: Pointer to the buffer containing the saved Initialization Vector.
+  * @note   This value has to be stored for reuse by writing the AES_IVRx registers
+  *         as soon as the interrupted processing has to be resumed.
+  *         Applicable to all chaining modes.    
+  * @note   AES must be disabled when reading or resetting the IV values.   
+  * @retval None
+  */
+void HAL_CRYPEx_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
+{
+  uint32_t outputaddr = (uint32_t)Output;
+    
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR3);
+  outputaddr+=4;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR2);
+  outputaddr+=4;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR1);
+  outputaddr+=4;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR0);
+}
+
+/**
+  * @brief  In case of message processing resumption, rewrite the Initialization
+  *         Vector in the AES_IVRx registers.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.      
+  * @param  Input: Pointer to the buffer containing the saved Initialization Vector to
+  *         write back in the CRYP hardware block. 
+  * @note   Applicable to all chaining modes.       
+  * @note   AES must be disabled when reading or resetting the IV values.     
+  * @retval None
+  */
+void HAL_CRYPEx_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
+{
+  uint32_t ivaddr = (uint32_t)Input;
+  
+  hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4;
+  hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4;
+  hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4;
+  hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr));
+}
+
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing suspension, read the Suspend Registers.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.  
+  * @param  Output: Pointer to the buffer containing the saved Suspend Registers.
+  * @note   These values have to be stored for reuse by writing back the AES_SUSPxR registers
+  *         as soon as the interrupted processing has to be resumed.       
+  * @retval None
+  */
+void HAL_CRYPEx_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
+{
+  uint32_t outputaddr = (uint32_t)Output;
+    
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP7R);
+  outputaddr+=4;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP6R);
+  outputaddr+=4;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP5R);
+  outputaddr+=4;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP4R);
+  outputaddr+=4;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP3R);
+  outputaddr+=4;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP2R);
+  outputaddr+=4;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP1R); 
+  outputaddr+=4;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP0R);   
+}
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing resumption, rewrite the Suspend
+  *         Registers in the AES_SUSPxR registers.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.    
+  * @param  Input: Pointer to the buffer containing the saved suspend registers to
+  *         write back in the CRYP hardware block. 
+  * @retval None
+  */
+void HAL_CRYPEx_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
+{
+  uint32_t ivaddr = (uint32_t)Input;
+  
+  hcryp->Instance->SUSP7R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4;
+  hcryp->Instance->SUSP6R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4;
+  hcryp->Instance->SUSP5R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4;
+  hcryp->Instance->SUSP4R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4;
+  hcryp->Instance->SUSP3R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4;
+  hcryp->Instance->SUSP2R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4;
+  hcryp->Instance->SUSP1R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4;
+  hcryp->Instance->SUSP0R = __REV(*(uint32_t*)(ivaddr));  
+}
+
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing suspension, read the Key Registers.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.   
+  * @param  Output: Pointer to the buffer containing the saved Key Registers. 
+  * @param  KeySize: Indicates the key size (128 or 256 bits).
+  * @note   These values have to be stored for reuse by writing back the AES_KEYRx registers
+  *         as soon as the interrupted processing has to be resumed.           
+  * @retval None
+  */
+void HAL_CRYPEx_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t KeySize)
+{
+  uint32_t keyaddr = (uint32_t)Output;
+  
+  if (KeySize == CRYP_KEYSIZE_256B)
+  {
+    *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR7);
+    keyaddr+=4;
+    *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR6);
+    keyaddr+=4;
+    *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR5);
+    keyaddr+=4;
+    *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR4);
+    keyaddr+=4;                 
+  }  
+  
+  *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR3);
+  keyaddr+=4;
+  *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR2);
+  keyaddr+=4;
+  *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR1);
+  keyaddr+=4;
+  *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR0); 
+}
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing resumption, rewrite the Key
+  *         Registers in the AES_KEYRx registers.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.   
+  * @param  Input: Pointer to the buffer containing the saved key registers to
+  *         write back in the CRYP hardware block. 
+  * @param  KeySize: Indicates the key size (128 or 256 bits)     
+  * @retval None
+  */
+void HAL_CRYPEx_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint32_t KeySize)
+{  
+  uint32_t keyaddr = (uint32_t)Input;
+  
+  if (KeySize == CRYP_KEYSIZE_256B)
+  {
+    hcryp->Instance->KEYR7 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    hcryp->Instance->KEYR6 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    hcryp->Instance->KEYR5 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    hcryp->Instance->KEYR4 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;      
+  }  
+  
+    hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr));    
+}
+
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing suspension, read the Control Register.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.   
+  * @param  Output: Pointer to the buffer containing the saved Control Register.
+  * @note   This values has to be stored for reuse by writing back the AES_CR register
+  *         as soon as the interrupted processing has to be resumed.          
+  * @retval None
+  */
+void HAL_CRYPEx_Read_ControlRegister(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
+{
+  *(uint32_t*)(Output) = hcryp->Instance->CR;    
+}
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing resumption, rewrite the Control
+  *         Registers in the AES_CR register.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.   
+  * @param  Input: Pointer to the buffer containing the saved Control Register to
+  *         write back in the CRYP hardware block.   
+  * @retval None
+  */
+void HAL_CRYPEx_Write_ControlRegister(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
+{  
+  hcryp->Instance->CR = *(uint32_t*)(Input);
+}
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/** @addtogroup CRYPEx_Private_Functions
+  * @{
+  */
+
+/**
+  * @brief  DMA CRYP Input Data process complete callback
+  *         for GCM, GMAC or CMAC chainging modes.
+  * @note   Specific setting of hcryp fields are required only
+  *         in the case of header phase where no output data DMA
+  *         transfer is on-going (only input data transfer is enabled
+  *         in such a case).      
+  * @param  hdma: DMA handle.
+  * @retval None
+  */
+static void CRYP_GCMCMAC_DMAInCplt(DMA_HandleTypeDef *hdma)  
+{
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  /* Disable the DMA transfer for input request  */
+  CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+  
+  if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+  {
+    /* Clear CCF Flag */
+    __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR); 
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_READY;
+    
+    /* Mark that the header phase is over */
+    hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
+  }
+  
+  /* Call input data transfer complete callback */
+  HAL_CRYP_InCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP Output Data process complete callback
+  *         for GCM, GMAC or CMAC chainging modes.
+  * @note   This callback is called only in the payload phase.  
+  * @param  hdma: DMA handle.
+  * @retval None
+  */
+static void CRYP_GCMCMAC_DMAOutCplt(DMA_HandleTypeDef *hdma)
+{
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  /* Disable the DMA transfer for output request */
+  CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+
+  /* Clear CCF Flag */
+  __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+  
+  /* Change the CRYP state to ready */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  /* Mark that the payload phase is over */
+  hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER; 
+  
+  /* Call output data transfer complete callback */
+  HAL_CRYP_OutCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP communication error callback
+  *         for GCM, GMAC or CMAC chainging modes.
+  * @param  hdma: DMA handle
+  * @retval None
+  */
+static void CRYP_GCMCMAC_DMAError(DMA_HandleTypeDef *hdma)
+{
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  hcryp->State= HAL_CRYP_STATE_ERROR;
+  hcryp->ErrorCode |= HAL_CRYP_DMA_ERROR;
+  HAL_CRYP_ErrorCallback(hcryp);
+  /* Clear Error Flag */
+  __HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR);
+}
+
+
+
+/** 
+  * @brief  Handle CRYP block input/output data handling under interruption
+  *         for GCM, GMAC or CMAC chainging modes.  
+  * @note   The function is called under interruption only, once
+  *         interruptions have been enabled by HAL_CRYPEx_AES_Auth_IT().  
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @retval HAL status
+  */
+HAL_StatusTypeDef CRYP_AES_Auth_IT(CRYP_HandleTypeDef *hcryp)
+{
+  uint32_t inputaddr   = 0x0;
+  uint32_t outputaddr  = 0x0;  
+  
+  if(hcryp->State == HAL_CRYP_STATE_BUSY)
+  {
+    /*=====================*/
+    /* GCM/GMAC init phase */
+    /*=====================*/  
+    if (hcryp->Init.GCMCMACPhase == CRYP_GCM_INIT_PHASE)
+    {
+      /* Clear Computation Complete Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      /* Disable Computation Complete Flag and Errors Interrupts */
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+      /* Change the CRYP state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+    
+      /* Mark that the initialization phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
+          
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);
+      /* Call computation complete callback */
+      HAL_CRYPEx_ComputationCpltCallback(hcryp);
+      return HAL_OK;
+    }
+    /*===============================*/
+    /* GCM/GMAC or CMAC header phase */
+    /*===============================*/    
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+    {
+      /* Check if all input header data have been entered */
+      if (hcryp->CrypInCount == 0)
+      {
+        /* Clear Computation Complete Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+        /* Disable Computation Complete Flag and Errors Interrupts */
+        __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+        /* Change the CRYP state */
+        hcryp->State = HAL_CRYP_STATE_READY;
+       /* Mark that the header phase is over */
+        hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
+      
+       /* Process Unlocked */
+        __HAL_UNLOCK(hcryp);
+      
+        /* Call computation complete callback */
+        HAL_CRYPEx_ComputationCpltCallback(hcryp);
+      
+        return HAL_OK;
+      }
+      /* If suspension flag has been raised, suspend processing */
+      else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
+      {
+        /* Ensure that CCF flag is set */
+        if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+        { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+        }
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+       
+        /* reset SuspendRequest */
+        hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+        /* Disable Computation Complete Flag and Errors Interrupts */
+        __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+        /* Change the CRYP state */
+        hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+        /* Mark that the header phase is over */
+        hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+      
+       /* Process Unlocked */
+        __HAL_UNLOCK(hcryp);
+      
+        return HAL_OK;
+      }      
+      else /* Carry on feeding input data to the CRYP hardware block */
+      {
+        /* Clear Computation Complete Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+        /* Get the last Input data address */
+        inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+      
+        /* Increment/decrement instance pointer/counter */
+        hcryp->pCrypInBuffPtr += 16;
+        hcryp->CrypInCount -= 16;
+        
+        if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+        { 
+          if (hcryp->CrypInCount == hcryp->Init.HeaderSize)
+          {
+            /* All B blocks will have been entered after the next
+              four DINR writing, so point at header buffer for
+              the next iteration */
+            hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+          }
+        }           
+      
+        /* Write the Input block in the Data Input register */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      
+        return HAL_OK;      
+      }
+    }
+    /*========================*/
+    /* GCM/GMAC payload phase */
+    /*========================*/    
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+    {
+      /* Get the last output data address */
+      outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+      
+      /* Retrieve the last block available from the CRYP hardware block:
+         read the output block from the Data Output Register */
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+      outputaddr+=4;
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+      outputaddr+=4;
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+      outputaddr+=4;
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+
+      /* Increment/decrement instance pointer/counter */
+      hcryp->pCrypOutBuffPtr += 16;
+      hcryp->CrypOutCount -= 16;            
+      
+      /* Check if all output text has been retrieved */
+      if (hcryp->CrypOutCount == 0)
+      {
+        /* Clear Computation Complete Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);        
+        /* Disable Computation Complete Flag and Errors Interrupts */
+        __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+        /* Change the CRYP state */
+        hcryp->State = HAL_CRYP_STATE_READY;
+       /* Mark that the payload phase is over */
+        hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
+      
+       /* Process Unlocked */
+        __HAL_UNLOCK(hcryp);
+      
+        /* Call computation complete callback */
+        HAL_CRYPEx_ComputationCpltCallback(hcryp);
+      
+        return HAL_OK;
+      }
+      /* If suspension flag has been raised, suspend processing */
+      else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
+      {
+        if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
+        {
+          /* Ensure that Busy flag is reset */
+          if(CRYP_WaitOnBusyFlagReset(hcryp, CRYP_BUSY_TIMEOUTVALUE) != HAL_OK)  
+          {   
+            hcryp->State = HAL_CRYP_STATE_READY;        
+            __HAL_UNLOCK(hcryp);
+            return HAL_TIMEOUT;
+          }
+        }
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+       
+        /* reset SuspendRequest */
+        hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+        /* Disable Computation Complete Flag and Errors Interrupts */
+        __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+        /* Change the CRYP state */
+        hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+        /* Mark that the header phase is over */
+        hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+      
+       /* Process Unlocked */
+        __HAL_UNLOCK(hcryp);
+      
+        return HAL_OK;
+      }            
+      else /* Output data are still expected, carry on feeding the CRYP
+               hardware block with input data */
+      {
+        /* Clear Computation Complete Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);          
+        /* Get the last Input data address */
+        inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+      
+        /* Increment/decrement instance pointer/counter */
+        hcryp->pCrypInBuffPtr += 16;
+        hcryp->CrypInCount -= 16;
+      
+        /* Write the Input block in the Data Input register */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      
+        return HAL_OK;      
+      }
+    }
+    /*==============================*/
+    /* GCM/GMAC or CMAC final phase */
+    /*==============================*/    
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+    {
+      /* Clear Computation Complete Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);  
+            
+      /* Get the last output data address */
+      outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+      
+      /* Retrieve the last expected data from the CRYP hardware block:
+         read the output block from the Data Output Register */
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+      outputaddr+=4;
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+      outputaddr+=4;
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+      outputaddr+=4;
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+  
+      /* Disable Computation Complete Flag and Errors Interrupts */
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+      /* Change the CRYP state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Mark that the header phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
+      
+      /* Disable the Peripheral */
+      __HAL_CRYP_DISABLE();
+      /* Process Unlocked */
+       __HAL_UNLOCK(hcryp);
+      
+      /* Call computation complete callback */
+      HAL_CRYPEx_ComputationCpltCallback(hcryp);
+      
+      return HAL_OK;
+    }
+    else
+    {
+      /* Clear Computation Complete Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);       
+      hcryp->State = HAL_CRYP_STATE_ERROR; 
+      __HAL_UNLOCK(hcryp); 
+      return HAL_ERROR; 
+    }
+  }
+  else
+  {
+    return HAL_BUSY; 
+  }  
+}
+    
+  
+  
+/** 
+  * @brief  Set the DMA configuration and start the DMA transfer
+  *         for GCM, GMAC or CMAC chainging modes.   
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.
+  * @param  inputaddr: Address of the Input buffer.
+  * @param  Size: Size of the Input buffer un bytes, must be a multiple of 16.
+  * @param  outputaddr: Address of the Output buffer, null pointer when no output DMA stream
+  *         has to be configured.  
+  * @retval None
+  */
+static void CRYP_GCMCMAC_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
+{
+
+  /* Set the input CRYP DMA transfer complete callback */
+  hcryp->hdmain->XferCpltCallback = CRYP_GCMCMAC_DMAInCplt;
+  /* Set the DMA error callback */
+  hcryp->hdmain->XferErrorCallback = CRYP_GCMCMAC_DMAError;
+  
+  if (outputaddr != 0) 
+  { 
+    /* Set the output CRYP DMA transfer complete callback */
+    hcryp->hdmaout->XferCpltCallback = CRYP_GCMCMAC_DMAOutCplt;
+    /* Set the DMA error callback */
+    hcryp->hdmaout->XferErrorCallback = CRYP_GCMCMAC_DMAError;
+  }
+  
+  /* Enable the CRYP peripheral */
+  __HAL_CRYP_ENABLE();
+  
+  /* Enable the DMA input stream */
+  HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4);
+  
+  /* Enable the DMA input request */
+  SET_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+
+  
+  if (outputaddr != 0) 
+  {   
+    /* Enable the DMA output stream */
+    HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4);
+  
+    /* Enable the DMA output request */
+    SET_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+  }
+}  
+
+
+
+/**
+  * @brief  Write/read input/output data in polling mode.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.
+  * @param  Input: Pointer to the Input buffer.
+  * @param  Ilength: Length of the Input buffer in bytes, must be a multiple of 16.
+  * @param  Output: Pointer to the returned buffer.
+  * @param  Timeout: Specify Timeout value.  
+  * @retval HAL status
+  */
+static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout)
+{
+  uint32_t index = 0;
+  uint32_t inputaddr  = (uint32_t)Input;
+  uint32_t outputaddr = (uint32_t)Output;
+  
+
+  for(index=0; (index < Ilength); index += 16)
+  {
+    /* Write the Input block in the Data Input register */
+    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    
+    /* Wait for CCF flag to be raised */
+    if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+    { 
+      hcryp->State = HAL_CRYP_STATE_READY;        
+      __HAL_UNLOCK(hcryp);
+      return HAL_TIMEOUT;
+    }
+      
+    /* Clear CCF Flag */
+    __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+    
+    /* Read the Output block from the Data Output Register */
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+    outputaddr+=4;
+    
+    /* If the suspension flag has been raised and if the processing is not about
+       to end, suspend processing */
+    if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16) < Ilength))
+    {
+      /* Reset SuspendRequest */
+      hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+      
+      /* Save current reading and writing locations of Input and Output buffers */
+      hcryp->pCrypOutBuffPtr =  (uint8_t *)outputaddr;
+      hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+      /* Save the number of bytes that remain to be processed at this point */
+      hcryp->CrypInCount     =  Ilength - (index+16);
+      
+      /* Change the CRYP state */
+      hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+      
+      return HAL_OK;
+    }
+    
+    
+  }
+  /* Return function status */
+  return HAL_OK;
+
+}
+
+
+
+
+
+/**
+  * @brief  Read derivative key in polling mode when CRYP hardware block is set
+  *         in key derivation operating mode (mode 2).
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.
+  * @param  Output: Pointer to the returned buffer.
+  * @param  Timeout: Specify Timeout value.  
+  * @retval HAL status
+  */
+static HAL_StatusTypeDef CRYP_ReadKey(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t Timeout)
+{
+  uint32_t outputaddr = (uint32_t)Output;
+  
+  /* Wait for CCF flag to be raised */  
+  if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+  { 
+    hcryp->State = HAL_CRYP_STATE_READY;        
+    __HAL_UNLOCK(hcryp);
+    return HAL_TIMEOUT;
+  }
+  /* Clear CCF Flag */
+  __HAL_CRYP_CLEAR_FLAG( CRYP_CCF_CLEAR);
+  
+    /* Read the derivative key from the AES_KEYRx registers */
+  if (hcryp->Init.KeySize == CRYP_KEYSIZE_256B)
+  {   
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR7);
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR6);
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR5);
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR4);
+    outputaddr+=4;
+  }
+  
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR3);
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR2);
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR1);
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR0);
+
+    
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Set the DMA configuration and start the DMA transfer.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.
+  * @param  inputaddr: Address of the Input buffer.
+  * @param  Size: Size of the Input buffer in bytes, must be a multiple of 16.
+  * @param  outputaddr: Address of the Output buffer.
+  * @retval None
+  */
+static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
+{
+  /* Set the CRYP DMA transfer complete callback */
+  hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
+  /* Set the DMA error callback */
+  hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
+  
+  /* Set the CRYP DMA transfer complete callback */
+  hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
+  /* Set the DMA error callback */
+  hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
+
+  /* Enable the DMA input stream */
+  HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4);
+
+  /* Enable the DMA output stream */
+  HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4);
+
+  /* Enable In and Out DMA requests */
+  SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
+  
+  /* Enable the CRYP peripheral */
+  __HAL_CRYP_ENABLE();
+}
+
+
+/**
+  * @brief  Handle CRYP hardware block Timeout when waiting for CCF flag to be raised.
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.      
+  * @param  Timeout: Timeout duration.
+  * @retval HAL status
+  */
+static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+  uint32_t tickstart = 0;
+  
+  /* Get timeout */
+  tickstart = HAL_GetTick();
+  
+  while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
+  {    
+    /* Check for the Timeout */
+    if(Timeout != HAL_MAX_DELAY)
+    {
+      if((HAL_GetTick() - tickstart ) > Timeout)
+      {    
+        return HAL_TIMEOUT;
+      }
+    }
+  }
+  return HAL_OK; 
+}
+
+/**
+  * @brief  Wait for Busy Flag to be reset during a GCM payload encryption process suspension. 
+  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.         
+  * @param  Timeout: Timeout duration.
+  * @retval HAL status
+  */
+static HAL_StatusTypeDef CRYP_WaitOnBusyFlagReset(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+  uint32_t tickstart = 0;
+  
+  /* Get timeout */
+  tickstart = HAL_GetTick();
+  
+  while(HAL_IS_BIT_SET(hcryp->Instance->SR, AES_SR_BUSY))
+  {    
+    /* Check for the Timeout */
+    if(Timeout != HAL_MAX_DELAY)
+    {
+      if((HAL_GetTick() - tickstart ) > Timeout)
+      {    
+        return HAL_TIMEOUT;
+      }
+    }
+  }
+  return HAL_OK; 
+}
+
+
+/**
+  * @brief  DMA CRYP Input Data process complete callback.
+  * @param  hdma: DMA handle.
+  * @retval None
+  */
+static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)  
+{
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  /* Disable the DMA transfer for input request  */
+  CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+  
+  /* Call input data transfer complete callback */
+  HAL_CRYP_InCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP Output Data process complete callback.
+  * @param  hdma: DMA handle.
+  * @retval None
+  */
+static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
+{
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  /* Disable the DMA transfer for output request */
+  CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+
+  /* Clear CCF Flag */
+  __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+  /* Disable CRYP */
+  __HAL_CRYP_DISABLE();
+  
+  /* Change the CRYP state to ready */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Call output data transfer complete callback */
+  HAL_CRYP_OutCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP communication error callback. 
+  * @param  hdma: DMA handle.
+  * @retval None
+  */
+static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
+{
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  hcryp->State= HAL_CRYP_STATE_ERROR;
+  hcryp->ErrorCode |= HAL_CRYP_DMA_ERROR;  
+  HAL_CRYP_ErrorCallback(hcryp);
+  /* Clear Error Flag */
+  __HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR);
+}
+
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+#endif /* defined(STM32L485xx) || defined(STM32L486xx) */
+
+#endif /* HAL_CRYP_MODULE_ENABLED */
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/