Tobi's ubw test branch
Dependencies: mavlink_bridge mbed
Fork of AIT_UWB_Range by
main.cpp
- Committer:
- manumaet
- Date:
- 2015-03-05
- Revision:
- 43:d89fe237a684
- Parent:
- 42:83931678c4de
- Child:
- 44:2e0045042a59
File content as of revision 43:d89fe237a684:
// by Matthias Grob & Manuel Stalder - ETH Zürich - 2015 #include "mbed.h" #include "PC.h" // Serial Port via USB for debugging with Terminal #include "DW1000.h" // our DW1000 device driver #include "MMRanging.h" // our self developed raning application PC pc(USBTX, USBRX, 921600); // USB UART Terminal DW1000 dw(PA_7, PA_6, PA_5, PB_6, PB_9); // Device driver instanceSPI pins: (MOSI, MISO, SCLK, CS, IRQ) MMRanging r(dw); // Ranging class for getting distances and later positions int average_index = 0; int main() { pc.printf("\r\nDecaWave 1.0 up and running!\r\n"); dw.setEUI(0xFAEDCD01FAEDCD01); // basic methods called to check if we have a working SPI connection pc.printf("DEVICE_ID register: 0x%X\r\n", dw.getDeviceID()); pc.printf("EUI register: %016llX\r\n", dw.getEUI()); pc.printf("Voltage: %fV\r\n", dw.getVoltage()); pc.printf("System Configuration: %llX\r\n", dw.readRegister40(DW1000_SYS_CFG, 0)); pc.printf("Size of Rangingframe: %d\r\n", sizeof(r.TX)); pc.printf("Antenna Delay TX: %d\r\n", dw.readRegister16(DW1000_TX_ANTD, 0)); pc.printf("Antenna Delay RX: %d\r\n", dw.readRegister16(DW1000_LDE_CTRL, 0x1804)); pc.printf("TX Power: %llX\r\n", dw.readRegister40(DW1000_TX_POWER, 0)); //r.receiver = true; if (r.receiver) r.address = 1; else r.address = 0; // sender node has address 0 pc.printf("Address: %d\r\n", r.address); //wait(1); while(1) { if (!r.receiver) { #if 0 // normal operation r.requestRangingAll(); for (int i = 1; i <= 4; i++) { // Request ranging to all anchors pc.printf("%f, ", r.distances[i]); //pc.printf("%f s\r\n", r.roundtriptimes[i]); } pc.printf("\r\n"); #endif #if 0 // calibration of antennadelay float rangings[1000]; int index = 0; r.requestRanging(1); if (r.distances[1] < 100) { rangings[index] = r.distances[1]; //pc.printf("%f, ", r.distances[1]); index++; } if (index == 1000) { for(int i = 0; i < 999; i++) rangings[999] += rangings[i]; float mean = rangings[999] / 1000; pc.printf("\r\n\r\nMean: %f Delay: %d\r\n\r\n", mean, setdelay); wait(2); if(mean > 5) setdelay += 10; else setdelay--; if(abs(mean-5) < 0.003f) { pc.printf("\r\n\r\nDELAY: %d\r\n\r\n", setdelay); return 0; } dw.writeRegister16(DW1000_TX_ANTD, 0, setdelay / 2); dw.writeRegister16(DW1000_LDE_CTRL, 0x1804, setdelay / 2); index = 0; } #endif } else { //pc.printf("%lld\r\n", r.timeDifference40Bit(r.rangingtimingsReceiver[0][0], r.rangingtimingsReceiver[0][1])); // debuging output to find 40Bit overflows on receiver side } #if 1 // averaging the distance with a ringbuffer float averaged = 0; float average[1000]; int i = 1; r.requestRanging(i); average[average_index] = r.distances[i]; average_index++; if(average_index == 1000) { average_index = 0; for(int j = 0; j < 1000; j++) averaged += average[j]; averaged /= 1000; pc.printf("Distance: %f\r\n", averaged); pc.printf("Calibrated: %f\r\n", -0.123 *averaged*averaged + 2.564 * averaged - 5.332 ); } #endif #if 0 // Output bars on console for(int i = 1; i < 3; i++) { pc.printf("%lld [", r.tofs[i]); int dots = r.tofs[i]*70/1400; if (abs(dots) < 10000) for(int j = 0; j < dots; j++) pc.printf("="); pc.printf("]\r\n"); } #endif #ifdef EVENTS // Output interrupt callback events for debugging (defined in MMRanging.h) for(int j = 0; j < 10; j++) if(r.event[j][0] == '!') { pc.printf("%s\r\n", r.event[j]); r.event[j][0] = 'X'; } r.event_i = 0; #endif //pc.printf("Status: %llX\r\n", dw.getStatus()); //pc.printf("TX Control: %llX\r\n", dw.readRegister40(DW1000_TX_FCTRL, 0)); //pc.printf("\r\n"); wait(0.002); //wait(0.2); } }